

Passo 3 – Arranjo fotovoltaico

Primeiramente, deve-se saber que tipo de controlador de carga será utilizado:

$$Ep = ER \Rightarrow Controlador \ de \ carga \ COM \ MPPT \Rightarrow Ep = 1008 \ Wh/dia$$

$$Ep = \frac{ER}{0.9} \Rightarrow Controlador de carga SEM MPPT \Rightarrow Ep = 1120 Wh/dia$$

Qual a quantidade de corrente que o arranjo deverá fornecer?

$$Ip = \frac{Ep}{Vi} = \frac{1120}{24} \cong 47 Ah/dia$$

Passo 3 – Arranjo fotovoltaico

0,95

Irradiação solar

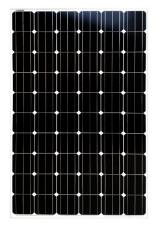
São Paulo => Latitude = 23,55° Sul e Longitude = 46,64° Oeste

Ângulo ideal:

$$\beta = lat + \frac{lat}{4} = 23,55 + \frac{23,55}{4} = 29,39^{\circ}$$

#	Ângulo	Inclinação	Irradia	ção sola:	diária	média i	mensal	[kWh/m	² .dia]							
#	Angulo	Incinação	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média	Delta
	Plano Horizontal	0° N	5,22	5,48	4,70	4,14	3,42	3,17	3,24	4,20	4,24	4,76	5,14	5,69	4,45	2,52
•	Ângulo igual a latitude	24° N	4,72	5,22	4,83	4,70	4,24	4,13	4,12	4,99	4,50	4,64	4,70	5,05	4,65	1,09
•	Maior média anual	21° N	4,81	5,28	4,85	4,66	4,16	4,04	4,04	4,93	4,50	4,69	4,79	5,16	4,66	1,24
•	Maior mínimo mensal	34° N	4,37	4,93	4,71	4,75	4,41	4,37	4,33	5,13	4,45	4,43	4,38	4,63	4,57	,80

	Ja	n Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
Irradiação 0°	5,	22 5,48	4,70	4,14	3,42	3,17	3,24	4,20	4,24	4,76	5,14	5,69	4,45
Fator correção 30°	0,	88 0,95	1,05	1,15	1,22				1,04	0,95	0,88	0,86	-
Irradiação corrigida	= 4,	59 5,20	4,93	4,76	4,17	3,86	4,82	4,70	4,41	4,52	4,52	4,89	-



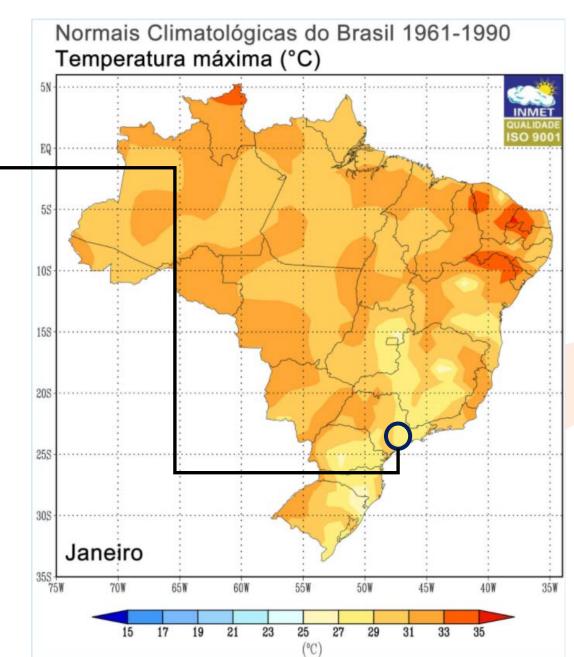
Passo 3 – Arranjo fotovoltaico

Modelo escolhido:

SP	ECIFICATION	Md Poly
C	ATEGORIES	STP050D -12/MEA
	Open-Circuit Voltage (Voc)	21.8 V
S	Optimum Operating Voltage (Vmp)	17.4V
IST	Short-Circuit Current (Isc)	3.13 A
ACTER	Optimum Operating Current (Imp)	2.93 A
AL CHARACTERISTICS	Ma×imum Power at STC (Pma×)	50 Wp
TRICAL	Operating Temperature	-40°C to +85°C

Nominal Operating Cell Temperature (NOCT)	45±2°C
Temp. coefficient of Pmax	-0.47 %/∘C
Temp. coefficient of Voc	-0.34 %/°C
Temp. coefficient of Isc	0.045 %/°C

28 °C ◀


Passo 3 – Arranjo fotovoltaico

Calculando Wp', Vmp', Isc' e Voc':

$$Tcalc$$
, $Wp' = Tamb + (\Delta t^{\circ} - Tref)$
 $Tcalc$, $Wp' = 28 + (22 - 25) = 25^{\circ}C$

 $Tcalc, Isc, max = 60^{\circ}C$

 $Tcalc, Voc, max = Tamb + \Delta t^{\circ} - Tref$ Tcalc, Voc, max = 0 + 0 - 25 = -25°C

2CENERGIA INFLUÊNCIA DA TEMPERATURA NOS **MÓDULOS FOTOVOLTAICOS**

Temperatura de cálculo para tensão máxima de curto circuito

ELECTRICAL DATA | STC*

CS6U	315P	320P	325P	330P
Nominal Max. Power (Pmax)	315 W	320 W	325 W	330 W
Opt. Operating Voltage (Vmp)	36.6 V	36.8 V	37.0 V	37.2 V
Opt. Operating Current (Imp)	8.61 A	8.69 A	8.78 A	8.88 A
Open Circuit Voltage (Voc)	45.1 V	45.3 V	45.5 V	45.6 V
Short Circuit Current (Isc)	9.18 A	9.26 A	9.34 A	9.45 A
Module Efficiency	16.20%	16.46%	16.72%	16.97%
Operating Temperature	-40°C ~	+85°C		

Para o cálculo do *Voc,max* e utiliza-se um valor de Tamb internacionalmente aceito de -10 °C. Esse valor provém de estudos que determinaram a temperatura média da célula fotovoltaica durante a incidência dos primeiros raios solares durante a manhã. Como durante esse período as células estão iniciando seu trabalho, não há diferença de temperatura entre o meio ambiente e as células, logo utiliza-se um Δt° = 0

$$Tcalc, Voc, max = Tamb + \Delta t^{\circ} - Tref$$

$$Tcalc, Voc, max = -10 + 0 - 25 = -35^{\circ}C$$

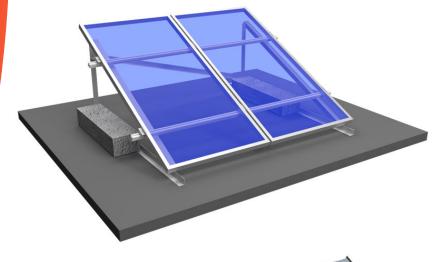
2CENERGIA INFLUÊNCIA DA TEMPERATURA NOS **MÓDULOS FOTOVOLTAICOS**

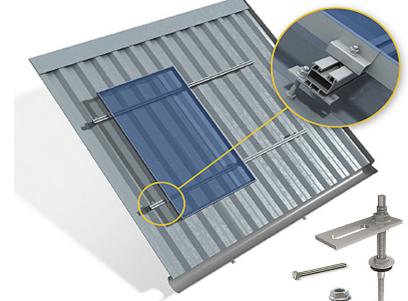
Temperatura de cálculo para tensão mínima de operação e corrente máxima de curto circuito

ELECTRICAL DATA | STC*

CS6U	315P	320P	325P	330P
Nominal Max. Power (Pmax)	315 W	320 W	325 W	330 W
Opt. Operating Voltage (Vmp)	36.6 V	36.8 V	37.0 V	37.2 V
Opt. Operating Current (Imp)	8.61 A	8.69 A	8.78 A	8.88 A
Open Circuit Voltage (Voc)	45.1 V	45.3 V	45.5 V	45.6 V
Short Circuit Current (Isc)	9.18 A	9.26 A	9.34 A	9.45 A
Module Efficiency	16.20%	16.46%	16.72%	16.97%
Operating Temperature	-40°C ~	+85°C		

Para o cálculo do *Vmp,min* e e *Isc,max* utiliza-se a máxima temperatura de operação do módulo fotovoltaico (normalmente 85 °C). Essa temperatura corresponde à temperatura real de operação das células fotovoltaicas (Treal = Tamb + Δt°)


$$Tcalc, Vmp, min = Tamb + \Delta t^{\circ} - Tref$$


$$Tcalc, Vmp, min = 85 - 25 = 60$$
° C
 $Tcalc, Isc, max = 85 - 25 = 60$ ° C

Valores convencionados

2CENERGIA INFLUÊNCIA DA TEMPERATURA NOS SOLUÇÕES SUSTENTÁVEIS **MÓDULOS FOTOVOLTAICOS**

Influência dos tipos de fixação na temperatura de operação dos módulos

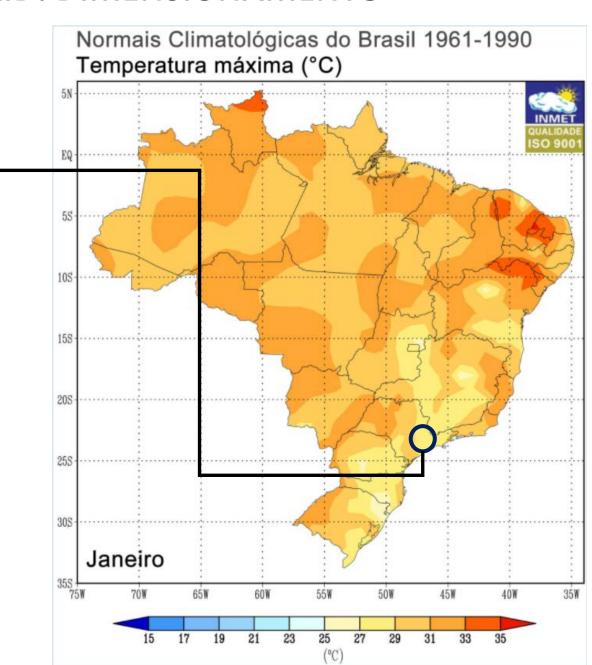
Tipo de Fixação	Δt médio
Estrutura totalmente elevada (solo)	+22°C
Laje ou telhado (com espaço/inclinação)	+28°C
Sobre o telhado (com ventilação)	+29°C
Sobre o telhado (sem ventilação)	+32°C

28 °C ◀

Passo 3 – Arranjo fotovoltaico

Calculando Wp', Vmp', Isc' e Voc':

$$\frac{Wp'}{100} = \frac{100 + (L^{\circ}Cwp * Tcalc, Wp')}{100} * Wp$$


$$Wp' = \frac{100 + (-0,47 * 25)}{100} * 50 = 44,125W$$

$$Isc' = \frac{100 + (L^{\circ}Cisc * Tcalc, Isc, max)}{100} * Isc$$

$$Isc' = \frac{100 + (0,045 * 60)}{100} * 3,13 = 3,21A$$

$$Voc' = \frac{100 + (L^{\circ}Cvoc * Tcalc, Voc, max)}{100} * Voc$$

$$Voc' = \frac{100 + (-0.34 * -25)}{100} * 21.8 = 23.65V$$

Passo 3 – Arranjo fotovoltaico

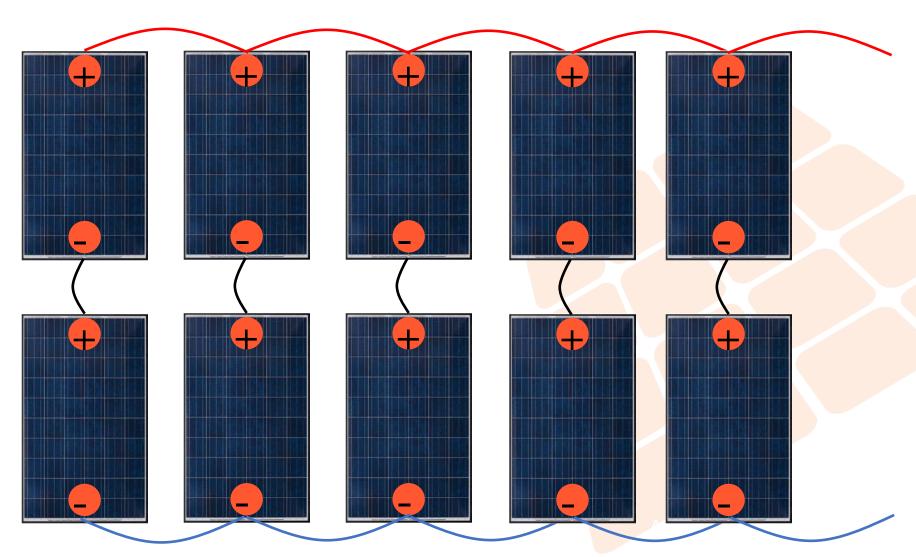
Calculando a quantidade de módulos:

A quantidade de módulos em série (ms) depende da tensão nominal Vmp. A tensão fornecida pelo painel deve ser 50% maior do que a tensão do banco de baterias (Vi), portanto:

$$ms = \frac{1,5 * Vi}{Vmp} = \frac{1,5 * 24}{17,4} \cong 2$$

A quantidade de módulos em paralelo (mp) depende da quantidade de corrente que o arranjo fotovoltaico deve fornecer (Ip) em Ah dividido pela quantidade de corrente que cada painel conseguirá fornecer (Imp') em Ah no pior mês (Imd,min):

$$Imp' = Imp * Imd, min = 2,93 * 3,86 = 11,31Ah/dia$$


$$mp = \frac{Ip}{Imp'} = \frac{47}{11,31} = 4,15 \Rightarrow 5$$

$$Nm = ms * mp = 10 m\'odulos$$

Total = 10 módulos (5 fileiras de 2 módulos)

Passo 3 – Arranjo fotovoltaico

A configuração dos arranjos fotovoltaicos fica da seguinte maneira:

Passo 4 – Dispositivos de Controle

Para a escolha do controlador de carga, deve-se considerar:

O controlador de carga deve suportar a corrente de entrada do arranjo fotovoltaico com **pelo menos 25% de folga**, ou seja, a corrente de entrada do controlador de carga deve ser **25% maior do que a corrente de curto-circuito total e corrigida** (Isc'total) do arranjo fotovoltaico:

$$Isc'total = 5 * Isc' \cong 16A$$

$$Ie = 1,25 * Isc'total \cong 20A$$

Passo 4 – Dispositivos de Controle

Para a escolha do controlador de carga, deve-se considerar:

A tensão nominal do controlador de carga deve ser igual a tensão do banco de baterias, ou seja, **24V**. Assim, escolhe-se o modelo (SEM MPPT):

Características:

- 1. A seleção de tensão do sistema é automática
- 2. A capacidade do controlador não deve ser excedida:
 - Máxima corrente do painel solar = 20A
 - Máxima corrente na saída = 20A
- A saída pode ser utilizada enquanto a bateria está sendo carregada (utilização simultânea como controlador de carga e controlador de descarga)

Especificações Técnicas:

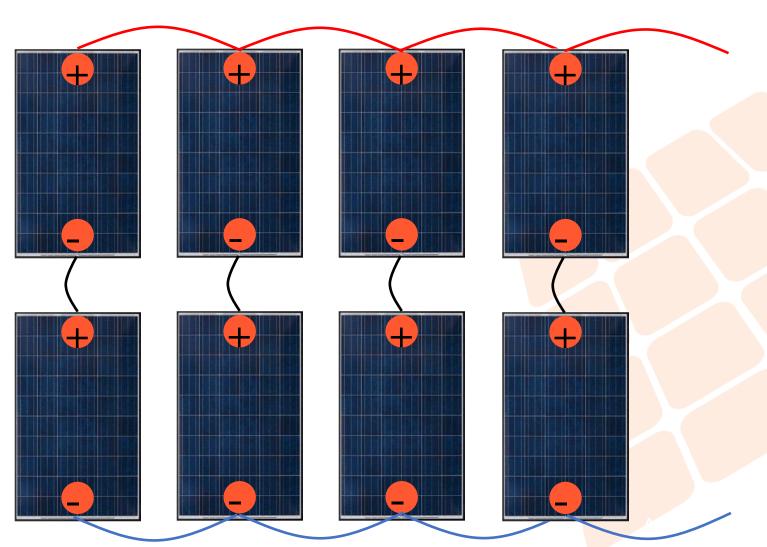
	12V	24V
Corrente máxima do painel solar	20	A
Corrente máxima na saída	20	A
Sobrecarga de 25%	1m	in.
Desconexão por tensão baixa (LVD)	11,1V	22,2V
Reconexão (LVR)	12,6V	25,2V
Tensão de equalização (30 minutos)	14,6V	29,2V
Carga intensa ("Bulk") (30 minutos)	14,4V	28,8V
Tensão de flutuação	13,6V	27,2V
Compensação por temperatura	-30mV/ºC	-60mV/ºC
Temperatura ambiente	-35 a ·	+55ºC

Passo 4 – Dispositivos de Controle

E para controladores de carga com MPPT?

Primeiramente, deve-se recalcular a quantidade de módulos fotovoltaicos para um controlador de carga com MPPT:

$$Ep = ER \Rightarrow Controlador \ de \ carga \ COM \ MPPT \Rightarrow Ep = 1008 \ Wh/dia$$


$$Ip = \frac{Ep}{Vi} = \frac{1008}{24} \cong 42 Ah/dia$$

$$mp = \frac{Ip}{Imp'} = \frac{42}{11,31} = 3,71 \cong 4 \Rightarrow 8 \text{ modulos no total}$$

Passo 4 – Dispositivos de Controle

E para controladores de carga com MPPT?

Passo 4 – Dispositivos de Controle

E para controladores de carga com MPPT?

Para controladores de carga com MPPT deve-se levar em consideração as seguintes especificações técnicas

7.0 Technical S	pecifications	Tensão nominal (igual a do banco de baterias)
Electrical		Corrente máxima de carga (corrente de saída)
Nominal system voltage	12 or 24 Vdc	
Max. battery current	15A	
Battery Voltage range	7 – 36V	
Max. solar input voltage	60V	
Nominal maximum input power*		Tanção mávimo do arranio fotovoltaiso
12 Volt	200 Watts	Tensão máxima do arranjo fotovoltaico
24 Volt	400 Watts	
Self-consumption	35 mA	Potência máxima do arranjo fotovoltaico
Accuracy		Potericia maxima do arranjo lotovoltaico
Voltage	1.0 %	
Current	2.0 %	
Meter Connection	6-pin RJ-11	
Transient Surge Protection	4 x 1500 W	
* These power levels refer to the maximum	n wattage the	

SS-MPPT-15L can process at a certain system voltage. Higher power arrays can be used without damaging the controller, but array cost-benefit will be reduced at power levels much beyond the nominal ratings.

Passo 4 – Dispositivos de Controle

Este modelo satisfaz as condições?

Para controladores de carga com MPPT deve-se levar em consideração as seguintes especificações técnicas

7.0 Technical Specifications

Electrical

12 or 24 Vdc	
15A	
7 – 36V	
60V	$Voc'total = 2 * 23,65 = 47,30V \le 60V$
200 Watts	
400 Watts	\longrightarrow Wp, total = 8 * 50 = 400W \leq 400W
35 mA	
1.0 %	
2.0 %	
6-pin RJ-11	
4 x 1500 W	
	15A 7 – 36V 60V 200 Watts 400 Watts 35 mA 1.0 % 2.0 % 6-pin RJ-11

^{*} These power levels refer to the maximum wattage the SS-MPPT-15L can process at a certain system voltage. Higher power arrays can be used without damaging the controller, but array cost-benefit will be reduced at power levels much beyond the nominal ratings.