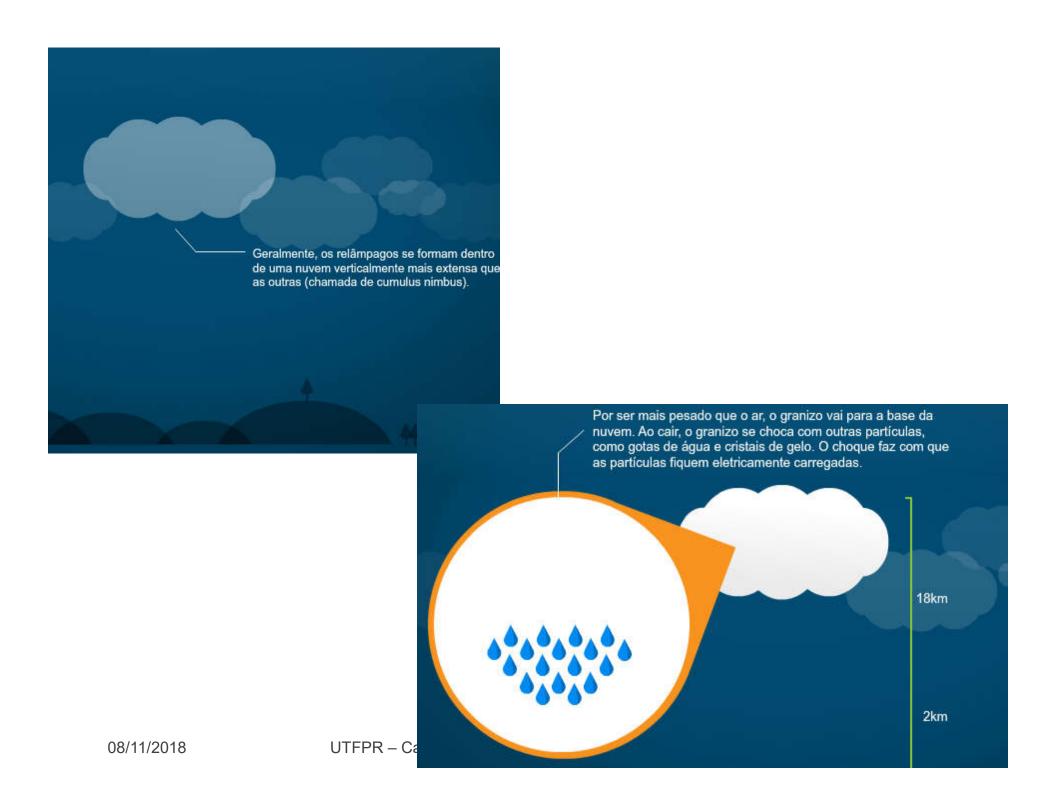


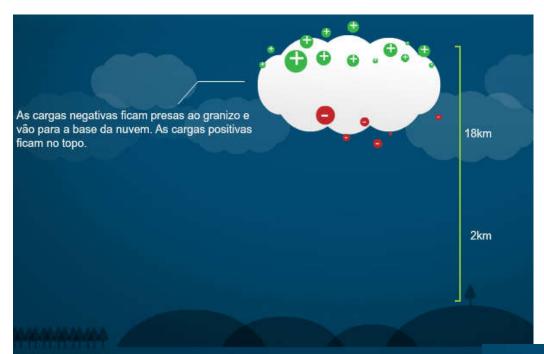
Instalações Elétricas Prediais

SPDA – Sistema de Proteção Contra Descargas Atmosféricas

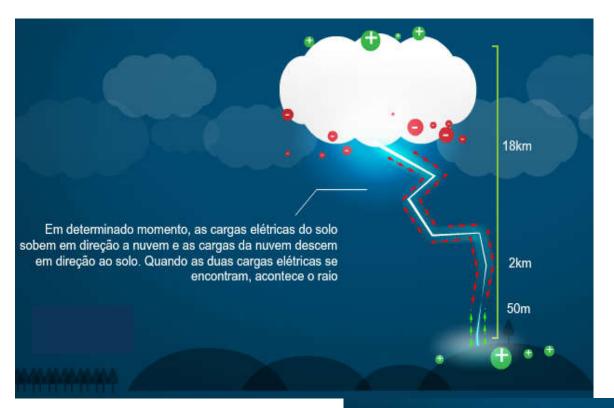
SPDA

- Conteúdo:
- O Raio;
- Cálculo de Necessidade do SPDA;
- Projeto de SPDA.

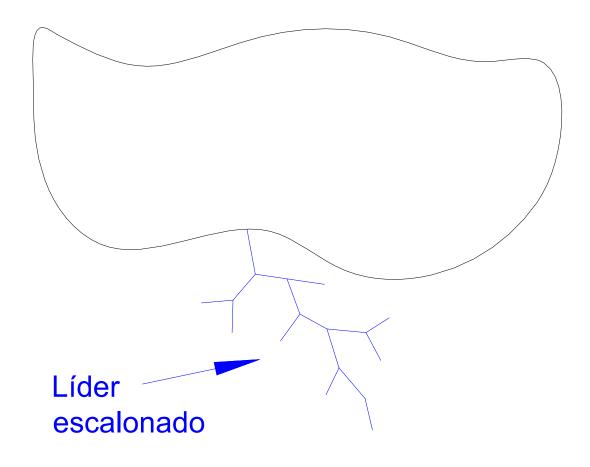

O raio

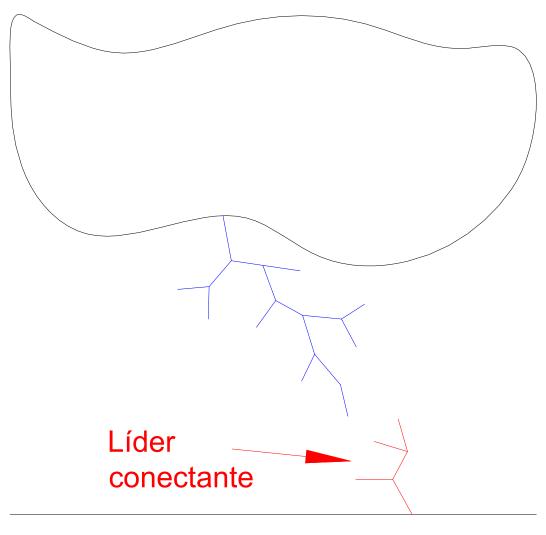

Incidência:

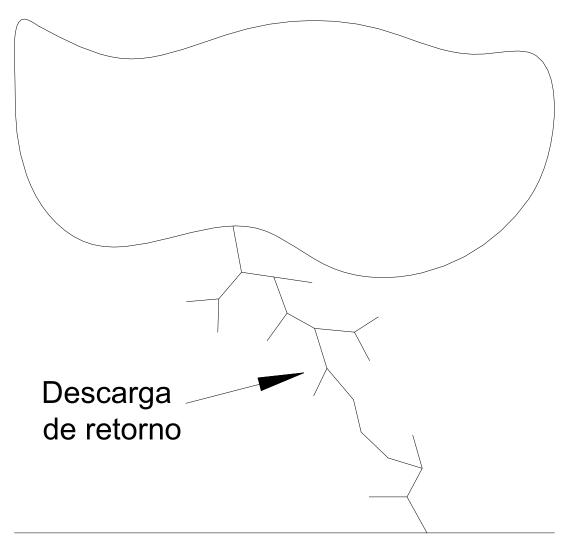
- 50 milhões de descargas elétricas por ano;
- 1.790 pessoas mortas entre 2000 e 2014;
- A cada 50 mortes por raio no mundo, uma acontece no Brasil



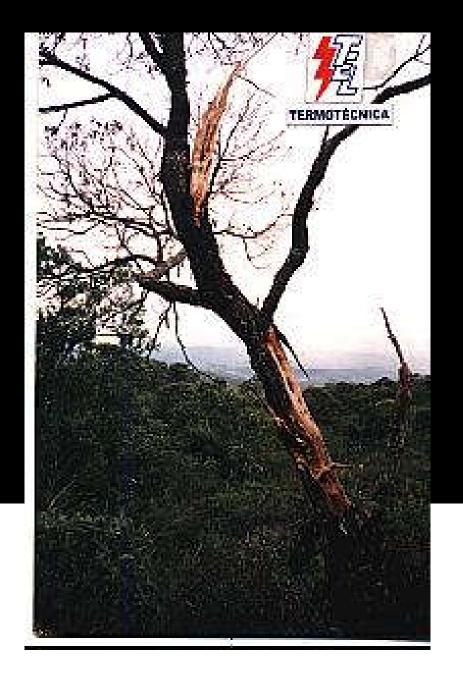
Fonte Inpe / Elat

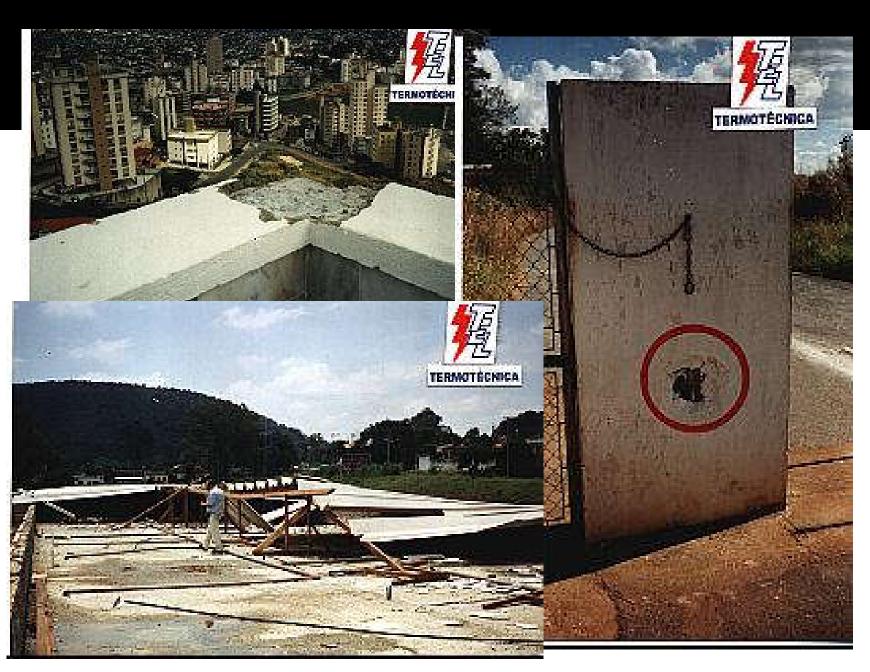





A formação do Raio

A formação do Raio


A formação do Raio


Características dos Raios

- 80% dos raios são nuvem-nuvem ou intranuvem;
- 20% dos raios são nuvem-solo;
- a descarga de retorno chega a velocidade de 100.000 km/h;
- um raio dura de 0,1 a 2 segundos;
- a intensidade média varia de 20 a 200 kA;
- o raio de maior intensidade registrado chegou a 280 kA;

08/11/2018

CÁLCULO DE NECESSIDADE

Danos e perdas

Fonte dos danos:

- a) S1: descargas atmosféricas na estrutura;
- b) S2: descargas atmosféricas perto da estrutura;
- c) S3: descargas atmosféricas na linha;
- d) S4: descargas atmosféricas perto da linha.

Tipo de danos:

- a) D1: ferimentos aos seres vivos por choque elétrico;
- b) D2: danos físicos;
- c) D3: falhas de sistemas eletroeletrônicos.

Tipo de perdas:

- a) L1: perda de vida humana (incluindo ferimentos permanentes);
- b) L2: perda de serviço ao público;
- c) L3: perda de patrimônio cultural;
- d) L4: perda de valores econômicos (estrutura, conteúdo, e perdas de atividades). ^{ediais}

Danos e perdas

Tabela 1 – Fontes de danos, tipos de danos e tipos de perdas de acordo com o ponto de impacto

Descarga atmo	sférica	Estrutura			
Ponto de impacto	Fonte de danos	Tipo de danos	Tipo de perdas		
	S1	D1 D2 D3	L1, L4 ^a L1, L2, L3, L4 L1 ^b , L2, L4		
	S2	D3	L1 ^b , L2 , L4		
	\$3	D1 D2 D3	L1, L4 ^a L1, L2, L3, L4 L1 ^b , L2, L4		
	S4	D3	L1 ^b , L2, L4		

a Somente para propriedades onde animais possam ser perdidos.

Somente para estruturas com risco de explosão ou para hospitais ou outras estruturas onde falhas de sistemas internos podem imediatamente colocar em perigo a vida humana.

Riscos:

- a) R₁: risco de perda de vida humana (incluindo ferimentos permanentes);
- b) R₂: risco de perda de serviço ao público;
- c) R₃: risco de perda de patrimônio cultural;
- d) R₄: risco de perda de valores econômicos.

Componentes de risco:

4.2.2 Componentes de risco para uma estrutura devido às descargas atmosféricas na estrutura

- a) R_A: componente relativo a ferimentos aos seres vivos causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora nas zonas até 3 m ao redor dos condutores de descidas. Perda de tipo L1 e, no caso de estruturas contendo animais vivos, as perdas do tipo L4 com possíveis perdas de animais podem também aumentar;
 - NOTA Em estruturas especiais, pessoas podem estar em perigo por descargas atmosféricas diretas (por exemplo, no nível superior de estacionamentos ou estádios). Recomenda-se que estes casos também sejam considerados utilizando os princípios desta Parte da ABNT NBR 5419.
- R_B: componente relativo a danos físicos causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente. Todos os tipos de perdas (L1, L2, L3 e L4) podem aumentar;
- c) R_C: componente relativo a falhas de sistemas internos causados por LEMP. Perdas do tipo L2 e L4 podem ocorrer em todos os casos junto com o tipo L1, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Componentes de risco:

08/1

4.2.3 Componentes de risco para uma estrutura devido às descargas atmosféricas perto da estrutura

— R_M: componente relativo a falhas de sistemas internos causados por LEMP. Perdas do tipo L2 e L4 podem ocorrer em todos os casos junto com o tipo L1, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

4.2.4 Componentes de risco para uma estrutura devido às descargas atmosféricas a uma linha conectada à estrutura

- a) R_U: componente relativo a ferimentos aos seres vivos causados por choque elétrico devido às tensões de toque e passo dentro da estrutura. Perda do tipo L1 e, no caso de propriedades agrícolas, perdas do tipo L4 com possíveis perdas de animais podem também ocorrer;
- b) R_V: componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas geralmente no ponto de entrada da linha na estrutura) devido à corrente da descarga atmosférica transmitida ou ao longo das linhas. Todos os tipos de perdas (L1, L2, L3 e L4) podem ocorrer;
- c) R_W: componente relativo a falhas de sistemas internos causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perdas do tipo L2 e L4 podem ocorrer em todos os casos, junto com o tipo L1, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Componentes de risco:

4.2.5 Componentes de risco para uma estrutura devido às descargas atmosféricas perto de uma linha conectada à estrutura

- R_Z: componente relativo a falhas de sistemas internos causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perdas do tipo L2 e L4 podem ocorrer em todos os casos, junto com o tipo L1, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

NOTA 1 As linhas consideradas nesta análise são somente aquelas que entram na estrutura.

NOTA 2 Descargas atmosféricas em ou perto de tubulações não são consideradas como uma fonte de danos, uma vez que existe a interligação ao barramento de equipotencialização. Se o barramento de equipotencialização não existir, recomenda-se que este tipo de ameaça também seja considerado.

Composição dos Componentes de risco:

a) R₁: Risco de perda de vida humana:

$$R_{1} = R_{A1} + R_{B1} + R_{C1}^{1} + R_{M1}^{1} + R_{U1} + R_{V1} + R_{W1}^{1} + R_{Z1}^{1}$$
(1)

- Somente para estruturas com risco de explosão e para hospitais com equipamentos elétricos para salvar vidas ou outras estruturas quando a falha dos sistemas internos imediatamente possa por em perigo a vida humana.
- b) R₂: Risco de perdas de serviço ao público:

$$R_2 = R_{B2} + R_{C2} + R_{M2} + R_{V2} + R_{W2} + R_{Z2}$$
 (2)

c) R₃: Risco de perdas de patrimônio cultural:

$$R_3 = R_{B3} + R_{V3}$$
 (3)

d) R₄: Risco de perdas de valor econômico:

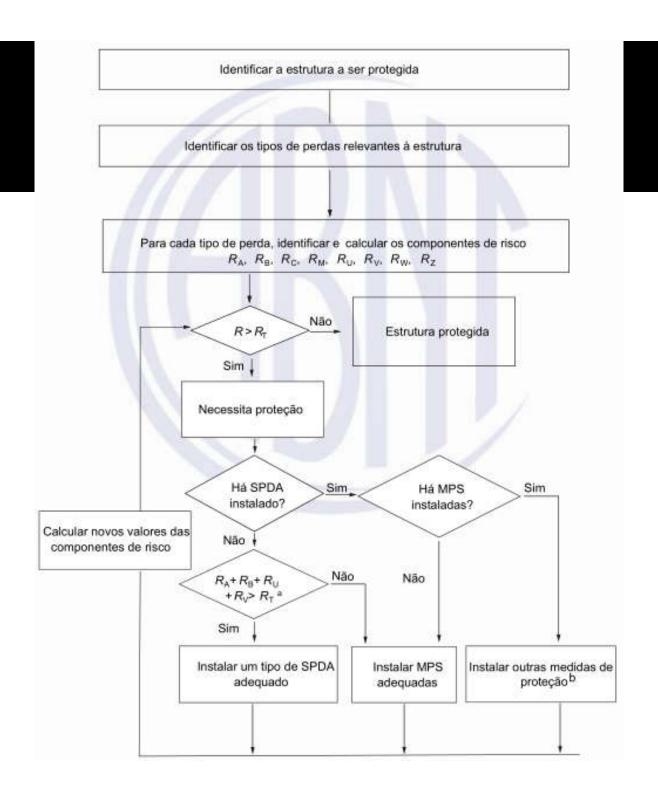
$$R_4 = R_{A4}^2 + R_{B4} + R_{C4} + R_{M4} + R_{U4}^2 + R_{V4} + R_{W4} + R_{Z4}$$
(4)

Somente para propriedades onde animais possam ser perdidos.

Riscos a serem determinados

Tabela 2 – Componentes de risco a serem considerados para cada tipo de perda em uma estrutura

Fonte de danos	atmo	escar osfério strutu S1	ca na	Descarga atmosférica perto da estrutura S2	Descarga atmosférica em uma linha conectada à estrutura S3		rica linha ada	Descarga atmosférica perto de uma linha conectada à estrutura S4	
Componente de risco	R _A R _B R _C		R _C R _M		Ru	R _V R _W		R _Z	
Risco para cada tipo de perda									
R_1	*	*	* a	* a	*	*	* a	* a	
R_2 R_3		*	*	*		*	*	*	
R ₄	* b	*	*	*	*b	*	*	*	


Somente para estruturas com risco de explosão e para hospitais ou outras estruturas quando a falha dos sistemas internos imediatamente possam colocar em perigo a vida humana.

b Somente para propriedades onde animais possam ser perdidos.

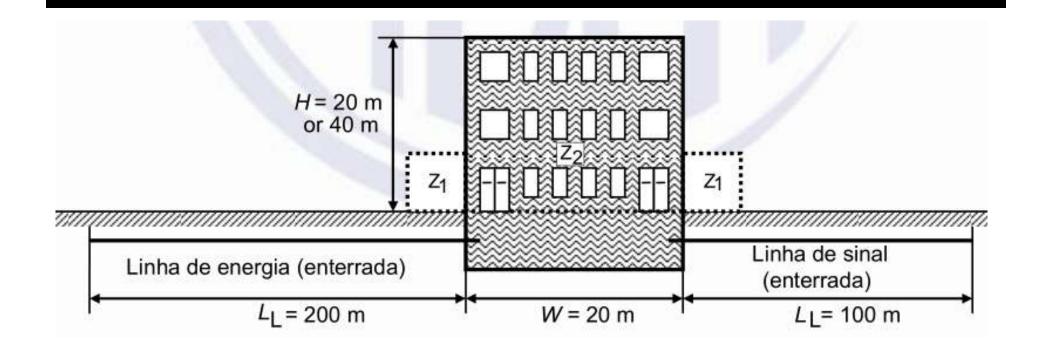

Riscos a serem determinados

Tabela 6 – Componentes de risco para diferentes tipos de danos e fontes de danos

	Fonte de danos							
Danos	S1 Descarga atmosférica na estrutura	S2 Descarga atmosférica perto da estrutura	S3 Descarga atmosférica na linha conectada	S4 Descarga atmosférica perto da linha conectada				
D1								
Ferimentos a seres vivos devido a choque elétrico	$R_A = N_D \times P_A \times L_A$		$R_{U} = (N_{L} + N_{DJ})$ $\times P_{U} \times L_{U}$					
D2	$R_{\rm B} = N_{\rm D} \times P_{\rm B}$		$R_{V} = (N_{L} + N_{DJ})$					
Danos físicos	× L _B		$\times P_{V} \times L_{V}$					
D3 Falha de sistemas eletroeletrônicos	$R_{C} = N_{D} \times P_{C} \times L_{C}$	$R_{M} = N_{M} \times P_{M} \times L_{M}$	$R_{W} = (N_{L} + N_{DJ})$ $\times P_{W} \times L_{W}$	$R_Z = N_1 \times P_Z \times L_Z$				

Estrutura

Bloco de apartamentos

Dados da estrutura

- O Bloco de apartamentos está localizado em um território plano sem nenhuma estrutura nas redondezas;
- A densidade de descargas atmosféricas para a terra é Ng= 4 descargas atmosféricas/km² ano;
- No bloco vivem 200 pessoas. Número total de pessoas a ser considerado assumindo que fora do edifício nenhuma pessoa deve estar durante a tempestade.

Dados da estrutura

Tabela E.41 – Bloco de apartamentos: características ambientais e globais da estrutura

Parâmetros de entrada	Comentário	Símbolo	Valor	Referência
Densidade de descargas atmosféricas para a terra (1/km²/ano)		N _G	4,0	
Dimensões da estrutura (m)	H = 20 ou 40 (ver Tabela E.45)	L, W	30, 20	
Fator de localização da estrutura	Estrutura isolada	CD	1	Tabela A.1
SPDA	Variável (ver Tabela E.45)	PB	: -	Tabela B.2
Ligação equipotencial	Nenhuma	PEB	1	Tabela B.7
Blindagem espacial externa	Nenhuma	K _{S1}	1	Equação (B.5)

Dados da linha de energia

Tabela E.42 – Bloco de apartamentos: linha de energia

Comentário	Símbolo	Valor	Referência
	LL	200	-
Enterrada	CI	0,5	Tabela A.2
Linha de BT	CT	1	Tabela A.3
Suburbano	CE	0,5	Tabela A.4
Não blindada	Rs	-	Tabela B.8
NIL	C _{LD}	1	T-1- D 4
Nennuma	C _{LI}	1	Tabela B.4
Nenhuma	LJ, WJ, HJ	· ·	
Nenhuma	C _{DJ}	-	Tabela A.1
	U _W	2,5	
	K _{S4}	0,4	Equação (B.7)
Parâmetros resultantes	P _{LD}	1	Tabela B.8
	Enterrada Linha de BT Suburbano Não blindada Nenhuma Nenhuma	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LL 200 Enterrada CI 0,5 Linha de BT CT 1 Suburbano CE 0,5 Não blindada RS - Nenhuma CLD 1 Nenhuma LJ, WJ, HJ - Nenhuma CDJ - VW 2,5 KS4 0,4

Dados da linha de sinal

Tabela E.43 – Bloco de apartamentos: linha de sinal

Parâmetros de entrada	Comentário	Símbolo	Valor	Referência	
Comprimento (m)		LL	100		
Fator de Instalação	Enterrada	CI	0,5	Tabela A.2	
Fator tipo de linha	Linha de sinal	C _T	1	Tabela A.3	
Fator ambiental	Suburbano	CE	0,5	Tabela A.4	
Blindagem da linha (Ω/km)	Não blindada	Rs	_	Tabela B.8	
Blindagem, aterramento,	Nach	C _{LD}	1	Tabala D 4	
isolação	Nenhuma	C _{LI}	1	Tabela B.4	
Estrutura Adjacente	Nenhuma	$L_{\rm J},W_{\rm J},H_{\rm J}$	-		
Fator de localização da estrutura adjacente	Nenhuma	C _{DJ}	=	Tabela A.1	
Tensão suportável dos sistemas internos (kV)		U _W	1,5		
		K _{S4}	0,67	Equação (B.	
	Parâmetros resultantes	P _{LD}	1	Tabela B.8	
1/2018 UTFP	R – Campus Curitiba – DAELT – I	nstalaçõeStalétrica	s Pr e ptais	Tabela B.9	

Dados da estrutura (Resultados Norma)

Tabela E.45 – Bloco de apartamentos: Risco R₁ para um bloco de apartamentos dependendo das medidas de proteção

Altura <i>H</i>	Risco de incêndio		SPDA		Proteção contra incêndio		Risco R ₁	Estrutura protegida
(m)	Tipo	rf	Classe	PB	Tipo	r _p	Valores × 10 ⁻⁵	$R_1 \le R_T$
	Baixo	0,001	Nenhum	1	Nenhuma	1	0,837	Sim
			Nenhum	1	Nenhuma	1	8,364	Não
	Ordinário	0,01	111	0,1	Nenhuma	1	0,776	Sim
20			IV	0,2	Manual	0,5	0,747	Sim
20			Nenhum	1	Nenhuma	1	83,64	Não
	Alto	0.1	- 11	0,05	Automático	0,2	0,764	Sim
		0,1		0,02	Nenhuma	1	1,553	Não
				0,02	Manual	0,5	0,776	Sim
		1911	Nenhum	1	Nenhuma	1	2,436	Não
	Baixo	0,001	Nenhum	1	Automática	0,2	0,489	Sim
			IV	0,2	Nenhuma	1	0,469	Sim
40		M	Nenhum	1	Nenhuma	1	24,34	Não
40	ordinário	ordinário 0,01 IV 0,2 Automática I 0,02 Nenhuma	Automática	0,2	0,938	Sim		
			1	0,475	Sim			
	Alto	0.1	Nenhum	1	Nenhuma	1	243,4	Não
	Alto	0,1		0,02	Automática	0,2	0,949	Sim

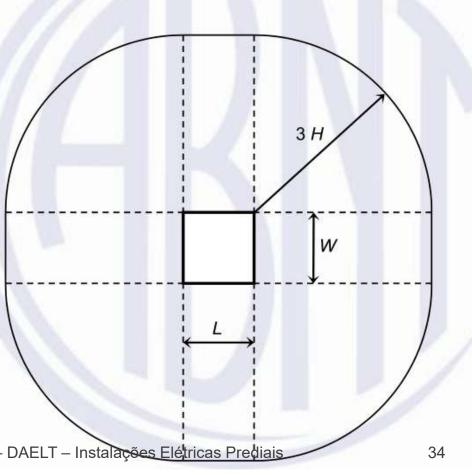
Definição de zonas

- Z 1 (fora ao edifício);
- ❖ Z 2 (dentro do edifício).

Para a zona Z1, nenhuma pessoa estará fora do edifício. Logo, o risco de choque às pessoas R A = 0. Despreza-se Z1;

- A zona Z2 é definida levando em consideração o seguinte:
- a estrutura é classificada como um "edifício civil";
- há, ambos os sistemas internos (energia e sinal);
- não há blindagem espacial;
- a estrutura é considerada um único compartimento à prova de fogo;
- perdas são assumidas como correspondente aos valores médios típicos da Tabela C.1.

Para cálculo de Lx

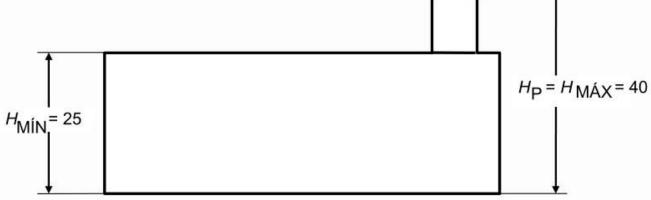

Tabela C.1 – Tipo de perda L1: Valores da perda para cada zona

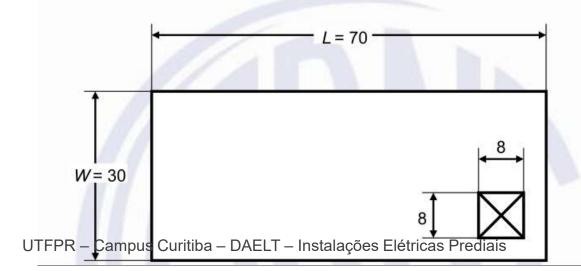
Tipo de dano	Perda típica	Equação
D1	$L_{A} = r_{t} \times L_{T} \times n_{Z} / n_{t} \times t_{z} / 8760$	(C.1)
D1	$L_{\rm U} = r_{\rm t} \times L_{\rm T} \times n_{\rm Z} / n_{\rm t} \times t_{\rm z} / 8760$	(C.2)
D2	$L_{\text{B}} = L_{\text{V}} = r_{\text{p}} \times r_{\text{f}} \times h_{\text{z}} \times L_{\text{F}} \times n_{\text{Z}} / n_{\text{t}} \times t_{\text{z}} / 8760$	(C.3)
D3	$L_{\rm C} = L_{\rm M} = L_{\rm W} = L_{\rm Z} = L_{\rm O} \times n_{\rm Z} / n_{\rm t} \times t_{\rm z} / 8760$	(C.4)

Área de exposição equivalente (AD)

Estrutura retangular

$$A_D = L \times W + 2 \times (3 \times H) \times (L + W) + \pi \times (3 \times H)^2$$




1:3

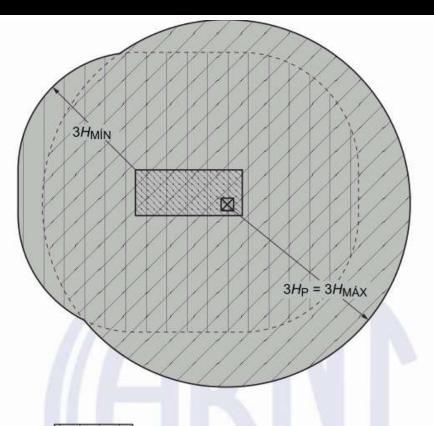
Área de exposição equivalente (A_D)

Estrutura complexa

 $A_{D}' = \pi \times (3 \times H_{P})^2$

08/11/2018

35


Área de exposição equivalente (A_D)

- Estrutura complexa;
- Equação A.2

$$A_{D} = L \times W + 2 \times (3 \times H) \times (L + W) + \pi \times (3 \times H)^{2}$$

Equação A.3

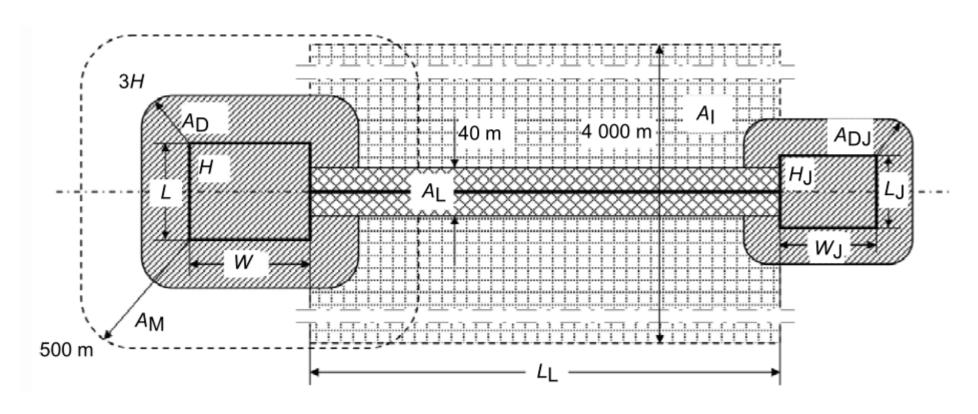
$$A_{D}' = \pi \times (3 \times H_{P})^2$$

ADMÍN Estrutura retangular com $H = H_{MIN}$ Equação (A.2)

A'D Saliência com $H = H_P = H_{MAX}$ Equação (A.3)

Área de exposição equivalente determinada por um método gráfico

Área de exposição equivalente


Cálculo de áreas equivalentes:

$$A_{\rm M} = 2 \times 500 \times (L + W) + \pi \times 500^2 \bullet$$
 Equação A.7

$$A_L = 40 \times L_L$$

$$A_{\rm I} = 4~000 \times L_{\rm L}$$

Equação A.11

Tabelas para determinação de Nx

Tabela A.1 – Fator de localização da estrutura C_D

Localização relativa	CD
Estrutura cercada por objetos mais altos	0,25
Estrutura cercada por objetos da mesma altura ou mais baixos	0,5
Estrutura isolada: nenhum outro objeto nas vizinhanças	1
Estrutura isolada no topo de uma colina ou monte	2

Tabela A.2 – Fator de instalação da linha C_I

Roteamento	C_{I}
Aéreo	1
Enterrado	0,5
Cabos enterrados instalados completamente dentro de uma malha de aterramento (ABNT NBR 5419-4:2015, 5.2).	0,01

Tabelas para determinação de Nx

Tabela A.3 – Fator tipo de linha C_T

Instalação	C _T
Linha de energia ou sinal	1
Linha de energia em AT (com transformador AT/BT)	0,2

Tabela A.4 – Fator ambiental da linha CE

Ambiente	CE
Rural	1
Suburbano	0,5
Urbano	0,1
Urbano com edifícios mais altos que 20 m.	0,01

Para cálculo de Lx

Tabela C.1 – Tipo de perda L1: Valores da perda para cada zona

Tipo de dano	Perda típica	Equação
D1	$L_{A} = r_{t} \times L_{T} \times n_{Z} / n_{t} \times t_{z} / 8760$	(C.1)
D1	$L_{\rm U} = r_{\rm t} \times L_{\rm T} \times n_{\rm Z} / n_{\rm t} \times t_{\rm z} / 8760$	(C.2)
D2	$L_{\text{B}} = L_{\text{V}} = r_{\text{p}} \times r_{\text{f}} \times h_{\text{z}} \times L_{\text{F}} \times n_{\text{Z}} / n_{\text{t}} \times t_{\text{z}} / 8760$	(C.3)
D3	$L_{\rm C} = L_{\rm M} = L_{\rm W} = L_{\rm Z} = L_{\rm O} \times n_{\rm Z} / n_{\rm t} \times t_{\rm z} / 8760$	(C.4)

Tabelas para a Determinação de Ra

Equação 6
 R_A = N_D × P_A × L_A

Equação B.1
 P_A = P_{TA} × P_B

Tabela B.1 – Valores de probabilidade P_{TA} de uma descarga atmosférica em uma estrutura causar choque a seres vivos devido a tensões de toque e de passo perigosas

Medida de proteção adicional	P_{TA}
Nenhuma medida de proteção	1
Avisos de alerta	10 ⁻¹
Isolação elétrica (por exemplo, de pelo menos 3 mm de polietileno reticulado das partes expostas (por exemplo, condutores de descidas)	10-2
Equipotencialização efetiva do solo	10-2
Restrições físicas ou estrutura do edifício utilizada como subsistema de descida	0

Tabela B.2 – Valores de probabilidade P_B dependendo das medidas de proteção para reduzir danos físicos

Características da estrutura	Classe do SPDA	PB
Estrutura não protegida por SPDA	_	1
Estrutura protegida por SPDA	IV	0,2
	III	0,1
	II	0,05
	1 1 1 /	0,02
Estrutura com subsistema de captação confor estrutura metálica contínua ou de concreto ar subsistema de descida natural		0,01
Estrutura com cobertura metálica e um subsis possivelmente incluindo componentes naturai de qualquer instalação na cobertura contra de diretas e uma estrutura metálica contínua ou atuando como um subsistema de descidas na	s, com proteção completa escargas atmosféricas de concreto armado	0,001

08/11/2018

UTF

Tabelas para a Determinação de Ra

Equação 6

$$R_A = N_D \times P_A \times L_A$$

Equação C.1

$$L_A = r_t \times L_T \times n_Z / n_t \times t_Z / 8760$$

Tabela C.2 – Tipo de perda L1: Valores médios típicos de L_T, L_F e L_O

Tipos de danos	Valor de perda típico		Tipo da estrutura
D1 ferimentos	L _T	10-2	Todos os tipos
		10-1	Risco de explosão
	L _F	10-1	Hospital, hotel, escola, edifício cívico
D2 danos físicos		5 × 10 ⁻²	Entretenimento publico, igreja, museu
		2 × 10 ⁻²	Industrial, comercial
		10-2	Outros
		10-1	Risco de explosão
D3 falhas de sistemas internos	Lo	10-2	Unidade de terapia intensiva e bloco cirúrgico de hospital
cicionide interrior		10-3	Outras partes de hospital

Tabela C.3 – Fator de redução $r_{\rm t}$ em função do tipo da superfície do solo ou piso

Tipo de superfície ^b	Resistência de contato k Ω a	r _t
Agricultura, concreto	≤1	10-2
Marmore, cerâmica	1 – 10	10-3
Cascalho, tapete, carpete	10 – 100	10-4
Asfalto, linóleo, madeira	≥ 100	10 ⁻⁵

^a Valores medidos entre um eletrodo de 400 cm² comprimido com uma força uniforme de 500 N e um ponto considerado no infinito.

UTFPR -

Uma camada de material isolante, por exemplo, asfalto, de 5 cm de espessura (ou uma camada de cascalho de 15 cm de espessura) geralmente reduz o perigo a um nível tolerável.

Tabelas para a Determinação de R_B

Equação 7

$$R_{\rm B} = N_{\rm D} \times P_{\rm B} \times L_{\rm B}$$

Equação C.3

 $L_B = L_V = r_p \times r_f \times h_z \times L_F \times n_z / n_t \times t_z / 8760$

Tabela C.4 – Fator de redução r_p em função das providências tomadas para reduzir as consequências de um incêndio

Providências	r_{p}
Nenhuma providência	1
Uma das seguintes providências: extintores, instalações fixas operadas manualmente, instalações de alarme manuais, hidrantes, compartimentos à prova de fogo, rotas de escape	0,5
Uma das seguintes providências: instalações fixas operadas automaticamente, instalações de alarme automático ^a	0,2

Somente se protegidas contra sobretensões e outros danos e se os bombeiros puderem chegar em menos de 10 min.

Tabela C.5 – Fator de redução $r_{\rm f}$ em função do risco de incêndio ou explosão na estrutura

Risco	Quantidade de risco	r f
	Zonas 0, 20 e explosivos sólidos	1
Explosão	Zonas 1, 21	10 ⁻¹
	Zonas 2, 22	10 ⁻³
	Alto	10 ⁻¹
Incêndio	Normal	10-2
	Baixo	10 ⁻³
Explosão ou incêndio	Nenhum	0

08/11/2018

UTFF

Tabelas para a Determinação de R_B

Equação 7

$$R_{\rm B} = N_{\rm D} \times P_{\rm B} \times L_{\rm B}$$

Equação C.3

 $L_B = L_V = r_p \times r_f \times h_Z \times L_F \times n_Z / n_t \times t_Z / 8760$

Tabela C.6 – Fator h_z aumentando a quantidade relativa de perda na presença de um perigo especial

Tipo de perigo especial	hz
Sem perigo especial	
Baixo nível de pânico (por exemplo, uma estrutura limitada a dois andares e número de pessoas não superior a 100)	2
Nível médio de pânico (por exemplo, estruturas designadas para eventos culturais ou esportivos com um número de participantes entre 100 e 1 000 pessoas)	5
Dificuldade de evacuação (por exemplo, estrutura com pessoas imobilizadas, hospitais)	5
Alto nível de pânico (por exemplo, estruturas designadas para eventos culturais ou esportivos com um número de participantes maior que 1 000 pessoas)	10

08/11/2018

Tabelas para a Determinação de Ru

Equação 10

$$R_{\text{U}} = (N_{\text{L}} + N_{\text{DJ}}) \times P_{\text{U}} \times L_{\text{U}}$$

Equação B.8

$$P_{\text{U}} = P_{\text{TU}} \times P_{\text{EB}} \times P_{\text{LD}} \times C_{\text{LD}}$$

Tabela B.4 – Valores dos fatores C_{LD} e C_{LI} dependendo das condições de blindagem aterramento e isolamento

Tipo de linha externa	Conexão na entrada	C _{LD}	CLI
Linha aérea não blindada	Indefinida	1	1
Linha enterrada não blindada	Indefinida	1	1
Linha de energia com neutro multiaterrado	Nenhuma	1	0,2
Linha enterrada blindada (energia ou sinal)	Blindagem não interligada ao mesmo barramento de equipotencialização que o equipamento		0,3
Linha aérea blindada (energia ou sinal)	Blindagem não interligada ao mesmo barramento de equipotencialização que o equipamento	1	0,1
Linha enterrada blindada Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento		1	0

Tipo de linha externa	Conexão na entrada		CLI
Linha aérea blindada (energia ou sinal)	Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento		0
Cabo protegido contra descargas atmosféricas ou cabeamento em dutos para cabos protegido contra descargas atmosféricas, eletrodutos metálicos ou tubos metálicos	Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento		0
(Nenhuma linha externa)	Sem conexões com linhas externas (sistemas independentes)	0	0
Qualquer tipo	Interfaces isolantes de acordo com a ABNT NBR 5419-4	0	0

Tabelas para a Determinação de Ru

Equação 10

$$R_{\rm U} = (N_{\rm L} + N_{\rm DJ}) \times P_{\rm U} \times L_{\rm U}$$

Equação B.8

$$P_{\mathsf{U}} = P_{\mathsf{T}\mathsf{U}} \times P_{\mathsf{EB}} \times P_{\mathsf{LD}} \times C_{\mathsf{LD}}$$

Tabela B.6 – Valores da probabilidade P_{TU} de uma descarga atmosférica em uma linha que adentre a estrutura causar choque a seres vivos devido a tensões de toque perigosas

Medida de proteção	P _{TU}
Nenhuma medida de proteção	1
Avisos visíveis de alerta	10-1
Isolação elétrica	10-2
Restrições físicas	0

Tabelas para a Determinação de Ru

Tabela B.7 – Valor da probabilidade P_{EB} em função do NP para o qual os DPS foram projetados

Equação 10

$$R_{\text{U}} = (N_{\text{L}} + N_{\text{DJ}}) \times P_{\text{U}} \times L_{\text{U}}$$

Equação B.8

$$P_{\text{U}} = P_{\text{TU}} \times P_{\text{EB}} \times P_{\text{LD}} \times C_{\text{LD}}$$

NP	P _{EB}
Sem DPS	1
III-IV	0,05
II	0,02
Į.	0,01
NOTA 4	0,005 - 0,001

Tabela B.8 – Valores da probabilidade P_{LD} dependendo da resistência R_S da blindagem do cabo e da tensão suportável de impulso U_W do equipamento

Tipo	Tipo Condições do roteamento, blindagem		Tens	ão sup	ortáve	l <i>U</i> W e	m kV
da linha	e inte	rligação	1	1,5	2,5	4	6
	Linha aérea ou enterrada, não blindada ou com a blindagem não interligada ao mesmo barramento de equipotencialização do equipamento		1	1	1	1	1
Linhas de	nergia ou sinal cuja blindagem	5Ω /km < R _S ≤ 20 Ω /km	1	1	0,95	0,9	0,8
energia ou sinal		ouja biii augoiii	$1Ω/km < R_S ≤ 5 Ω/km$	0,9	0,8	0,6	0,3
	está interligada ao mesmo barramento de equipotencialização do equipamento	R _S ≤ 1 Ω/km	0,6	0,4	0,2	0,04	0,02

Tabelas para a Determinação de Rv

Equação 11

$$R_V = (N_L + N_{DJ}) \times P_V \times L_V$$

Equação B.8

$$P_V = P_{EB} \times P_{LD} \times C_{LD}$$

Tabela B.4 – Valores dos fatores C_{LD} e C_{LI} dependendo das condições de blindagem aterramento e isolamento

Tipo de linha externa	Conexão na entrada	C _{LD}	CLI
Linha aérea não blindada	Indefinida	1	1
Linha enterrada não blindada	Indefinida	1	1
Linha de energia com neutro multiaterrado	Nenhuma	1	0,2
Linha enterrada blindada (energia ou sinal)	Blindagem não interligada ao mesmo barramento de equipotencialização que o equipamento		0,3
Linha aérea blindada (energia ou sinal)	Blindagem não interligada ao mesmo barramento de equipotencialização que o equipamento	1	0,1
Linha enterrada blindada (energia ou sinal)	Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento	1	0

Tipo de linha externa	Conexão na entrada		CLI
Linha aérea blindada (energia ou sinal)	Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento	1	0
Cabo protegido contra descargas atmosféricas ou cabeamento em dutos para cabos protegido contra descargas atmosféricas, eletrodutos metálicos ou tubos metálicos	Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento	0	0
(Nenhuma linha externa)	Sem conexões com linhas externas (sistemas independentes)	0	0
Qualquer tipo	Interfaces isolantes de acordo com a ABNT NBR 5419-4	0	0

Tabelas para a Determinação de Rv

Tabela B.7 – Valor da probabilidade P_{EB} em função do NP para o qual os DPS foram projetados

Equação 11

$$R_V = (N_L + N_{DJ}) \times P_V \times L_V$$

Equação B.8

$$P_V = P_{EB} \times P_{LD} \times C_{LD}$$

NP	PEB
Sem DPS	1
III-IV	0,05
Л	0,02
	0,01
NOTA 4	0,005 - 0,001

Tabela B.8 – Valores da probabilidade P_{LD} dependendo da resistência R_S da blindagem do cabo e da tensão suportável de impulso U_W do equipamento

Tipo	Condições do rot	lições do roteamento, blindagem		Tensão suportável U _W			
da linha	e interligação		1	1,5	2,5	4	6
I NEW YORK WAS SAGED SEED OF SAME CONTROL OF S		rada, não blindada ou o interligada ao mesmo otencialização do	1	1	1	1	1
Linhas de	ouju biii uugoiii	5Ω /km < R _S ≤ 20 Ω /km	1	1	0,95	0,9	0,8
energia ou sinal		$1Ω/km < R_S ≤ 5 Ω/km$	0,9	0,8	0,6	0,3	0,1
	está interligada ao mesmo barramento de equipotencialização do equipamento	R _S ≤ 1 Ω/km	0,6	0,4	0,2	0,04	0,02

Para cálculo de Lx

Tabela C.1 – Tipo de perda L1: Valores da perda para cada zona

Tipo de dano	Perda típica	Equação
D1	$L_{A} = r_{t} \times L_{T} \times n_{Z} / n_{t} \times t_{z} / 8760$	(C.1)
D1	$L_{\rm U} = r_{\rm t} \times L_{\rm T} \times n_{\rm Z} / n_{\rm t} \times t_{\rm z} / 8760$	(C.2)
D2	$L_{\text{B}} = L_{\text{V}} = r_{\text{p}} \times r_{\text{f}} \times h_{\text{z}} \times L_{\text{F}} \times n_{\text{Z}} / n_{\text{t}} \times t_{\text{z}} / 8760$	(C.3)
D3	$L_{\rm C} = L_{\rm M} = L_{\rm W} = L_{\rm Z} = L_{\rm O} \times n_{\rm Z} / n_{\rm t} \times t_{\rm z} / 8760$	(C.4)

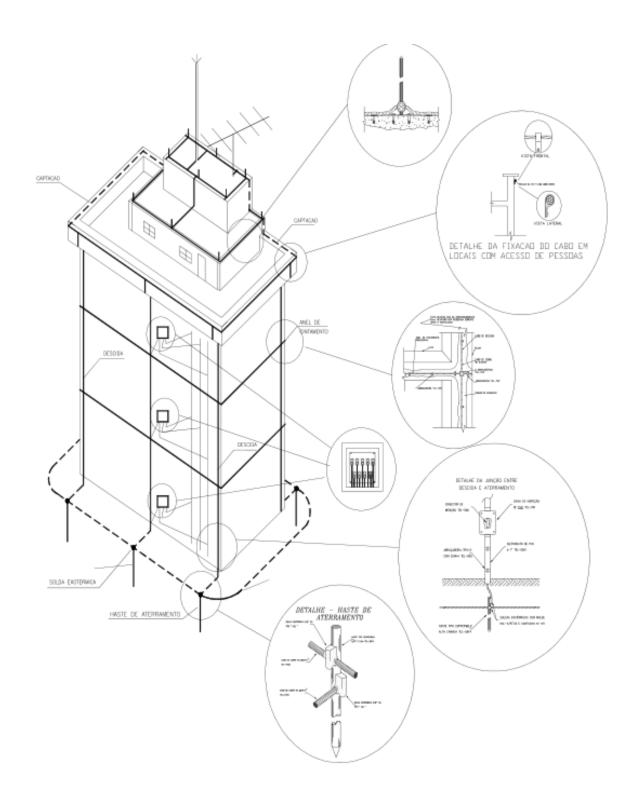
Risco Tolerável

Condição: Rx<R_T

Tabela 4 – Valores típicos de risco tolerável RT

	Tipo de perda		
L1	Perda de vida humana ou ferimentos permanentes	10 ⁻⁵	
L2	Perda de serviço ao público	10-3	
L3	Perda de patrimônio cultural	10-4	

LEI MUNICIPAL 11095/2004 Código de Posturas


SEÇÃO IX

SISTEMA DE PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS - SPDA (PÁRA-RAIOS)

Art. 150 É obrigatória a instalação de sistema de proteção para descargas atmosféricas (pára-raios), nos seguintes casos:

- I em todas as edificações, exceto as edificações residenciais com área total construída, inferior a 400,00m² (quatrocentos metros quadrados) ou com altura inferior a 8,00m (oito metros), ressalvadas as prescrições da norma técnica da ABNT;
- II edificações e instalações de caráter temporário, tais como: circos, parques de diversão e congêneres;
- III instalações para realização de eventos especiais.

SISTEMA DE PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS

- Subsistema de captação;
 - 1 Captores naturais;
 - 2- Captores não naturais;

Tabela 6 – Material, configuração e área de seção mínima dos condutores de captação, hastes captoras e condutores de descidas

Material	Configuração	Área da seção minima mm²	Comentários d
	Fita maciça	35	Espessura 1,75 mm
	Arredondado maciço d	35	Diâmetro 6 mm
Cobre	Encordoado	35	Diâmetro de cada fio da cordoalha 2,5 mm
	Arredondado maciço b	200	Diâmetro 16 mm
	Fita maciça	70	Espessura 3 mm
Alice to to	Arredondado maciço	70	Diâmetro 9,5 mm
Alumínio	Encordoado	70	Diâmetro de cada fio da cordoalha 3,5 mm
	Arredondado maciço b	200	Diâmetro 16 mm
Aço cobreado	Arredondado maciço	50	Diâmetro 8 mm
IACS 30 % e	Encordoado	50	Diâmetro de cada fio da cordoalha 3 mm
Alumínio	Arredondado maciço	50	Diâmetro 8 mm
cobreado IACS 64 %	Encordoado	70	Diâmetro de cada fio da cordoalha 3,6 mm
	Fita maciça	50	Espessura mínima 2,5 mm
Aço galvanizado	Arredondado maciço	50	Diâmetro 8 mm
a quente a	Encordoado	50	Diâmetro de cada fio cordoalha 1,7 mm
	Arredondado maciço b	200	Diâmetro 16 mm
	Fita maciça	50	Espessura 2 mm
A ! 1 6 1 6	Arredondado maciço	50	Diâmetro 8 mm
Aço inoxidável ^c	Encordoado	70	Diâmetro de cada fio cordoalha 1,7 mm
	Arredondado maciço b	200	Diâmetro 16 mm

Aplicável somente a minicaptores. Para aplicações onde esforços mecânicos, por exemplo, força do vento, não forem críticos, é permitida a utilização de elementos com diâmetro mínimo de 10 mm e comprimento máximo de 1 m.

Composição mínima AISI 304 ou composto por: cromo 16 %, níquel 8 %, carbono 0,07 %.

d Espessura, comprimento e diâmetro indicados na tabela refere-se aos valores mínimos, sendo admitida uma tolerância de 5 %, exceto para o diâmetro dos fios das cordoalhas cuja tolerância é de 2 %.

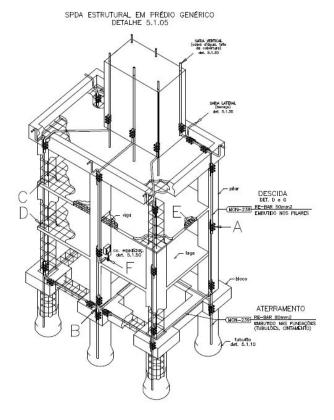
A cordoalha cobreada deve ter uma condutividade mínima de 30 % IACS (International Annealed Copper Standard).

NOTA 1 Sempre que os condutores desta tabela estiverem em contato direto com o solo é importante que as prescrições da Tabela 7 sejam atendidas.

NOTA 2 Esta tabela não se aplica aos materiais utilizados como elementos naturais de um SPDA

Tabela 3 – Espessura mínima de chapas metálicas ou tubulações metálicas em sistemas de captação

Classe do SPDA	Material	Espessura ^a t mm	Espessura ^b t´ mm
I a IV	Chumbo	=	2,0
	Aço (inoxidável, galvanizado a quente)	.4	0,5
	Titânio	4	0,5
	Cobre	5	0,5
	Alumínio	7	0,65
	Zinco	- 1	0,7


a t previne perfuração, pontos quentes ou ignição.

t' somente para chapas metálicas, se não for importante prevenir a perfuração, pontos quentes ou problemas com ignição.

- Subsistema de captação;
 - 2- Captores não naturais;
 - De haste (suporte de 3 a 5 m de comprimento);
 - Minicaptores de haste (20 a 30 cm);
 - Condutores em malha;
 - Cobertura de material combustível deve-se manter 15 cm de distância;
 - Dimensões nas tabelas 3 e 6;

- Subsistemas de descida;
 - Naturais:
 - Antenas, torres, ferragens...
 - Apresentar continuidade;
 - 50 % de cruzamento das ferragens vert x horiz amarradas;
 - R<1 Ohm armadura de concreto pré-fabricado;

Sistema de proteção contra descargas

atmosféricas (SPDA)

entre os anéis condutores de acordo com a classe de SPDA

Distâncias m
10
10
15
20

NOTA É aceitável que o espaçamento dos condutores de descidas tenha no máximo 20 % além dos valores acima.

- Subsistemas de descida;
 - Não naturais;
 - Condutores de cobre, alumínio e ferragens do prédio (exclusivas para SPDA);
 - Obedecer afastamentos máximo da Tabela 4;
 - NO MÍNIMO DOIS CONDUTORES!!
 - 50 cm de abertura das edificações;
 - Dentro da parede se a mesma n\u00e3o for combust\u00edvel;
 - Instalar em cantos salientes da estrutura;
 - Eletroduto PVC de 2,5 m a partir do solo;
 - Se precisar solda: exotérmica!
 - Interligação horizontal Tabela 4 (com BES também)!
 - Fixação dos condutores conforme norma item 5.5.2!

- Subsistema de aterramento;
 - Naturais: embutidos nas fundações das edificações integrando a edificação e o SPDA (armação torres eólicas);
 - 50 % de cruzamentos amarrado ou soldado;
 - Concreto com no mínimo 5 cm de espessura;

Sobrepor no mínimo 20 vezes seu diâmetro;

- Subsistema de aterramento;
 - Não naturais: Haste copperweld e cabos de cobre...
 - Cobre, aço galvanizado a quente, aço inoxidável, aço cobreado e alumínio;
 - Depende do local de aplicação;
 - Dimensões Tabela 7 NBR5419;
 - Anel de interligação enterrado a 0,5 m;
 - Hastes instaladas a 1 m da edificação;

Resistência de aterramento < 10 Ohms?!

Tabela 7 – Material, configuração e dimensões mínimas de eletrodo de aterramento

	Dimensões minimas ^f			
Material	Configuração	Eletrodo cravado (Diâmetro)	Eletrodo não cravado	Comentários [†]
	Encordoado ^c	2	50 mm ²	Diâmetro de cada fio cordoalha 3 mm
0237	Arredondado maciço ^c		50 mm ²	Diâmetro 8 mm
Cobre	Fita maciça e		50 mm ²	Espessura 2 mm
	Arredondado maciço	15 mm	- 6	
	Tubo	20 mm	11.15=0	Espessura da parede 2 mm
25 7A AV 8V	Arredondado maciço a, b	16 mm	Diâmetro 10 mm	-
Aço galvanizado	Tubo ^{a b}	25 mm	-	Espessura da parede 2 mm
à quente	Fita maciça a		90 mm ²	Espessura 3 mm
	Encordoado	21	70 mm ²	
Aço cobreado	Arredondado Maciço ^d Encordoado ^g	12,7 mm	70 mm ²	Diâmetro de cada fio da cordoalha 3,45 mm
Aço inoxidável *	Arredondado maciço Fita maciça	15 mm	Diâmetro 10 mm 100 mm ²	Espessura mínima 2 mm

O recobrimento a quente (fogo) deve ser conforme a ABNT NBR 6323 [1].

08/

Aplicavel somente a mini captores. Para aplicações onde esforços mecânicos, por exemplo, força do vento, não forem criticos, é permitida a utilização de elementos com diâmetro mínimo de 10 mm e comprimento máximo de 1 m.

Composição minima AISI 304 ou composto por: cromo 16 %, níquel 6 %, carbono 0,07 %.

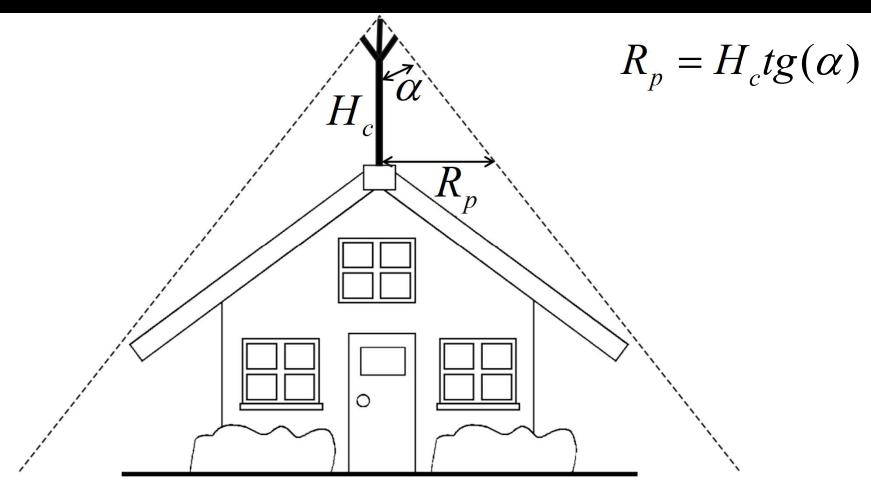
d Espessura, comprimento e diámetro indicados na tabela refere-se aos valores mínimos sendo admitida uma tolerância de 5 %, exceto para o diámetro dos fios das cordoalhas cuja tolerância é de 2 %.

Sempre que os condutores desta tabela estiverem em contato direto com o solo devem atender as prescrições desta tabela.

f A cordoalha cobreada deve ter uma condutividade minima de 30 % IACS (International Annealed Copper Standard).

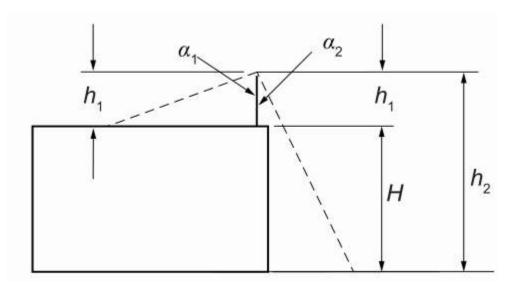
⁹ Esta tabela não se aplica aos materiais utilizados como elementos naturais de um SPDA.

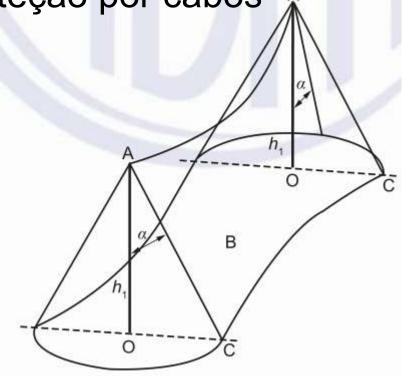
Interligação: SPDA – BEP(BES)

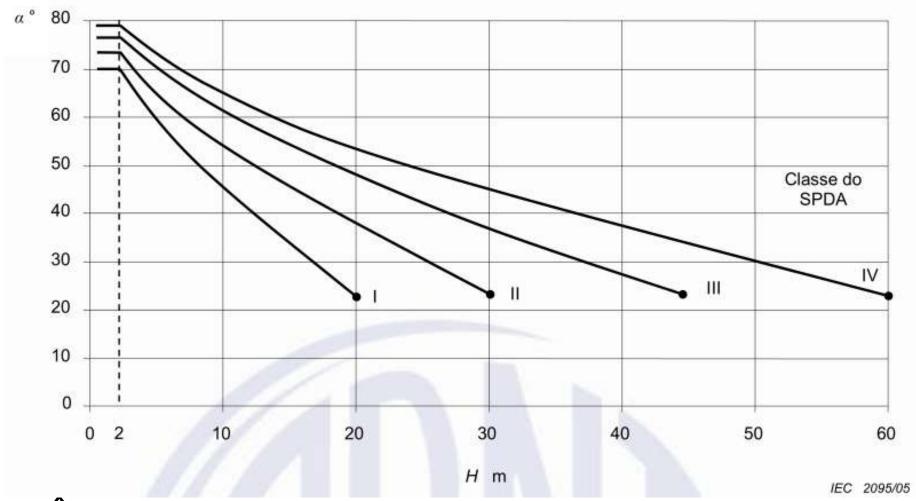

Tabela 8 – Dimensões mínimas dos condutores que interligam diferentes barramentos de equipotencialização (BEP ou BEL) ou que ligam essas barras ao sistema de aterramento

Nível do SPDA	Modo de instalação	Material	Área da seção reta mm ²
Não enterrado	P	Cobre	16
	Não enterrado	Alumínio	25
1 - 10/		Aço galvanizado a fogo	50
I a IV		Cobre	50
Enterrado	Alumínio	Não aplicável	
		Aço galvanizado a fogo	80

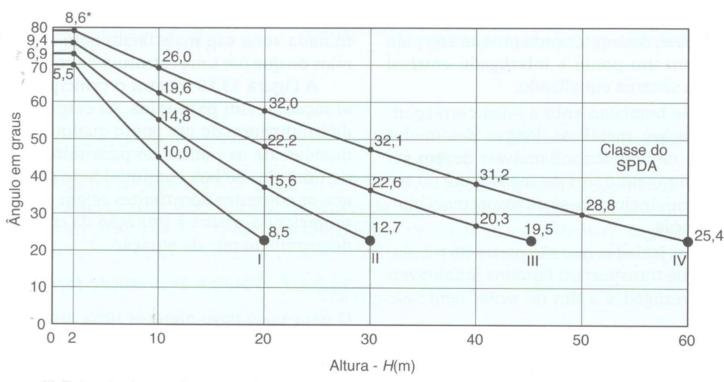
Tabela 9 – Dimensões mínimas dos condutores que ligam as instalações metálicas internas aos barramentos de equipotencialização (BEP ou BEL)


Nível do SPDA	Material	Área da seção reta mm ²
	Cobre	6
I a IV	Alumínio	10
	Aço galvanizado a fogo	16

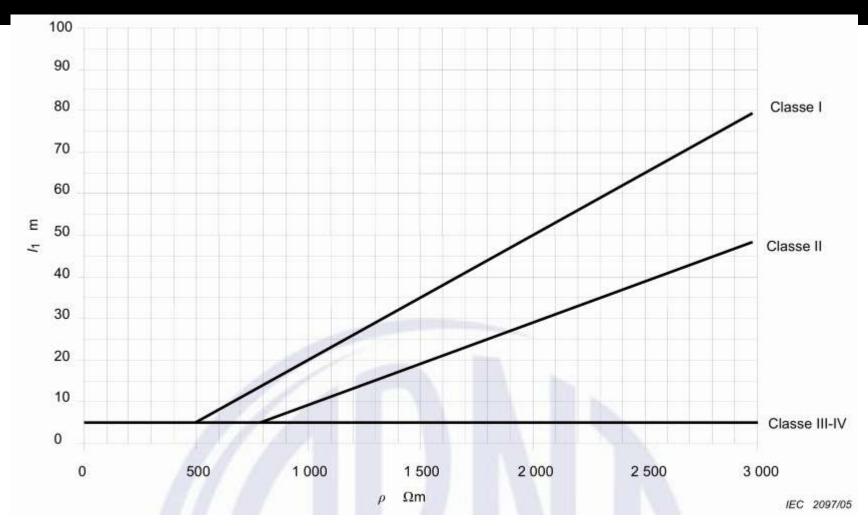

- Ligações equipotenciais;
 - O SPDA deve ser ligado aos demais sistemas de aterramento;
 - A equipotencialização deve ser de fácil acesso;
 - Ligar todas as partes metálicas, condutores não vivos e sistemas de aterramento;
 - Atenção a gás e tubulações com fluídos inflamáveis!
 - Atenção a corrosão quando utilizar 2 materiais diferentes!



Ângulo de proteção – Método Franklin


Diferentes alturas – Proteção por cabos

Ângulo de proteção – Método Franklin


(*) Raios das bases dos cones de proteção, em metros.

Notas:

- 1) H é a altura do captor acima do plano de referência da área a ser protegida.
- 2) O ângulo não será alterado para valores de H inferior a 2 m.
- 3) Para valores de *H* superiores aos valores de cada curva são aplicáveis somente ao Método da Esfera Rolante e ao Método das Malhas.

Ângulo de proteção – Método Franklin

Comprimento haste de aterramento

Comprimento haste de aterramento

Exercício - Franklin

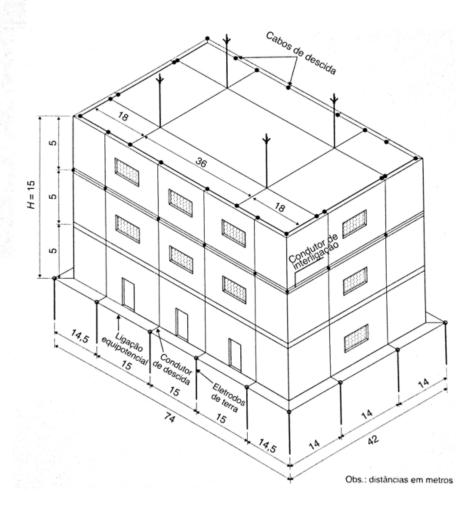


Tabela 4 – Valores típicos de distância entre os condutores de descida e entre os anéis condutores de acordo com a classe de SPDA

Classe do SPDA	Distâncias m
E.	10
II	10
III	15
IV	20

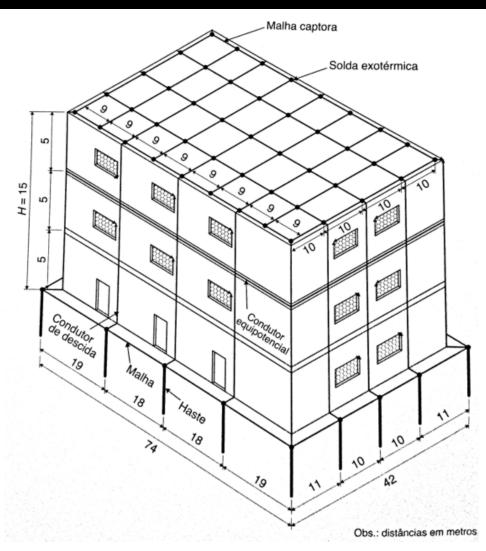
NOTA É aceitável que o espaçamento dos condutores de descidas tenha no máximo 20 % além dos valores acima.

NP III – SPDA tipo Franklin

Método de proteção – Gaiola de Faraday

Tabela 2 – Valores máximos dos raios da esfera rolante, tamanho da malha e ângulo de proteção correspondentes a classe do SPDA

Ş 		Método de proteção	
Classe do SPDA	Raio da esfera rolante - R m	Máximo afastamento dos condutores da malha m	Ângulo de proteção α°
Ĩ	20	5 × 5	
ĬĪ.	30	10 × 10	Van Finance 4
Ш	45	15 × 15	Ver Figura 1
IV	60	20 × 20	

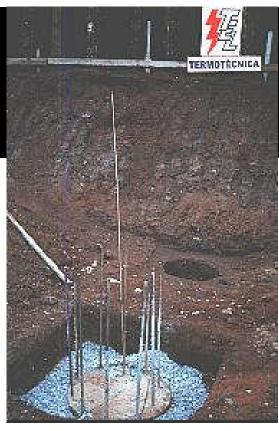

Exercício – Gaiola de Faraday

- •Estrutura 40 x72 m;
- •15 m de altura;

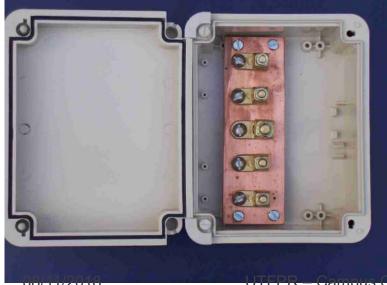
Tabela 4 – Valores típicos de distância entre os condutores de descida e entre os anéis condutores de acordo com a classe de SPDA

Classe do SPDA	Distâncias m
Į.	10
H	10
III	15
IV	20

NOTA É aceitável que o espaçamento dos condutores de descidas tenha no máximo 20 % além dos valores acima.



SISTEMA DE PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS



UTFPR – Campus Curitiba – DAELT – Instalações Elétricas Prediais

08/11/2018

UTTPR — Campus Curitiba — DAELT — Instalações Elétricas Prediais

Dicas para se proteger

Ações e cuidados simples podem protegê-lo de raios durante tempestade. Veja algumas dicas

Em dias de temporal, fique longe de postes de iluminação, árvores e cercas de arame farpado.

Também fique longe de campos de futebol, pastagens, estradas, montanhas e à beira de lagos.

Procurar abrigo debaixo de árvores é um erro muito comum e pode ser fatal.

A água do mar é altamente condutora de eletricidade e raios que ocorrem no oceano podem provocar choques

Evite falar ao telefone, principalmente os fixos com fio, pois o fio transporta a corrente elétrica de um raio.

Os aparelhos eletrônicos devem ser desligados da tomada. Com isso, evita-se que ele queime ou provoque incêndio.

Se não for possível entrar em uma residência, é melhor ficar agachado no chão, com as mãos na nuca e os pés juntos.

Se possível, entre em um automóvel, ônibus ou van mantendo as janelas fechadas ou parcialmente abertas.

Nunca fique próximo de automóveis. Ficar do lado de fora é perigoso, pois deles podem partir descargas elétricas

Evite locais onde você seja o objeto mais alto em relação ao chão.