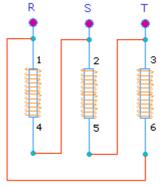
Atividade prática - Partida triângulo + cálculos para motores

Objetivos da aula

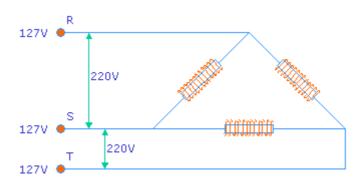
- Partir motores de indução trifásicos;
- □ Entender a ligação triângulo e seus conceitos básicos; e
- Cálculos úteis para motores.


Medições preliminares - bancada

R - S	R - T	S - T	R - N	S - N	T - N

Informes do motor

Tensão nominal	Potência nominal	Fator de potência	Rendimento (η)	Velocidade (ns)

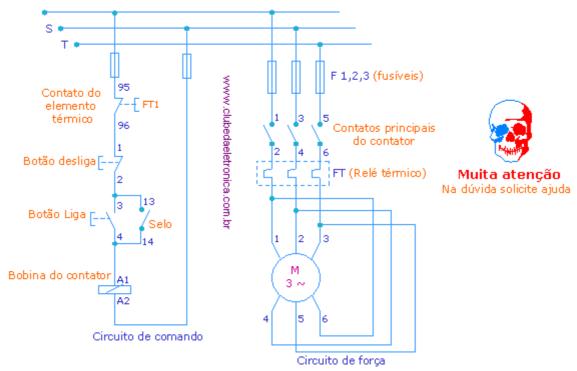

Ligação triângulo


Tensão de linha (VF) = Tensão de fase (VF)

Corrente fase (IF) =
$$\frac{\text{Corrente de linha (IL)}}{\sqrt{3}}$$

Verificando tensões de linha e de fase

Ligação da bancada - Motor de indução



Recapitulando informações úteis

Os fusíveis de efeito rápido \Rightarrow São empregados em circuitos que não há variação considerável de corrente entre a fase de partida e a de regime normal de funcionamento. Esses fusíveis são ideais para proteção de circuitos eletrônicos.

Os fusíveis de efeito retardado ⇒ são empregados em circuitos que estão sujeitos, a picos de correntes entre a fase de partida e a de regime normal de funcionamento. Esses fusíveis são ideais para proteção de cargas indutivas e capacitivas.

Partida direta a plena carga

Medicões básicas

medigeee basicas	
Tensão da rede	
Freqüência da rede	
Tensão nas bobinas do motor (3 fases)	
Corrente nas bobinas do motor (3 fases)	
Corrente de pico do motor	
Velocidade (RPM)	

Atividades teóricas - Conceitos básicos sobre motores de indução

A energia elétrica consumida numa instalação é composta basicamente por duas parcelas distintas, que são:

- □ Energia ativa (P) é aquela que efetivamente produz trabalho útil, e medida em W.
- Energia reativa (Q) é aquela que produz o fluxo magnético necessário ao funcionamento das máquinas indutivas, medida em VAr.

A composição fasorial destas duas componentes resulta em uma terceira energia que denominamos na energia aparente (S), expressa normalmente em VA.

A relação entre a potência ativa e a potência aparente é o fator de potência (FP), que vamos trabalhar nesta aula.

Triângulo das potências

A potência de entrada do motor (Pe)

A potência informada pelo fabricante é a potência de saída, e não a de entrada. O rendimento também é apresentado, sendo assim podemos calcular a potência de entrada.

Potência de saída (watts)

$$\eta = \frac{Ps}{Pe} . 100 \text{ (para expressar o valor em porcentagem)}$$
Potência de entrada (watts)

Rendimento (%)

1 - Qual a potência de entrada (em watts) de um motor de apresenta os seguintes informes: 1CV = 735.75 W

101 100,101			
a) Potência 20 CV e rendimento 0,92	b) Potência 10 CV e rendimento 0,86		
c) Potência 5,0 CV e rendimento 0,89	d) Potência 1,0 CV e rendimento 0,8		

O fator de potência (cosφ)

A relação entre a potência ativa P (W) e a potência aparente S (VA) é o fator de potência.

S (VA) =
$$\frac{P(W)}{\cos \varphi}$$
 Potência ativa (W)

Fator de potência

Potência aparente (VA)

2 - Qual a energia aparente (potência) que os motores com os seguintes informes, exigem da rede elétrica?

etectrica:	
a) P = 10CV, η = 0.82 e $\cos \varphi$ = 0,85	b) P = 20CV, $\eta = 0.85 \text{ e } \cos \varphi = 0.89$
b) P = 5,0CV, η = 0.88 e cos φ = 0,9	d) P = 1,0CV, η = 0.87 e cos ϕ = 0,9

A energia reativa Q (VAr)

Uma vez que se tem a potência ativa P (W) drenada da rede e a potência aparente S (VA) podemos calcular a potência reativa (VAr).

3 - Qual a energia reativa (potência) que os motores com os seguintes informes, exigem da rede elétrica?

a) P = 1,0CV, η = 0.85 e cos ϕ = 0,86	b) P = 20CV, η = 0.82 e $\cos \varphi$ = 0,89
c) P = 5,0CV, η = 0.85 e $\cos \varphi$ = 0,92	d) P = 1,0CV, η = 0.88 e $\cos \varphi$ = 0,9

A corrente elétrica (I)

A corrente elétrica drenada de uma rede trifásica pode ser calculada por:

4 – Qual a corrente elétrica drenada pelos motores com os seguintes informes

a) P = 1,0CV, η = 0.85, $\cos \varphi$ = 0,86 e V = 380V	b) P = 20CV, η = 0.82 e cosφ = 0,89 e V = 380V
c) P = 5,0CV, η = 0.85 e cós ϕ = 0,92 e V = 220V	d) P = 1,0CV, η = 0.88 e cos ϕ = 0,9 e V = 440V

Outra equação mais direta para o cálculo da corrente elétrica é:

$$I = \frac{P(W)}{\eta, \sqrt{3}, V, \cos \phi}$$

5- Qual a corrente elétrica drenada da rede trifásica para os seguintes motores:

a)
$$P = 20 \text{ CV}$$
, $\eta = 0.87$, $FP = 0.89 \text{ e VL} = 380 \text{V}$

b)
$$P = 1CV$$
, $\eta = 0.87$, $FP = 0.89$ e $VL = 220V$

O fator de serviço (FS)

O fator de serviço é um parâmetro que trata a capacidade do motor em suportar sobrecargas continuas.

Essa característica melhora o desempenho do motor em condições desfavoráveis, e também deve ser considerado para o dimensionamento dos condutores.

- 6 Um motor possui os seguintes informes: Tensão nominal 380V, potência nominal 10 CV, rendimento 0.86, fator de potência 0,86 e fator de serviço 1,15. Determine:
- a) A potência operacional máxima de saída do motor.
- b) A máxima corrente drenada para essa potência.
- 7 Determine a corrente máxima drenada da rede para um motor trifásico de P mominal = 10CV, VL = 380V, $\cos \varphi = 0.86$, $\eta = 0.85$ e FS= 1.15.

O dimensionamento de condutores (tabela útil)

Seção nominal (bitola) mm²	2 condutores carregados	3 condutores carregados
0,5	9,0	8
1,0	14,0	12
1,5	17,5	15,5
2,5	24	21
4	32	28
6	41	36
10	57	50
16	76	68
25	101	88
35	125	110
50	151	134
70	192	171
95	232	207
120	269	239
150	309	275
185	363	314
240	415	370
300	477	426
400	571	510

- 8 Dimensione os cabos de cobre com isolação de PVC/70°C para alimentar um motor trifásico de 20 CV numa rede de 380 V. O motor possui os seguintes informes: P = 20 CV, $\eta = 0.89$, $\cos \varphi = 0.86$ e FS= 1,15
- 9 Dimensione os cabos de cobre com isolação de PVC/70°C para alimentar um motor trifásico de 50 CV numa rede de 440 V. O motor possui os seguintes informes: P = 50 CV, $\eta = 0.89$, $\cos \varphi = 0.86 \text{ e FS} = 1.1$
- 10 Dimensione os cabos de cobre com isolação de PVC/70°C para alimentar um motor trifásico de 100 CV numa rede de 440 V. O motor possui os seguintes informes: P = 100 CV, $\eta = 0.89$, $\cos \varphi = 0.86$ e FS= 1,2

Gabarito

01 -	a) 15944,56 W	b) 8555,23 W	c) 4133,43 W	d) 919,69 W	
02 -	a) 10555,95 VA	b) 19451,42 VA	c) 4644,89 VA	d) 939,66 VA	
03 -	a) 513,61 VAr	b) 9193,56 VAr	c) 1843,69 VAr	d) 404,93 VAr	
04 -	a) 1,53 A	b) 30,63 A	c) 12,35 A	d) 1,22 A	
05 -	a) 28,87 A	b) 2,49 A			
06 -	- a) P = 11,5 CV ou 8461,13 W		b) 17,38 A		
07 -	I = 17,58 A				
08 -	I = 33,59 A	$S = 6 \text{ mm}^2$			
09 -	I = 69,37 A	$S = 25 \text{ mm}^2$			
10 -	I = 151,36 A	$S = 50 \text{ mm}^2$			

Boa aula...

www.clubedeeletronica.com.br

[&]quot; Não somos responsáveis apenas pelo que fazemos, mas também pelo que deixamos de fazer."

(Molière, dramaturgo francês)