

Introdução - Pneumática

Professor: Paulo Vitor Silva

Sumário

- Objetivos
- Introdução
 - Conceitos Básicos
 - Aplicações
 - Propriedades
 - Equações

Objetivos

Objetivos

- Identificar os fundamentos da disciplina de pneumática;
- Exemplificar as vantagens e limitações da aplicação da pneumática;
- Demonstrar algumas leis da física que influenciam a pneumática.

Tecnologias para Transmissão de Energia

MECÂNICA HIDRÁULICA PNEUMÁTICA

- Comparação qualitativa: força, velocidade e precisão
- Boa força

Ótima força

Força limitada

Ótimas velocidades

• Baixas velocidades

· Boas velocidades

Ótima precisão

• Boa precisão

Precisão limitada

Conceitos Básicos

- O ar comprimido é uma das formas de energia mais antigas que o ser humano conhece. É utilizado para ampliar os seus recursos físicos.
- "Pneuma" que significa fôlego, vento; "PNEUMÁTICA": a disciplina que estuda os movimentos dos gases e fenômenos dos gases.
- A pneumática é também definida como a ciência aplicada do uso do ar comprimido na atuação de dispositivos que irão gerar movimentos alternativos, movimentos de vai-evem, rotativos e combinados.

Histórico

- Após 1950 a pneumática foi realmente introduzida no meio industrial;
- O ar comprimido utilizado como forma de energia é obtido através de compressores e será conduzido até os atuadores (cilindros e motores pneumáticos);
- O uso do ar comprimido de forma generalizada na indústria, começou com a necessidade cada vez maior da automatização e da racionalização dos processos de trabalho.

Aplicações

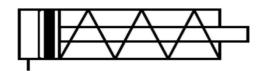
- Automotivo freios, acionamentos de portas de ônibus.
- Indústria em geral movimento, prensamento, elevação, transformação e controle.
- Transporte naval comando de válvulas, sinais sonoros.
- Indústria química e petroquímica controle de fluidos, acionamentos em áreas classificadas.
- Área médica/dentária máquinas para cirurgia, furadeiras dentárias, técnicas de vácuo.

Propriedades Positivas

Propriedade	Descrição		
Quantidade	O ar, para ser comprimido, é encontrado em quantidades ilimitadas, praticamente em todos os lugares.		
Transporte	O AC é facilmente transportável por tubulações, mesmo para distâncias grandes. Não há necessidade de preocupação com o retorno de ar.		
Armazenamento	O AC pode ser armazenado em reservatórios para utilização posterior ou em emergên- cias, quando os compressores se encontram desligados.		
Temperatura	O trabalho realizado com AC é insensível às oscilações da temperatura. Isso garante também, em situações térmicas extremas, um funcionamento seguro.		
Segurança	Não existe o perigo de explosão ou incêndio. Portanto, é seguro contra explosão e eletrocussão, sendo indicado para aplicações especiais.		

Propriedades Positivas (cont.)

Propriedade	Descrição		
Limpeza	O AC é limpo. O ar, que eventualmente escapa das tubulações e outros elementos inadequadamente vedados, não polui o ambiente. Esta é uma exigência nas indústrias alimentícias, têxteis, química, eletrônicas.		
Construção de elementos	Os elementos de trabalho são de construção simples e podem ser obtidos a custos vantajosos.		
Velocidade	O AC é um meio de trabalho rápido, que permite alcançar altas velocidades de trabalho.		
Regulagem As velocidades e forças de trabalho dos elementos a AC são reguláveis, sem escrisso são exigidos elementos especiais denominados reguladoras de pressão e flo			
Seguro contra sobrecargas	Elementos e ferramentas a AC são carregáveis até a parada total e, portanto, seguros contra sobrecargas.		

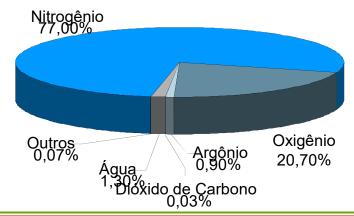

Propriedades Negativas

Propriedade	Descrição		
Preparação	O ar comprimido requer uma boa preparação. Impureza e umidade devem ser evitadas, pois provocam desgastes nos elementos pneumáticos, oxidação nas tubulações e projeção de óxidos.		
Compressibilidade	Não é possível manter uniforme e constante as velocidades dos pistões mediante ar comprimido. Quando é exigível, recorre-se a dispositivos especiais.		
Forças	O ar comprimido é econômico somente até determinada força, limitado pela pressão normal de trabalho de 700 kPa (7 bar), e pelo curso e velocidade (o limite está fixado entre 2000 e 3000 N (2000 a 3000 kPa).		
Escape de ar	O escape de ar é ruidoso. Mas, com o desenvolvimento de silenciadores, esse problema está solucionado.		
Custos	O ar comprimido é uma fonte de energia muito cara. Porém, o alto custo de energia é compensado pelo custo baixo da instalação e pela rentabilidade do ciclo de trabalho.		

Automação Pneumática

- O foco do estudo da pneumática é a automação. Com a aplicação de dispositivos pneumáticos e outros, reduz-se o esforço humano na execução de diversos trabalhos.
- O elemento mais simples é o cilindro pneumático, cuja operação consiste em empurrar o êmbolo e realizar o trabalho.

- Vantagens da implantação da automação pneumática
 - Redução de custos operacionais.
 - Robustez dos componentes pneumáticos.
 - Facilidade de implantação.
 - Simplicidade de manipulação.
 - Segurança.
 - Redução do número de acidentes.



Limitações da Pneumática

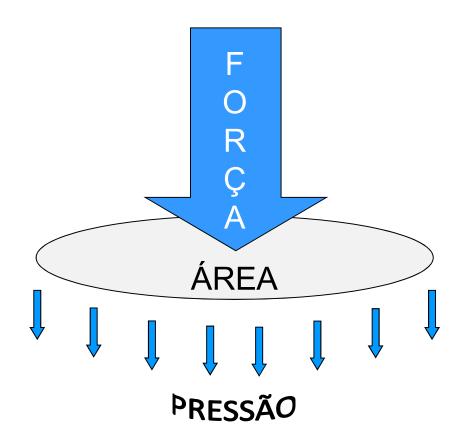
- O ar comprimido necessita de uma boa preparação.
- Os componentes pneumáticos são normalmente projetados e utilizados a uma pressão máxima de 1723,6 kPa (17,236 bar ou 249,987045 psi).
- Velocidades muito baixas são difíceis de serem obtidas.
- O ar é um fluido altamente compressível, portanto, é difícil obterem-se paradas intermediárias e velocidades uniformes.

- Propriedades Físicas do Ar
 - Compressibilidade: Capacidade de reduzir o espaço de uma certa quantidade de ar.
 - Elasticidade: Capacidade de retornar ao seu volume inicial.
 - Expansibilidade: Capacidade de ocupar um espaço diferente, alterando-se ao menor esforço.

Pressão Atmosférica

kgf/cm²	PSI	bar	$kPa = KN/m^2$	Torr=mm Hg
1	14,223	0,98061	0,980602	7355185
0,07030	1	0,06894	6,894607	51,03752
1,01978	14,5045	1	0,01	750,0615
0,01019	10,1978	0,01	1	7,500615
0,00135	0,01933	0,001333	0,133322	1
0,1	1,42233	0,098061	9,80602	73,55185

- Lei geral dos gases perfeitos
 - As leis de Boyle-Mariotte, Charles e Gay Lussac referemse às transformações de estado, nas quais uma das variáveis físicas permanece constante.
 - Geralmente, a transformação de um estado para outro envolve um relacionamento entre todas. Assim, a relação generalizada é expressa pela equação.


$$P_1 \times \frac{V_1}{T_1} = P_2 \times \frac{V_2}{T_2}$$

Equações

Princípio de Pascal

$$P = \frac{F}{A}$$
 ou $F = P \times A$

Perguntas?

Bibliografia

- Bonacorso, Nelso Gauze. , Automação Eletropneumática, 12ª ed., Érica, São Paulo, 2013.
- Material de aula fornecido pela Festo: Curso P110 Automação Pneumática, 2017.