Manual e Catálogo do Eletricista

2009

Guia prático para instalações industriais e infra-estrutura

Este documento foi oferecido por:
Pertence a:
Schneider Glictric

Manual e Catálogo do Eletricista

Presente com seus produtos, desde a geração de energia elétrica até o consumidor final, a **Schneider Electric** é líder mundial em gerenciamento da eletricidade e automação.

Neste documento, apresentamos soluções perfeitamente adaptadas para a maioria das aplicações com a originalidade de nossos produtos.

As informações contidas contribuirão para a elevação da qualidade, segurança e confiabilidade de projetos elétricos.

Atenção!

Compre sempre produtos originais, com o respaldo e a garantia que somente podem ser oferecidos pela Schneider Electric.

Evite a pirataria. Adquira somente produtos originais em distribuidores autorizados Schneider Electric para preservar a segurança das pessoas e das instalações.

Conteúdo

Todos os produtos deste documento podem ser encontrados em nosso site: www.schneider-electric.com.br.

Para outras informações, contatar nosso Call Center. Os endereços e telefones estão indicados no final do documento.

Call Center: 0800 7289 110
ou (11) 3468-5791
call.center.br@br.schneider-electric.com
www.schneider-electric.com.br
wap.schneider.com.br

Schneider Electric: líder mundial em gerenciamento da eletricidade e automação.

Com mais de 160 anos de atividade no mundo, a Schneider Electric possui mais de 200 fábricas, com mais de 16.000 pontos-de-venda, 120.000 colaboradores e Centros de Pesquisa & Desenvolvimento em 25 países, atuando em 5 mercados: Energia e Infra-estrutura, Indústria, Construção predial e residencial e Data centers & Networks

Presente no Brasil há mais de 60 anos, com 4 fábricas localizadas nas cidades de São Paulo (SP), Sumaré (SP), Guararema (SP) e Curitiba (PR), a Schneider Electric Brasil exporta para mais de 30 países. Possui uma estrutura comercial que abrange 13 filiais nas grandes capitais e uma rede de distribuição com mais de 3.500 pontos-de-venda.

Mercados em que atuamos:

Soluções para Energia e Infra-estrutura

Otimizar a disponibilidade, a segurança, o transporte, a distribuição da eletricidade e os custos de manutenção. Comando e proteção de redes de distribuição em média e baixa tensão. Postos elétricos de transformação em média e baixa tensão. Equipamentos para geração distribuída. Sistemas de medição e pré-pagamento. Infra-estrutura de transporte rodoviário, ferroviário e aéreo, redes de distribuição de água e de gás, de iluminação e de telecomunicações.

Soluções para Indústrias

Otimizar a produtividade, a flexibilidade, a segurança, o controle e a qualidade de energia.

Plantas elétricas de unidades fabris, controle e segurança das pessoas e instalações. Automação de máquinas e processos industriais semicontínuos e contínuos. Servicos personalizados.

Soluções para Prédios

Otimizar a segurança, a comunicação, o conforto e os custos de manutenção.

Gestão e otimização da distribuição elétrica. Materiais e equipamentos de baixa tensão, de controle-comando, de automação e de distribuição em média tensão. Sistemas de gestão técnica e de segurança. Sistemas de cabeamento e conexão para Voz-Dados-Imagens (VDI). Serviços personalizados.

Soluções para Residências

Otimizar a segurança, o conforto, as aplicações de voz, dados e imagens (VDI) com inovação e design.

Interruptores, tomadas, comandos elétricos e equipamentos de baixa tensão para a distribuição elétrica. Sistemas de vigilância e segurança. Automação residencial. Conexões para voz, dados e imagens (VDI).

Soluções para Data Centers & Networks

Otimizar soluções e serviços para energia e refrigeração em ambientes de TI.

No-breaks para PCs e workstations, no-breaks para redes e servidores, soluções completas de infra-estrutura física para data centers e redes críticas (no-breaks, racks e acessórios, condicionadores de ar de precisão, painéis de distribuição de energia, serviços, softwares de gerenciamento e soluções para segurança física de ambientes de TI), além de toda linha de mobilidade que inclui mini-mouse, mochilas e malas para notebooks, baterias externas para notebooks e outros dispositivos móveis, incluindo carregadores, inversores e adaptadores.

Índice Geral

- Distribuição Elétrica
- Comando e Proteção de Potência
- 3 Diálogo Homem-Máquina
- 4 Variadores de Velocidade e Partidas Eletrônicas
- 5 Detecção
- 6 Automação
- Z Esquemas Elétricos Básicos
- 8 Informação Técnica
- 9 Dimensões

	Referência	Página
A		
Acessórios Mecânicos para C60/C120		1/80
Altivar e Altistart - Opcionais		4/53
Altivar e Altistart - Tabela de Motores		4/55
Associação 2 Produtos (Disjuntor Termomagnético + Contator)	GV+LC1	2/17, 2/61
Associação 3 Produtos (Disjuntor Magnético + Contator + Relé Térmico)	GV/GK/ NS+LC1+LR	2/17, 2/63
Auxiliares Elétricos para C60/C120/ID/DPN		1/79
В		
Blocos de Contatos para Contatores Modelo D	LAD	2/45, 2/46
Blocos Diferenciais Vigi C60	26•••	1/59, 1/75
Blocos Diferenciais Vigi C120	185••	1/61, 1/78
Botoeiras Murais Vazias	XB2-T	3/7, 3/25
Botoeiras Murais Harmony	XAL	3/7, 3/21
Botoeiras Murais Optimum	XAL E	3/6, 3/26
Botoeiras Pendentes	XAC	3/7, 3/28
С		
Capacitores Varplus ²		1/219
Chaves Magnéticas em Cofre	LE1-E	2/67
Chaves Reversoras	LC2-D	2/66
Colunas Luminosas Harmony	XVB	3/20
Comutadores Rotativos Montados	K1/K2	3/6, 3/30
Conectores (Bornes) AB1	AB1	6/6
Contatores Auxiliares Modelo D	CAD	2/42
Contatores Modelo D	LC1-D	2/41
Contatores Modelo D - Blocos Aditivos	LA4/LAD	2/45
Contatores Modelo F	LC1-F	2/52
Contatores Modelo K - Minicontatores	LC1-K	2/37
Contatores Modulares CT	161••	1/89
Controladores de Fator de Potência Varlogic NR	52448/52449	1/216
Controladores Programáveis Expert BF		6/40
Controladores Programáveis MPC6006		6/43
Controladores Programáveis Modicon M340		6/46

Descrição	Referência	Página
С		
Controladores Programáveis Modicon Premium		6/64
Controladores Programáveis Modicon Quantum		6/68
Controladores Programáveis Software Unity Pro		6/72
Conversores Analógicos Zelio Analog		6/20
Conversores de Partida e Parada Progressivas - Altistart 01	ATS-01	4/26, 4/46
Conversores de Partida e Parada Progressivas - Altistart 48	ATS-48	4/27, 4/48
D		
Disjuntores EasyPact EZC100N/H		1/124, 1/130
Disjuntores EasyPact EZC100N/H Acessórios		1/126
Disjuntores EasyPact EZC250N/H		1/124, 1/131
Disjuntores EasyPact EZC250N/H Acessórios		1/126
Disjuntores EasyPact EZC400N		1/124, 1/133
Disjuntores EasyPact EZC400N Acessórios		1/126
Disjuntores Masterpact NT06 a NT16		1/184
Disjuntores Masterpact NW08 a NW63		1/193
Disjuntores Masterpact Opção Comunicação		1/214
Disjuntores Masterpact - Inversor de fonte		1/215
Disjuntores Compact NB600/800N		1/134
Disjuntores Compact NR160/250/400/630		1/141
Disjuntores Compact NS100/160/250H		1/148, 1/168
Disjuntores Compact NS100/160/250L		1/148, 1/170
Disjuntores Compact NS100/160/250N		1/148, 1/164
Disjuntores Compact NS100/160/250SX		1/148, 1/166
Disjuntores Compact NS400/630N/H/L		1/152, 1/172
Disjuntores Compact NS630b800		1/176
Disjuntores Compact NS10001600		1/178
Disjuntores Diferenciais DPN Vigi		1/63
Disjuntores Modulares C60N/H/L	24•••/25•••	1/58, 1/69
Disjuntores Modulares C120N/H	183••	1/60, 1/76
Disjuntores Modulares C60/C120/ID Acessórios	26•••/27•••	1/79

Descrição	Referência	Página
D		
Disjuntores Modulares DPN	21•••	1/62, 1/81
Disjuntores Modulares K32a	K32a****	1/56, 1/65
Disjuntores Modulares K60	1116l/21•••	1/56, 1/66
Disjuntores-Motores GV2	GV2	2/23
Disjuntores-Motores GV2 - Acessórios	GV/GV2	2/31
Disjuntores-Motores GV3	GV3	2/26
Disjuntores-Motores GV3 - Acessórios	GV3	2/33
Disjuntores-Motores GV7	GV7	2/27
Disjuntores-Motores GV7 - Acessórios	GV7	2/36
Dispositivos de Proteção contra Surtos DPS		1/64, 1/84
E		
Eficiência Energêtica - Soluções simples para gestão integrada de energia		1/241
Elementos de segurança	XY2/XCS/XPS	5/58
Encoders Incrementais e Absolutos Osicoder	XCC	5/54
E/S Distribuídas Advantys OTB	OTB	6/78
E/S Distribuídas Advantys FTB/FTM	OTB	6/80
E/S Distribuídas Advantys STB	OTB	6/80
F		
Ferramenta de Programação A1 (Automation 1)		6/42
Fontes Chaveadas Phaseo	ABL7	6/92
G		
Gerenciador de energia HX-600 Solução Web Energy		1/237
I		
Interfaces Homem-Máquina Magelis Alfanuméricas, Matriciais e Gráficas	XBTN/R/RT	6/82, 6/86
Interfaces Homem-Máquina Magelis XBTGK Touch		6/84
Interfaces Homem-Máquina Magelis XBTGT Touch		6/83
Interfaces Homem-Máquina Magelis iPC - PCs Industriais		6/85
Interfaces Homem-Máquina Magelis - Softwares Vijeo Designer/Vijeo Designer Lite		6/88
Interfaces Homem-Máquina Série Arion		6/90
Interruptores de Carga - I	150••	1/94

Descrição	Referência	Página
I		
Interruptores de Carga - I com Indicação Luminosa 220 V	151••	1/94
Interruptores Diferenciais ID (RCCB)	16•••/23•••	1/57, 1/68
Interruptores Horários Mecânicos - IH	153••	1/91
Interruptores Horários Programáveis - IHP	15•••/16•••	1/92
Interruptores de Posição Osiswitch	XCK	5/31
Interruptores-Seccionadores Interpact INS40 a 2500		1/104
Interruptores-Seccionadores Interpact INS/INV - Dimensões		1/120
Interruptores de Segurança (Fins de Curso de Segurança)	XCS	5/59
Inversor de Fonte		1/215
Inversores de Freqüência - Altivar 11	ATV-11	4/26, 4/30
Inversores de Freqüência - Altivar 31	ATV-31	4/26, 4/34
Inversores de Freqüência - Altivar 21	ATV-21	4/27, 4/32
Inversores de Freqüência - Altivar 61	ATV-61	4/28, 4/37
Inversores de Freqüência - Altivar 71	ATV-71	4/29, 4/42
M		
Medidores de Energia Elétrica PowerLogic Série ME		1/226
Medidores de Energia Elétrica PowerLogic Série PM9		1/227
Medidores de Energia Elétrica PowerLogic Série PM200		1/228
Medidores de Energia Elétrica PowerLogic Série PM700		1/230
Medidores de Energia Elétrica - Transdutor Multifunção PowerLogic ENERCEPT		1/232
Minuterias MIN	15•••/CCT152•	• 1/90
Microcontroladores Programáveis Twido	TWD	6/34
Módulos Lógicos - Zelio Logic	SR2/SR3	6/30
P		
Partidas Combinadas (Coordenação Tipo 1)	GV2-ME/LE	2/61, 2/63, 2/65
Partidas Combinadas (Coordenação Tipo 2)	GV2-P/DP	2/62, 2/64, 2/65
Partidas de Motores TeSys U		2/57
Pentes de Conexão - Linha Multi 9	148••	1/82
Pressostatos, Vacuostatos e Transmissores de Pressão Nautilus	XML	5/23, 5/47

Descrição	Referência	Página
Q		
Quadros Modulares Micro Pragma	10***	1/96
Quadros Modulares Mini Pragma		1/97
Quadros Modulares Pragma	PRA••	1/100
R		
Relés Eletrônicos e Inteligentes Multifunção LT3	LT3	2/54
Relés Eletrônicos e Instantâneos LR97 e LT47	LR97/LT47	2/55
Relés Inteligentes - Modelo T	LTM	2/50
Relés de Medição e Controle Zelio Control	RM4	6/27
Relés Plug-in Zelio Relay		6/12
Relés de Proteção Sepam Série 10		1/223
Relés Térmicos - Modelo D	LRD	2/49
Relés Térmicos Modelo F Classes 10 e 20	LR9-F	2/53
Relés Térmicos Modelo K	LR2-K	2/40
S		
Seccionadores Vario	VCD	2/69
Seccionadores Vario - Acessórios	VZ	2/70
Sensores Fotoelétricos Osiris Universal	XUB/XUM/ XUK/XUX/XUV	5/17, 5/42
Sensores Indutivos Osiprox	XS1/XS4/XS5/ XS7/XS8/XS9	5/17, 5/38
Sensores de RFID/Sensores de Identificação - Ositrack	XGS	5/30, 5/56
Sensores Ultra-Sônicos Osisonic	XX	5/28, 5/52
Т		
Telerruptores TL	155••	1/86
Temporizadores Eletrônicos - Zelio Time	RE7/RE8/RE9	6/22
U		
Unidade de Proteção para Compact NR		1/146
Unidade de Proteção para Compact NS		1/156
Unidades de Comando e Sinalização - XB3-B	XB3-B	3/18
Unidades de Comando e Sinalização - XB4	XB4	3/9
Unidades de Comando e Sinalização - XB5	XB5	3/13
Unidades de Comando e Sinalização - XB6	XB6	3/8
Unidades de Comando e Sinalização - XB7	XB7	3/17
Unidades de Controle Micrologic		1/182, 1/206
Unidades de Sinalização XV Harmony	XVR/XVS/DL1	3/19
W		
WEB Energy		1/243

Distribuição elétrica

Índice

_					
Ge	ne	ralı	Ida	d	29

1	Ambientes de uma instalação	1/8
2	Escolha dos dispositivos	1/10
3	Funções de uma saída	1/10
4	Características da rede	1/13
5	Intensidade de curto-circuito	1/14
6	Capacidade de interrupção	1/20
7	Curvas de disparo	1/23
8	Seletividade das proteções	1/25
9	Carac. do local de instalação	1/31
10	Emprego dos condutores	1/32
11	Trabalhando com l²t	1/38
12	Proteção contra choques elétrico	os 1/40
13	Proteção diferencial	1/41
14	Esquemas de aterramento	1/45

15	Sistema Multi 9 Disjuntores - Interruptores diferenciais - Telerruptores	
	Contatores CT - Interruptores horários IH - Interrupt carga I - Dispositivos de proteção contra surtos Quadros de distribuição	ores de
16	InterpactInterruptores-seccionadores manuais	1/104
17	EasyPact Disjuntores caixa moldada até 400 A	1/124
18	Compact NB Disjuntores caixa moldada até 800 A	1/134
19	Compact NR Disjuntores caixa moldada até 630 A	1/140
20	Compact NS Disjuntores caixa moldada, 80 a 1600 A	1/148
21	Masterpact Disjuntores abertos até 6300 A	1/184
22	Varlogic Controladores de Fator de Potência	1/216
23	Varplus ² Capacitores	1/219
24	Sepam Relés de proteção	1/223
25	PowerLogic Medidores de Energia Elétrica	1/226
26	Gerenciador de energia HX-600_ Solução WEB Energy	1/237
27	Eficiência energética Soluções simples para gestão integrada de energia	1/241

Dicas gerais de segurança

Ao executar uma instalação elétrica, ou durante sua manutenção, procure tomar os seguintes cuidados:

- Antes de qualquer intervenção, desligue a chave geral (disjuntor ou fusível).
- Teste sempre o circuito antes de trabalhar com ele, para ter certeza de que não está energizado.
- Desconecte os plugues durante a manutenção dos equipamentos.
- Leia sempre as instruções das embalagens dos produtos que serão instalados
- Utilize sempre ferramentas com cabo de material isolante (borracha, plástico, madeira etc). Dessa maneira, se a ferramenta que você estiver utilizando encostar acidentalmente em uma parte energizada, será menor o risco de choque elétrico.
- Não use jóias ou objetos metálicos, tais como relógios, pulseiras e correntes, durante a execução de um trabalho de manutenção ou instalação elétrica.
- Use sempre sapatos com solado de borracha. Nunca use chinelos ou calçados do gênero – eles aumentam o risco de contato do corpo com a terra e, conseqüentemente, o risco de choques elétricos.
- Nunca trabalhe com as mãos ou os pés molhados.
- Utilize capacete de proteção sempre que for executar serviços em obras onde houver andaimes ou escadas.

Instalação de chuveiros elétricos

- Chuveiros e torneiras elétricas devem ser aterrados.
- Instale o fio terra corretamente, de acordo com a orientação do fabricante.

- Pequenos choques, fios derretidos e cheiro de queimado são sinais de problemas que precisam ser corrigidos imediatamente.
- Não mude a chave verão-inverno com o chuveiro ligado
- Nunca diminua o tamanho da resistência para aquecer mais a água. É possível a substituição do chuveiro por outro mais potente, desde que adequado à fiação existente. Não reaproveite resistências queimadas.

Instalação de antenas

Instale a antena de TV longe da rede elétrica. Se a antena tocar nos fios durante a instalação, há risco de choque elétrico.

Troca de lâmpadas

- Desligue o interruptor e o disjuntor do circuito antes de trocar a lâmpada.
- Não toque na parte metálica do bocal nem na rosca enquanto estiver fazendo a troca.
 - Segure a lâmpada pelo vidro (bulbo). Não exagere na força ao rosqueá-la.
- Use escadas adequadas.

Tomadas e equipamentos

- Coloque protetores nas tomadas.
- Evite colocar campainhas e luminárias perto da cortina.
- Não trabalhe com os pés descalços ao trocar fusíveis elétricos.
- Não passe fios elétricos por baixo de tapetes.
 Isso pode causar incêndios.

Instalações elétricas

- Faça periodicamente um exame completo na instalação elétrica, verificando o estado de conservação e limpeza de todos os componentes. Substitua peças defeituosas ou em más condições e verifique o funcionamento dos circuitos.
- Utilize sempre materiais de boa qualidade.
- Acréscimos de carga (instalação de novos equipamentos elétricos) podem causar aquecimento excessivo dos fios condutores e maior consumo de energia, resultando em curtos-circuitos e incêndios. Certifique-se de que os cabos e todos os componentes do circuito suportem a nova carga.
- Incêndios em aparelhos elétricos energizados ou em líquidos inflamáveis (óleos, graxas, vernizes, gases) devem ser combatidos com extintores de CO₂ (gás carbônico) ou pó químico.
- Incêndios em materiais de fácil combustão, como madeira, pano, papel, lixo, devem ser combatidos com extintores de água.
- Em ligações bifásicas, o desequilíbrio de fase pode causar queima de fusíveis, aquecimento de fios ou mau funcionamento dos equipamentos. Corrija o desequilíbrio transferindo alguns aparelhos da fase mais carregada para a menos carregada (ver item 4.2.5.6 da norma NBR5410).
- As emendas de fios devem ser bem feitas, para evitar que se aqueçam ou se soltem. Depois de emendá-los, proteja-os com fita isolante própria para fios.
- Evite condutores de má qualidade, pois eles prejudicam a passagem da corrente elétrica, superaquecem e provocam o envelhecimento acelerado da isolação.

- Confira, na placa de identificação do aparelho ou no manual de instrução, a tensão e a potência dos eletrodomésticos a serem instalados. Quanto maior a potência do eletrodoméstico, maior o consumo de energia.
- É recomendada a troca de fusíveis por disjuntores termomagnéticos, que são mais seguros e não precisam de substituição em caso de anormalidade no circuito.
- A fuga de corrente é semelhante a um vazamento de água: paga-se por uma energia desperdiçada. Ela pode acontecer por causa de emendas malfeitas, fios desencapados ou devido à isolação desgastada, aparelhos defeituosos e consertos improvisados. Utilize interruptores diferenciais residuais (DR) para evitar este tipo de problema.

1 Ambientes de uma instalação

As instalações elétricas são divididas em duas categorias que influenciam na escolha dos componentes e o procedimento de sua instalação.

Características nos ambientes residenciais

Para instalações em residências, prédios e pequenos comércios, as características dos disjuntores são determinadas de acordo com a norma ABNT NBR NM 60898.

A operação desses dispositivos é realizada geralmente pelo próprio usuário.

A alimentação é sempre em baixa tensão e os pontos de consumo de energia elétrica são de pequena potência. O conceito mais importante a considerar na elaboração do projeto para esses ambientes é sempre a segurança do operador. O operador é sempre o usuário do sistema que não possui conhecimentos técnicos e se expõe na realização de manobras incorretas e perioosas para a sua vida.

A execução de uma instalação elétrica nesse ambiente, sem uma segurança máxima, pode ocasionar danos às pessoas e seus bens, e a responsabilidade será do operador. Os disjuntores a serem aplicados nestes tipos de ambiente são modulares, fixados sobre os trilhos DIN de 35 mm.

O sistema MULTI 9 da **Schneider Electric**, baseia-se nos conceitos de segurança para o usuário, com modularidade em todos os produtos, possuindo sua largura em múltiplos de 9 mm.

No quadro de distribuição, podem associar-se aos disjuntores, a proteção diferencial e muitos outros acessórios que não foram mencionados neste manual, devido à especialidade de sua aplicação e especificação.

Com relação aos disjuntores termomagnéticos que incluímos, são os que possuem as curvas de disparo B, C e D.

Características nos ambientes industriais

Tratam-se de instalações de fabricação, de processo e por extensão, as instalações de infra-estrutura, como: aeroportos, portos, ferrovias e grandes centros de serviços (hipermercados, bancos, shoppings, prédios comerciais etc).

As características dos disjuntores são determinadas de acordo com a norma ABNT NBR IEC 60947-2.

A operação dos sistemas é realizada por pessoas qualificadas. Os pontos de consumo de energia elétrica são de alta potência e o fornecimento da concessionária em média tensão.

Num sistema de distribuição, a instalação começa no painel geral de distribuição, que possui os dispositivos de seccionamento e proteção para alimentar os painéis secundários.

Neste ambiente, são aplicados disjuntores de alta capacidade de corrente nominal, até 6300 A e capacidade de interrupção de correntes de curto-circuito até 150 kA ef, que além das proteções de sobrecorrentes, podem ter também as proteções de falta à terra ou proteção diferencial residual.

Escolha dos dispositivos

Quaisquer que sejam os ambientes, existem regras de instalação e exigências de conhecimento para a escolha dos dispositivos adequados.

- Funções de uma saída.
- Características da rede de alimentação.
- Características da carga.
 - Corrente nominal de consumo.
 - Fator de potência.
- Continuidade do servico deseiado.
- Característica do local de instalação.

3 Funções de uma saída

Em uma saída (ou entrada de energia), alocada em um painel ou quadro elétrico de distribuição de baixa tensão, deverá ter diversas funções que definirão a escolha dos dispositivos a serem instalados.

A escolha de um dispositivo de interrupção é uma condição de segurança. Um dispositivo apto ao seccionamento é dispositivo que garante ao operador que na posição aberto, todos os contatos de força estejam abertos, promovendo a isolação prescrita.

Um dispositivo de interrupção, sem aptidão para o seccionamento põe em risco a segurança das pessoas.

De maneira geral, todos os dispositivos de interrupção da **Schneider Electric**, incluem a aptidão ao seccionamento. As funções realizadas segundo a necessidade podem ser:

- Interrupção
- Proteção
- Comutação

A função de interrupção

A norma IEC 60947-1 define claramente as características dos dispositivos, segundo suas possibilidades de interrupção.

Seccionador

Fecha e interrompe sem carga, pode suportar um curto-circuito fechado. Apto ao seccionamento na posição aberto.

Interruptor

Em linguagem popular, é denominado de interruptor manual ou seccionador sob carga.

Fecha e interrompe em carga e sobrecarga até 8 ln.

Suporta e fecha sobre curto-circuito, porém não o interrompe.

Interruptor-seccionador

Interruptor, quando em posição aberto, satisfaz as condições específicas para um seccionador.

Como é o caso dos interruptores Interpact e Vario.

Disjuntores

Disjuntor atende as condições de um interruptor-seccionador e interrompe um curto-circuito.

A função proteção

A elevação da corrente nominal da carga sinaliza que algo está errado com o circuito. De acordo com a sua magnitude e rapidez de crescimento, pode se tratar de uma sobrecarga ou um curto-circuito. Esta corrente de falta no circuito, se não for interrompida rapidamente, poderá causar danos irreparáveis às pessoas, bens e patrimônios.

Por isso, é indispensável considerar os aspectos de:

- Proteção das pessoas
- Proteção dos bens e patrimônios

Os disjuntores são dispositivos com melhor desempenho que os fusíveis, proporcionando um ganho relativo de custo, benefício e facilidade na intervenção, flexível pela sua capacidade de adaptação a novas cargas e assegurando a continuidade de serviço.

O elemento de proteção clássico para detectar falhas à terra é a proteção diferencial (proteção de pessoas).

Para a escolha correta de um dispositivo que proteja sobrecargas e curtos-circuitos é preciso contemplar os seguintes aspectos:

- 1 Conhecer o valor da corrente de curtocircuito no ponto onde será instalado o dispositivo. Este valor determinará a capacidade de interrupção que o disjuntor deverá ter.
- 2 Características que assumam a corrente de falha em função do tempo, o que determinará o tipo de curva de disparo do disjuntor.

A função comutação

É utilizada quando a instalação requerer um comando automático e uma grande cadência de manobras.

Esta função será desenvolvida no capítulo de comando e proteção de potência e variação de velocidade, já que é uma exigência típica dos acionamentos das máquinas.

4 Características da rede

Tensão

A tensão nominal do disjuntor deve ser superior ou igual à tensão entre as fases da rede.

Freqüência

A freqüência nominal do disjuntor deve corresponder à freqüência da rede. Os dispositivos da **Schneider Electric** funcionam tanto em redes de 50 Hz como de 60 Hz.

Número de pólos

O número de pólos de um disjuntor é definido pelo número de condutores de fase e do tipo de neutro do circuito a ser interrompido.

Potência de curto-circuito da rede

O valor pontual da corrente de curto-circuito que a concessionária disponibiliza ao consumidor é dada em MVA.

A capacidade nominal de interrupção máxima em curto-circuito (Icu) de um disjuntor, deve ser no mínimo igual à corrente de curto-circuito susceptível de ser produzida no local instalado.

5 Intensidade de curto-circuito

Procedimentos de cálculos, foram simplificados de forma que venham resultar em uma boa aproximação com aqueles calculados por um software Conhecer o curto-circuito num dado ponto da instalação é condição decisiva para escolha do disjuntor.

A magnitude da corrente de lcc é independente da carga e só corresponde às características do sistema de alimentação e distribuição.

O valor da corrente In é determinado pelo consumo da instalação ou da carga em questão.

Em função dos dados disponíveis, duas alternativas são propostas para a determinação do Icc:

- Por cálculo
- Por tabela

Em ambos os casos, as hipóteses sobre as quais serão utilizadas baseiam-se nos cálculos que são maximizados, onde a corrente de lcc real será geralmente abaixo da lcc calculada.

Determinação da lcc por cálculo

O método consiste em:

1- Fazer a somatória das resistências distribuídas ao longo do ponto considerado.

$$R_T = R_1 + R_2 + R_3 + ...$$

 $X_T = X_1 + X_2 + X_3 + ...$

2- Calcular:

Icc =
$$\frac{U_0}{\sqrt{3}\sqrt{R_T^2 + X_T^2}}$$
 [KA]

onde:

 U_0 = Tensão entre fases do secundário do transformador em vazio, expressa em Volts (V).

 R_T e XT = Resistência e reatância total expressas em miliohms (m Ω)

Determinar as resistências e as reatâncias em cada parte da instalação.

Parte da instalação	Valores a conside $(m\Omega)$	erar	Reatâncias (mΩ)
Rede de alimentação	$R_1 = Z \cos \varphi \ 10^3$ $Z_1 = \underline{U}^2$ $P = Pcc da rede e$	$cos\phi = 0,15$ $P = Pcc$	$X_1 = Z_1 \text{ sen}\phi \ 10^{-3}$ $\text{sen}\phi = 0.98$
Transformador	$R_2 = \frac{\text{Wc } \text{U}^2 \text{ 10}^3}{\text{S}^2}$ Wc = Perdas no C $S = \text{Potência apar}$ dor (kVA)	Cobre ente do transforma-	$\begin{split} & \textbf{X}_2 = \sqrt{\textbf{Z}_2^2} \cdot \textbf{R}_2^2 \\ & \textbf{Z}_2 = \underbrace{\textbf{Ucc}}_{100} \ \underline{\textbf{U}}^2 \\ & \textbf{Ucc} = \textbf{Tensão de} \\ & \textbf{curto-circuito do} \\ & \textbf{transformador.} \end{split}$
Nos cabos	R ₃ = p <u>L</u> S	p = 22,5 (Cu) L = m S = mm ²	$X_3 = 0.08L$ (cabo trifásico) $X_3 = 0.12L$ (cabo unipolar) L em m
Nas barras	R ₃ = p <u>L</u> S	p = 36 (AL) L = m S = mm ²	X ₃ = 0,15L L em m

A PCC* é um dado fornecido pela concessionária de energia. Se não for possível obtê-la, uma boa aproximação a ser considerada é PCC = ∞ .

Então a corrente de lcc só será limitada por Z₂, que em porcentagem é igual a Ucc.

Como por exemplo, para transformadores de distribuição a óleo entre 25 e 630 kVA é Ucc = 4%.

Para potências normalizadas de 800 a 1000 kVA, a Ucc = 5%.

lcc [KA]=
$$\frac{1}{U_{cc}[\%]}$$
 In (transformador) [KA]

^{*} PCC = Potência de curto-circuito

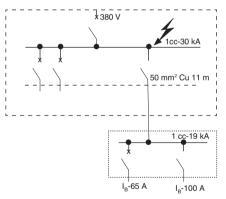
Exemplo:

•			
Esquema	Parte da instalação	Resistências $(m\Omega)$	Reatâncias (mΩ)
	a montante Pcc = 500 MVA	$R_1 = \frac{440^2 \times 0.16 \times 10^{-3}}{500}$ $R_1 = 0.06$	$X_1 = 440^{\circ} \times 0.98 \times 10^{\circ}$ 500 $X_1 = 0.38$
⊢	Transformador S = 630 KVA (630) ² k U = 440 V W _c = 6500	$R_2 = \frac{6500x(440^2)x10}{(630^2)k}$ $R_2 = 3,17$	$X_2 = \sqrt{\frac{4 \times 440}{100 630}}^2 - \text{R}^2$ $X_2 = 11,87$
<u></u>	Junção T - M1 Cabo Cu por fase 3 (1 x 150 mm²) L = 3 m	$R_3 = \frac{22.5 \times 3}{150 \times 3}$ $R_3 = 0.15$	X ₃ =0,12 x 3/3 X ₃ = 0,12
M1 M1	Interruptor rápido M1	R ₄ = 0	X ₄ = 0
	Junção M1 - M2 1 barra (AL) 1 (100 x 5) mm² por fase L = 2 m	$R_5 = \frac{36 \times 2}{500}$ $R_5 = 0.14$	$X_s = 0.08L \text{ (cabo } 30)$ $X_s = 0.16 \times 2$ $X_s = 0.32$
	Interruptor rápido M2	R ₆ = 0	X ₆ = 0
٢ /	Junção TGBT - TS Cabo Cu por fase 1 (1 x 185 mm²) L = 70 m	$R_7 = \frac{22,5 \times 70}{185}$ $R_7 = 8,51$	$X_7 = 0.12 \times 70$ $X_7 = 8.40$

	L = /	O III												
Cálculo dos Icc em kA														
	Resistências (mΩ)	Reatâncias $(m\Omega)$	Icc (kA)											
M1	$Rt_1 = R_1 + R_2 + R_3$ $Rt_1 = 3,37$	$Xt_1 = X_1 + X_2 + X_3$ $Xt_1 = 12,37$	$\frac{440}{\sqrt{3}\sqrt{(3,37)^2+(1)^2+(1)^2}}$	=19,81 kA										
M2	$Rt_2 = Rt_1 + R_4 + R_5$ $Rt_2 = 3,51$	$Xt_2 = Xt_1 + X_4 + X_5$ $Xt_2 = 12,69$	$\frac{440}{\sqrt{3}(3,51)^2+(1)^2+$	=12,29 kA 2,69) ²										
МЗ	$Rt_3 = Rt_2 + R_6 + R_7$ $Rt_3 = 12,02$	$Xt_3 = Xt_2 + X_6 + X_7$ $Xt_3 = 21,09$	$\frac{440}{\sqrt{3}\sqrt{(12,02)^2}+}$	=10,46 kA (21,09) ²										

Determinação da corrente de lcc por tabela

A seguinte tabela, de duas entradas, fornece uma rápida avaliação de corrente de lcc em um ponto da rede, conhecendo:


- A tensão da rede (380 V)
- A corrente de lcc montante
- A distância, secção e tipo de cabo na posição jusante

Exemplo:

No seguinte circuito, vemos como determinar a corrente de lcc jusante, tendo o circuito montante um ponto de lcc, cujas características são:

Entrando na tabela com os seguintes valores:

- secção do condutor por fase: 50 mm²
- distância da instalação: 11 m
- Icc no ponto: 30 kA

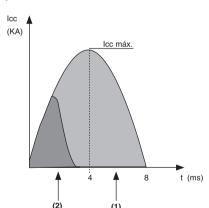
Obtemos o valor de 19 kA pertencente a uma corrente de lcc em um ponto abaixo, como se observa claramente na figura acima

150 200 230 250 250 290 2,1 2,2,8 4 4 2,2,8 Distância da instalação (em m) 1,17,17,18,18 2 r condutores de Cobre por fase (em mm²) Secção dos 2 x 120 2 x 150 2 x 185 3 x 120 3 x 150 3 x 185

Schneider

	Icc a jusante (kA)		
lcc a montante (em kA)	<u>8</u>	a montante	(em kA)

÷	=																		
-	<u> </u>	Ξ	=	Ξ	10	10	9,5	ဝ	6	8,5	7,5	7	5,5	4,5	3,5	က	2,4	1,7	0.9
7	- :	14	14	14	13	13	12	1	1	10	6	8	6,5	2	4	က	2,5	1,8	6.0
00	3	9	16	16	15	14	13	13	12	11	10	8,5	6,5	2	4	3,5	2,6	1,8	-
00	3	20	19	18	18	17	15	15	14	13	7	9,5	7	5,5	4	3,5	2,7	1,9	-
0	3	35	31	59	27	52	22	21	19	17	14	12	8,5	9	4,5	3,5	2,8	1,9	-
9	3 !	4/	44	41	38	33	59	56	23	50	17	13	6	6,5	2	4	2,9	7	+
CO	3	25	49	45	41	36	30	27	24	21	17	13	9,5	6,5	2	4	5,9	7	-
22	à	28	24	49	44	33	32	59	25	22	18	14	9,5	6,5	2	4	5,9	2	-
7	-	29	22	25	46	40	33	30	56	22	18	14	9,5	7	2	4	က	2	-
0	3	99	61	22	48	42	35	31	27	23	19	14	9,5	7	2	4	က	2	-
5	- 6	9/	69	61	24	46	37	33	28	54	19	15	10	7	2	4	က	7	-
c	35	833	74	65	22	48	39	34	59	24	20	15	10	7	2	4	က	7	+
co	20	833	74	99	22	48	39	34	59	24	50	15	10	7	2	4	က	7	-
ò	100	84	22	99	22	48	39	34	59	52	20	15	10	7	2	4	က	7	-
ò	t	82	9/	29	28	48	39	34	59	52	20	15	10	7	2	4	က	2	-
	į	82	9/	29	28	49	39	34	30	52	20	15	10	7	2	4	က	2	-
0	3	06	80	20	09	20	40	32	30	52	20	15	10	7	2	4	က	2	-


Capacidade de interrupção

Características de interrupção de um disjuntor

A capacidade de interrupção de um disjuntor define a capacidade deste para abrir um circuito automaticamente quando ocorrer um curto-circuito, mantendo o dispositivo a sua aptidão ao seccionamento e a capacidade funcional de estabelecer o circuito de acordo com a tecnologia de sua fabricação. Existem dois tipos de disjuntores:

- Não limitadores
- Limitadores

A diferença entre um sistema não limitador e um limitador é definida pela capacidade de o limitador deixar passar em um curto-circuito, uma corrente inferior à corrente de defeito presumida.

(1) A atuação de um disjuntor, sistema não limitador

(2) A atuação de um disjuntor limitador

O tempo de abertura de um limitador é sempre inferior a 4 ms (em uma rede de 60 Hz).
O disjuntor segundo a norma ABNT NBR IEC 60947-2 define a capacidade de interrupção.

- Capacidade nominal de interrupção máxima de curto-circuito (Icu)
- Capacidade nominal de interrupção de curto-circuito em serviço (Ics)

Capacidade nominal de interrupção máxima de curto-circuito (lcu):

Valor de capacidade de interrupção limite em curto-circuito, indicado pelo fabricante para o disjuntor para a correspondente tensão de operação nominal, sob as condições especificadas. Ele é expresso como o valor da corrente presumida de interrupção, em quiloampères (valor eficaz da componente alternada, no caso da corrente alternada).

Capacidade nominal de interrupção máxima de curto-circuito em serviço (lcs):

A Ics se expressa em % da Icu (cada fabricante define um valor entre 25,50,75 e 100% da corrente do Icu Valor da capacidade de interrupção em serviço em curto-circuito, indicado pelo fabricante para o disjuntor para a correspondente tensão de operação nominal, sob as condições especificadas. Ele é expresso com um valor da corrente presumida de interrupção, em quiloampères correspondendo a uma porcentagem especificada da capacidade nominal de interrupção máxima em curto-circuito e arredondado para cima para o número mais próximo. Ele pode ser alternativamente expresso com uma % de lcu (por ex.: lcs=25% lcu).

Quando Icu excede 200 kA, para a categoria de utilização A ou 100 kA, para a categoria de utilização B, o fabricante deve declarar o valor los de 50 kA

Interrupção rotoativa

Nos disjuntores **Masterpact**, o poder de los pode alcançar valores entre 50 e 100% de lou

Os disjuntores **Compact NS** possuem um sistema de contatos denominado **rotoativo**. Durante um curto-circuito, sua arquitetura interna, em particular, o movimento rotativo, os contatos provocam uma rápida repulsão, conseguindo uma limitação máxima dos curtos-circuitos.

Nos curtoscircuitos elevados, o aumento de pressão dentro das células dos contatos de força promove o acionamento do mecanismo de abertura dos pólos do Compact NS. Esta técnica garante um disparo rápido: o tempo de reação é em

Em todos os modelos de **Compact NS**, seja qual for sua capacidade de interrupção, a **Ics é igual a 100% Icu**.

A capacidade nominal de interrupção de curto-circuito em serviço está certificada conforme os ensaios normativos abaixo:

- Fazer disparos três vezes consecutivos no disjuntor a 100% Icu
- Verificar em seguida se:
- Conduz sua intensidade nominal sem aquecimento anormal.
- O disparo funciona normalmente (1,45 l_n).
- É conservada a aptidão de seccionamento. As prescrições acima definem a capacidade nominal de interrupção de curto-circuito em serviço da ABNT NBR IEC 60947-2. Já a ABNT NBR NM 60898 é para aplicação em dispositivos de proteção que são manipulados por pessoas sem conhecimento, razão pela qual a norma é mais exigente em relação aos ensaios de sua capacidade de interrupção.

Filiação ou efeito cascata

Utilizar o conceito de filiação na realização de um projeto com vários disjuntores em cascata. podendo resultar em economia na aplicação de disjuntores com capacidade de interrupção inferior à iusante sem nenhum prejuízo e desqualificação das proteções.

A filiação ou cascata é a utilização da capacidade de limitação dos disjuntores. Esta limitação oferece a possibilidade de instalar a jusante dispositivos de menor capacidade de interrupção.

Os disjuntores limitadores instalados a montante assumem uma relação de barreira para as altas correntes de curto-circuito. Eles promovem uma proteção de retaguarda aos disjuntores, permitindo a utilização de disjuntores com capacidade de interrupção menor que o valor da corrente de curto-circuito presumida no ponto de instalação.

A limitação da corrente se estende a todos os circuitos que são protegidos pelo disjuntor a montante, mesmo que os disjuntores a jusante não estejam instalados no mesmo painel.

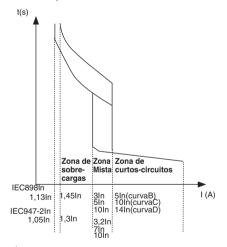
A capacidade de interrupção do disjuntor a montante deve ser superior ou igual à corrente de curto-circuito presumida no ponto onde ele está instalado.

A filiação ou cascata é assegurada após ser testada em laboratórios e as associações possíveis entre os disjuntores deverão ser apenas especificadas pelos fabricantes. Na documentação específica da

Schneider Electric são indicadas todas as possibilidades de associação entre os diferentes disjuntores para que se obtenham uma filiação específica.

Curvas de disparo

Uma sobrecarga, caracterizada por um aumento crescente da corrente nominal In, pode ser devido a uma anomalia que começa a manifestar-se (falta de isolação ou transitórios, como exemplo: corrente de partida de motores).


Tanto os cabos como os receptores estão dimensionados para admitir uma corrente superior àquela nominal, durante um tempo determinado, sem colocar em risco suas características de isolação.

Quando a sobrecorrente se manifesta de maneira violenta (várias vezes a In) e de forma instantânea, estamos frente a um curto-circuito, o qual deverá ser interrompido rapidamente para evitar a perda de bens e patrimônios.

Duas proteções independentes estão associadas em um dispositivo de proteção para assegurar:

- Proteção contra sobrecargas Sua característica de disparo é um tempo dependente ou inverso, quer dizer que o maior valor de corrente tem o menor tempo de atuação
- Proteção contra curtos-circuitos Sua característica de disparo é um **tempo independente**, quer dizer que a partir de um determinado valor de corrente de defeito, a proteção atua sempre no mesmo tempo.

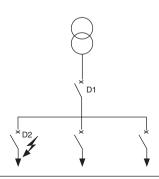
As normas ABNT NBR IEC 60947-2 e ABNT NBR NM 60898 fixam as características de disparo das proteções dos disjuntores.

Curva B 3 In a 5 In

Circuitos resistivos ou com grandes comprimentos de cabos até o receptor.

Curva C 5 In a 10 In Aplicações gerais: tomadas de corrente, iluminação fluorescente.

Curva D 10 In a 14 In


Circuitos com fortes transitórios: transformadores, alimentadores de motores. A correta escolha de uma curva de proteção deve contemplar que a corrente In da carga não dispare o disjuntor, e que durante uma falha, a curva de limite térmico dos cabos, motores e transformadores esteja situada acima da margem da curva superior de atuação.

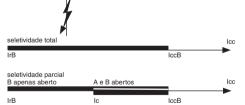
8 Seletividade das proteções

A continuidade de serviço é uma exigência em uma instalação moderna. A falta de uma seletividade correta pode provocar a abertura simultânea de mais de um dispositivo de proteção situado a montante da falta. A seletividade é um conceito essencial.

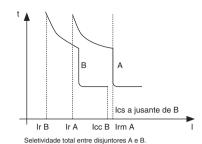
Conceito de seletividade

É a coordenação dos dispositivos de proteção, para que um defeito proveniente de qualquer ponto da rede, seja eliminado pela proteção localizada imediatamente a montante ao defeito, e só por ela. Para todos os valores de defeito, desde uma sobrecarga até um curto-circuito instantâneo (franco), a coordenação é totalmente seletiva se D2 abrir e D1 permanecer fechado. Se a condição anterior não for respeitada, a seletividade será parcial ou nula.

Seletividade

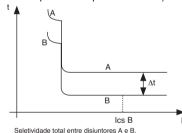

É a propriedade de uma instalação de, em caso de falta, só abrir o dispositivo de proteção contra curtos-circuitos que estiverem mais próximo do ponto de falta. Com isto, a parte do circuito que fica inoperante será a menor possível. A propriedade de escolher entre dois dispositivos de proteção quem vai ser desligado é denominada discriminação, a qual vai garantir a seletividade.

Métodos de seletividade


D1

1 Seletividade baseada em níveis de correntes

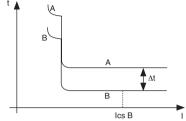
Este método é efetivado pelo ajuste das correntes de disparo de relés em degraus a partir dos relés a jusante (ajuste menores) para os do lado da fonte (maiores ajustes). A seletividade é absoluta ou parcial de acordo com as condições particulares.



Na seletividade parcial haverá discriminação para as faltas de uma certa distância de B (a corrente será limitada pela impedância do circuito, ficando abaixo do ajuste inferior de A). Para as faltas próximas a B poderão abrir os dois disjuntores. Como a maioria das faltas estatisticamente ocorre ao longo dos condutores, para a maioria dos defeitos haverá discriminação e, portanto, seletividade.

2 Seletividade baseada em degraus de tempo

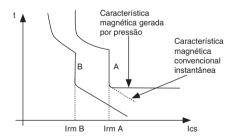
Este método é implementado pelo ajuste das unidades de disparo com retardo, de modo que os relés a jusante tenham tempos de operação mais curtos progressivamente em relação aqueles em direção à fonte. Nos arranjos em dois níveis mostrados na figura, o disjuntor A tem retardo suficiente para assegurar uma seletividade total com B (por exemplo: Masterpact eletrônico).



3 Seletividade baseada em uma combinação dos dois métodos anteriores

Se for adicionado um retardo de tempo mecânico a um esquema de discriminação por correntes, a seletividade será melhorada, reduzindo ou eliminando a zona em que os dois disjuntores poderiam atuar simultaneamante.

A seletividade será total se lsc < lrmA (valores instantâneos). O disjuntor a montante tem dois limiares de disparo magnético rápido:


- Irm A (com retardo) ou um temporizador eletrônico tipo SD (curto retardo)
- Irm A (instantâneo) normal (tipo Compact NS)

Seletividade total entre disjuntores A e B.

4 Seletividade baseada em uma combinação dos dois métodos anteriores

Para a faixa de correntes de curto-circuito, este sistema proporciona uma seletividade total entre dois disjuntores atravessados pela mesma corrente. Isto é conseguido usando disjuntores limitadores de corrente e iniciando o disparo por sensores de pressão instalados nas câmaras de arco dos disjuntores. A pressão do ar aquecido depende da energia do arco, como será descrito mais adiante.

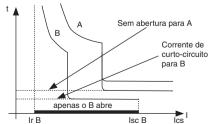
Seletividade total entre disjuntores A e B.

5 Seletividade por retardo de tempo

A seletividade baseada em disparadores com retardo de tempo usualmente referidos como "seletivos" (em alguns países). A aplicação destes disjuntores é relativamente simples e consiste em retardar o instante de disparo dos vários disjuntores ligados em série em uma seqüência de tempo em degraus.

Esta técnica requer:

- A introdução de "timers" no mecanismo de disparo do disjuntor;
- Disjuntores com capacidades térmicas e mecânicas adequadas aos níveis elevados de corrente e para os retardos de tempo previstos.

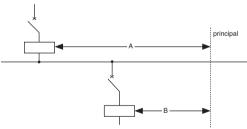

Dois disjuntores A e B em série (sendo atravessados pela mesma corrente) são discriminativos se o período de interrupção do disjuntor B a jusante for menor que o tempo de não disparo do disjuntor A.

6 Seletividade de vários níveis

Um exemplo de um esquema prático com disjuntores da **Schneider Electric** tipo Masterpact (com dispositivo eletrônico de proteção).

Estes disjuntores podem ser equipados com temporizadores ajustáveis, o que permite seleção em quatro degraus, tais como:

- O retardo correspondente a um dado degrau é maior que o tempo de interrupção do próximo degrau inferior;
- O retardo correspondente ao primeiro degrau é maior que o tempo total de interrupção do disjuntor rápido (tipo Compact, por exemplo).


7 Seletividade lógica

Os sistemas de seletividade baseados nas técnicas lógicas são possíveis, usando disjuntores equipados com unidades Micrologic.

Estes sistemas de seletividade lógica requerem disjuntores equipados com unidades de disparo eletrônico, projetadas para essa aplicação junto com fios pilotos de interligação para troca de dados entre os disjuntores.

Com dois níveis A e B, o disjuntor A é ajustado para disparar instantaneamente, a não ser que o relé do disjuntor B mande um sinal confirmando que a falta é a jusante de B. Este sinal causa o atraso da unidade de disparo de A, e com isso assegurando uma proteção de retaguarda na eventualidade de B falhar na interrupção da falta e assim por diante...

Este sistema é patenteado pela **Schneider Electric** e permite também uma rápida localização da falta.

9 Característica do local de instalação

Levar em conta estas condições, evitará em alguns casos o mau funcionamento dos dispositivos. Um dispositivo de manobra e/ou proteção (disjuntor, contator, relé de proteção etc), é concebido, fabricado e ensaiado de acordo com a norma de produto que lhe corresponde, a qual define seu trabalho segundo determinados padrões elétricos, dielétricos e de invólucros.

Nestes dois últimos casos, as condições de instalação podem influir sobre a subclassificação de certas características dos dispositivos, transparecendo na capacidade nominal dos mesmos (In).

Nível de poluição ambiental

Determinará o grau de proteção do invólucro no qual se instalarão os dispositivos.

A temperatura ambiente

O cálculo do volume do recinto em função do tipo de dispositivo. de temperatura exterior, o grau de proteção e o material do invóluco, são definidos por fórmulas com coeficientes empíricos que alguns fabricantes fornecem.

A corrente nominal In dos disjuntores é determinada por ensaios para uma temperatura, geralmente a 40°C (segundo

a norma correspondente).

Os disjuntores possuem limites de funcionamento para temperaturas extremas que podem impedir o funcionamento normal de certos mecanismos.

Dentro de seus limites de temperatura de funcionamento e quando for superior a 40°C, aplica-se uma desclassificação da corrente In do disjuntor, segundo os valores dados pelo fabricante.

Em certos casos, para se ter corretos funcionamentos, deverá aquecer ou ventilar o recinto onde se alojam os dispositivos.

A altura

Geralmente os dispositivos não sofrem desclassificação nas instalações até 1000 metros de altura. Além disso, é necessário utilizar as tabelas de correção que contemplam a variação de densidade do ar.

10 Emprego dos condutores

Os condutores que interligam a saída no circuito de distribuição com o receptor são alguns dos elementos que deverão ser protegidos em caso de sobrecorrentes, sobrecargas e curtos-circuitos.

Os critérios básicos para o correto

Os critérios básicos para o correto dimensionamento são:

- Tipo de aplicação (residencial, comercial ou industrial)
- Características construtivas e normas adotadas
- tipo (fio/cabo/unipolar/multipolar)
- material + isolação (PVC, EPR)
 - + cobertura (PVC e XLPE)
- tensão nominal U₀/U
- temperatura °C + máx. em serviço cont.
 - + sobrecarga
 - + curto-circuito
- normas (ABNT NBR NM 247-3 / ABNT NBR 13248 /

ABNT NBR 7286/7287/7288)

- secção nominal mm²
- capacidade térmica de condução
- queda de tensão para cos ϕ
- verificação de l²t (verificação da energia que o disjuntor deixa passar em relação ao curto)

Capacidade térmica de condução

Proteção contra correntes de sobrecargas.

Devem ser previstos dispositivos de proteção para interromper toda corrente de sobrecarga nos condutores dos circuitos antes que esta possa provocar um aquecimento prejudicial à isolação, às ligações, aos terminais ou nas proximidades das linhas.

Coordenação entre condutores e dispositivos de proteção

A característica de funcionamento de um dispositivo protegendo um circuito contra sobrecargas deve satisfazer às seguintes condições:

a)
$$I_B \le I_n \le I_z$$
:

b)
$$I_2 \le 1,45 I_7$$
:

onde:

I_B é a corrente de projeto do circuito;

l_z é a corrente de condução nos condutores, nas condições previstas para sua instalação;

I_n é a corrente nominal do dispositivo de proteção (ou corrente de ajuste para dispositivos ajustáveis), nas condições previstas para sua instalação;

I₂ é a corrente convencional de atuação para disjuntores ou corrente convencional de fusão, para fusíveis.

Nota: A condição b) é aplicável quando for possível assumir que a temperatura limite de sobrecarga dos condutores não seja mantida por um tempo superior a 100 h durante 12 meses consecutivos ou por 500 h ao longo da vida útil do condutor. Quando isso não ocorrer, a condição b) deve ser substituída por:

Características construtivas fios e cabos

Tabela 1

	Ma	terial	Tensão	Ter	nperatu	ra (ºC)	Normas
Tipo	isolação	cobertura	nominal	Máx.	Sobre-	Curto-	específicas
			U₀/U	de serv	carga	circuito	
cond. isol. (fio/cabo)	PVC s/chumbo		450/750V	70	100	160	NBR NM 247-3 (1)
cond. isol. (cabo flex.)	PVC s/chumbo		450/750V	70	100	160	NBR NM 247-3 (1)
cond. isol. LSOH (cabo flex.)	Polio- lefina		450/750V	70	100	160	NBR 13248
cabo unipolar cabo multip. 2, 3 ou 4 cond.	EPR	PVC sem chumbo	0,6/1kV	90	130	250	NBR 7286
cabo unipolar cabo multip. 2, 3 ou 4 cond.	PVC sem chumbo	PVC sem chumbo	0,6/1kV	90	130	250	NBR 7288
c. unip. LSOH c. multip.LSOH 2, 3 ou 4 cond.	EPR	Polio- lefina	0,6/1kV	90	130	250	NBR 13248

Cabos de PVC

Tabela 2 - Dados construtivos para cabo de 0,6/1 kV Unipolar (1 condutor)

Número cond. x secção	Diâmetro nominal do	Espessura nominal (mm)		
condutor (mm²)	condutor (mm)	isolação	cobertura	
1x 1,5	1,5	0,8	0,9	
1x 2,5	1,9	0,8	0,9	
1x 4	2,4	1,0	1,0	
1x 6	2,9	1,0	1,0	
1x 10	3,9	1,0	1,0	
1x 16	5,5	1,0	1,0	
1x 25	6,9	1,2	1,1	
1x 35	8,2	1,2	1,1	
1x 50	9,8	1,4	1,2	
1x 70	11,6	1,4	1,2	
1x 95	13,4	1,6	1,3	
1x 120	15,3	1,6	1,3	
1x 150	17,1	1,8	1,4	
1x 185	18,8	2,0	1,5	
1x 240	21,8	2,2	1,6	

Tabela 3 - Dados construtivos para cabo de 0,6/1 kV Tripolar (3 condutores)

Número cond. x secção	Diâmetro nominal do	Espessura nominal (mm)		
condutor (mm²)	condutor (mm)	isolação	cobertura	
3x 1,5	1,5	0,8	1,1	
3x 2,5	1,9	0,8	1,1	
3x 4	2,4	1,0	1,2	
3x 6	2,9	1,0	1,2	
3x 10	3,9	1,0	1,2	
3x 16	5,5	1,0	1,3	
3x 25	6,9	1,2	1,4	
3x 35	8,2	1,2	1,5	
3x 50	9,8	1,4	1,6	
3x 70	11,6	1,4	1,7	
3x 95	13,4	1,6	1,9	
3x 120	15,3	1,6	2,0	
3x 150	17,1	1,8	2,1	
3x 185	18,8	2,0	2,3	
3x 240	21,8	2,2	2,5	

Cabos de EPR

Tabela 4 - Dados construtivos para cabo de 0,6/1 kV Unipolar (1 condutor)

Número cond. x secção	Diâmetro nominal do	Espessura nominal (mm)		
condutor (mm²)	condutor (mm)	isolação	cobertura	
1x 1,5	1,5	0,7	0,9	
1x 2,5	1,9	0,7	0,9	
1x 4	2,4	0,7	0,9	
1x 6	2,9	0,7	0,9	
1x 10	3,9	0,7	1,0	
1x 16	5,5	0,7	1,0	
1x 25	6,9	0,9	1,1	
1x 35	8,2	0,9	1,1	
1x 50	9,8	1,0	1,2	
1x 70	11,6	1,1	1,2	
1x 95	13,4	1,1	1,3	
1x 120	15,3	1,2	1,3	
1x 150	17,1	1,4	1,4	
1x 185	18,8	1,6	1,4	
1x 240	21,8	1,7	1,5	

Tabela 5 - Dados construtivos para cabo de 0,6/1 kV Tripolar (3 condutores)

Número cond. x secção	Diâmetro nominal do	Espessura nominal (mm)		
condutor (mm²)	condutor (mm)	isolação	cobertura	
3x 1,5	1,5	0,7	1,0	
3x 2,5	1,9	0,7	1,1	
3x 4	2,4	0,7	1,1	
3x 6	2,9	0,7	1,1	
3x 10	3,9	0,7	1,3	
3x 16	5,5	0,7	1,3	
3x 25	6,9	0,9	1,4	
3x 35	8,2	0,9	1,5	
3x 50	9,8	1,0	1,6	
3x 70	11,6	1,1	1,7	
3x 95	13,4	1,1	1,8	
3x 120	15,3	1,2	1,9	
3x 150	17,1	1,4	2,1	
3x 185	18,8	1,6	2,3	
3x 240	21,8	1,7	2,4	

Tabela 6 - Capacidade de condução de corrente para fios e cabos em PVC

Capacidade de condução de corrente, a uma temperatura ambiente de 30°C, para mais de um circuito instalado em eletroduto aparente, embutido em alvenaria ou em eletrocalha.

Secção	Capacidade de condução de corrente (A)						
nominal	2 circuitos agrupados 3 circuitos agrupados		agrupados	4 circuitos agrupados			
(mm²)	2 condut. carregados	3 condut. carregados	2 condut. carregados	3 condut. carregados	2 condut. carregados	3 condut. carregados	
1,5	14	12	12	11	11	10	
2,5	19	17	17	15	16	14	
4	26	22	22	20	21	18	
6	33	29	29	25	27	23	
10	46	40	40	35	37	33	
16	61	54	53	48	49	44	
25	81	71	71	62	66	58	
35	100	88	88	77	81	72	
50	121	107	106	94	98	87	
70	154	137	134	120	125	111	
95	186	166	162	145	151	135	
120	215	191	188	167	175	155	
150	247	220	216	193	201	179	
185	282	251	247	220	229	204	
240	332	296	291	259	270	241	

Tabela 7 - Secções mínimas dos condutores isolados

Tipo de instalação	Utilização do circuito	Secção mín. do condutor isolado (mm²)
Instalações	Circuitos de iluminação	1,5
fixas	Circuitos de força (incluem tomadas)	2,5
em geral	Circuitos de sinalização e circuitos de contr.	0,5
Ligações	Para um equipamento específico	Como especific. na norma do equip.
flexíveis	Para qualquer outra aplicação	0,75
especiais	Circuitos extra-baixa tensão para aplicações	0,75

Nota: Os circuitos de iluminação devem ser separados dos circuitos de força (tomadas).

Determinação do condutor de neutro

Sugerimos adotar a mesma secção das fases para as ligações de neutro, salvo instalações com índices de harmônicas, onde se faz necessário a consulta à norma ABNT NBR 5410: 2004.

Tabela 8 - Secções mínimas dos condutores de proteção

Secções mínimas dos	Secções mínimas dos condutores de proteção					
Secção dos condutores fase (mm²)	Secção dos condutores fase (mm²)					
1,5	1,5 (mínimo)					
2,5	2,5					
4	4					
6	6					
10	10					
16	16					
25	16					
35	16					
50	25					
70	35					
95	50					
120	70					
150	95					
185	95					
240	120					

Tabela 9 - Limites de queda de tensão (em conformidade com a norma NBR 5410/97

	Instalações	Iluminação	Outros usos
A	Alimentadas diretamente por um ramal de baixa tensão, a partir de uma rede de distribuição pública de baixa tensão	4%	4%
В	Alimentadas diretamente por subestação de transformação ou transformador a partir de uma instalação de alta tensão	7%	7%
С	Instalação que possua fonte própria	7%	7%

Trabalhando com l²t

Determinação das correntes de curto-circuito presumidas

As correntes de curto-circuito presumidas devem ser determinadas em todos os pontos da instalação julgados necessários. Essa determinação deve ser efetuada por cálculo.

Características dos dispositivos de proteção contra correntes de curto-circuito

Todo dispositivo que garanta a proteção contra curtos-circuitos deve atender a duas condições seguintes:

- a) sua capacidade de interrupção deve ser no mínimo igual à corrente de curto-circuito presumida no ponto da instalação, exceto na condição indicada a seguir:
- um dispositivo com capacidade de interrupção inferior é admitido se um outro dispositivo com a capacidade de interrupção necessária for instalado a montante. Nesse caso, as características dos dois dispositivos devem ser coordenadas de tal forma que a energia que deixar passar os dispositivos a montante, não seja superior a que podem suportar sem danos, o dispositivo situado a jusante e as linhas protegidas por esse dispositivo:

Nota - Em certos casos, deve-se necessário considerar outras características, tais como; os esforços dinâmicos e a energia de arco, para os dispositivos situados a jusante. Os detalhes das características que necessitem de coordenação devem ser obtidos com os fabricantes desses dispositivos.

 b) a integral de Joule que o dispositivo deixa passar deve ser inferior ou igual à integral de Joule necessária para aquecer o condutor desde a temperatura máxima para serviço contínuo até a temperatura limite de curto-circuito, o que pode ser indicado pela seguinte expressão:

 $\sum I^2 dt \le k^2 S^2$ onde:

∑l² dt é a integral de Joule que o dispositivo de proteção deixa passar, em ampères quadrados-segundo: k^2 S² é a integral de Joule para aquecimento do condutor desde a temperatura máxima para serviço contínuo até a temperatura de curto-circuito, admitindo aquecimento adiabático, sendo:

k igual a:

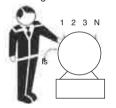
- 115 para condutores de cobre com isolação de PVC:
- 135 para condutores de cobre com isolação de EPR ou XLPE:
- 74 para condutores de alumínio com isolação de PVC
- 87 para condutores de alumínio com isolação de EPR ou XLPE;
- 115 para as emendas soldadas a estanho nos condutores de cobre, correspondendo a uma temperatura de 160°C;
- S é a secção do condutor em milímetros quadrados

Notas

- 1) Para curtos-circuitos de qualquer duração, onde a assimetria da corrente não for significativa, e para curtos-circuitos assimétricos de duração 0,1 s \leq t \leq 5 s, pode-se escrever: I^2 . t \leq k^2 S^2 , onde I é a corrente de curto-circuito presumida simétrica, em ampères; t é a duração, em segundos.
- Outros valores de k, para os casos mencionados abaixo, ainda não estão normalizados:
- condutores de pequena secção (principalmente para secções inferiores a 10 mm²);
- outros tipos de emendas nos condutores;
- condutores nus:
- condutores blindados com isolante mineral.
- A corrente nominal do dispositivo de proteção contra curtos-circuitos pode ser superior à capacidade de condução de corrente dos condutores do circuito.

12 Proteção contra choques elétricos

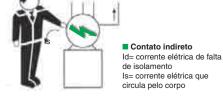
Quando o corpo humano for percorrido por uma corrente que exceda a 30 mA, a pessoa corre sério risco de morte, se esta corrente não for interrompida em um tempo muito curto. O nível de risco da vítima é em função da amplitude desta corrente, das partes do corpo atravessadas por ela e da duração da passadem da corrente.


A norma IEC 479-1 classifica os tipos de choques perigosos.

As normas e regulamentos distinguem dois tipos de contatos perigosos:

- contato direto
- contato indireto

Isolação básica


Um contato direto se refere ao contato de uma pessoa com um condutor que normalmente está energizado.

■ Contato direto Is= corrente elétrica que circula pelo corpo

Isolação suplementar

Um contato indireto se refere a uma pessoa que entra em contato com uma parte condutora que normalmente não está energizada, mas que se torna energizada acidentalmente (devido a uma falha de isolação ou alguma outra causa).

Proteção contra contatos diretos

Duas medidas complementares são normalmente usadas como prevenção contra os riscos de acidentes por contatos diretos:

- prevenção física de contato com as partes vivas por barreiras, isolação, afastamento tornando inacessível etc...
 - proteção adicional. Esta proteção é baseada em relés rápidos e de alta sensibilidade, operados por corrente residual, os quais são altamente eficientes na majoria dos casos de contatos diretos.

Proteção diferencial

Princípios de funcionamento:

Atualmente os disjuntores diferenciais são reconhecidos mundialmente como um meio eficaz para garantir a proteção das pessoas contra os choques elétricos de baixa tensão, como conseqüência de um contato direto ou indireto com os condutores. Estes dispositivos são constituídos por vários elementos: o sensor, o relé de medida e disparo e o dispositivo de seccionamento. No caso do sensor é usual o emprego de transformador toroidal. Os relés de medida e disparo são classificados em três categorias tanto seguindo seu modo de alimentação como em sua tecnologia:

"Auto-alimentando a própria corrente"

Considerado como o método mais seguro, trata-se de um componente onde a corrente de defeito gera a alimentação para a atuação do relé. Nesta categoria encontra-se toda a gama bloco Vigi / ID Multi 9 da Schneider Electric.

"Com alimentação auxiliar"

É um dispositivo que necessita de uma alimentação auxiliar externa além da corrente do sensor. Neste, incluem os relés diferenciais **Vigirex** com toróide externo.

"Auto-alimentando a própria tensão"

É um dispositivo com alimentação auxiliar, mas onde a fonte é o circuito controlado. Deste modo, quando o circuito está sob tensão, o diferencial está alimentado, e com ausência de tensão, o equipamento não está ativo e com pouco perigo. É o caso dos blocos Vigi associados aos disjuntores Compact NS da Schneider Electric.

A nova tecnologia "Superimunizada"

A tecnologia superimunizada para os dispositivos auto-alimentados melhora completamente a qualidade da resposta dos disjuntores diferenciais tradicionais.

Classe AC

São os dispositivos padrões e os mais utilizados. A interrupção só é assegurada para correntes alternadas senoidais.

Classe A

Diferenciam-se dos AC por utilizarem em toróide melhorado, mais energéticos. Incluem um bloco eletrônico de detecção dos componentes (correntes retificadas ou pulsantes)

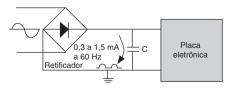
Classe AC superimunizados

Diferenciam-se da classe AC padrões por possuirem um toróide ainda de maior desempenho e um bloco de filtro eletrônico projetado para os mesmos.

Disparos intempestivos em redes de BT

São fenômenos intermitentes que atuam os diferenciais do tipo padrão (classe AC), instalados em redes com um alto índice de harmônicas e devido às correntes de fuga capacitivas permanentes (alta freqüência), que estas harmônicas produzem em toda a rede.

A atenuação destas correntes de fuga a freqüências superiores a 60 Hz, mas menores que o kHz, faz o ID se comportar melhor que um diferencial classe AC ou A, que são padrões. Em todo caso não é possível evitar 100% que o diferencial dispare intempestivamente devido às correntes de fuga com harmônicas de 3ª ordem (180 Hz) ou 5ª (300 Hz). Todavia são correntes perigosas para as pessoas, de acordo com a norma ABNT NBR NM 61008-2-1.


O perigo de não disparar ou falha do diferencial

A capacidade de disparo do relé de um diferencial padrão é influenciada pela freqüência da corrente de fuga detectada pelo toróide. Aumentando a freqüência da corrente, intensifica o fenômeno do bloqueio ou obstrução/falha do relé do disparo, já que a força magnética criada em alta freqüência varia de sentido com uma rapidez tão alta que o mecanismo de disparo não pode reagir, por causa da sua própria inércia mecânica, permanecendo então fechados os contatos. Desta maneira, o equipamento não pode responder diante de falhas de alta freqüência e falhas simultâneas de correntes que são muito perigosas.

Na gama de produtos super imunizados, temos intercalado um filtro de alta freqüência para evitar que cheguem ao mecanismo de disparo.

- Iluminação fluorescente com partida eletrônica.
- Iluminação fluorescente com variação eletrônica ou dimmers
- Iluminação com receptores eletrônicos, informática e outros

Aplicações da tecnologia superimunizada

Princípio de funcionamento básico de alimentação para a placa eletrônica

14 Esquemas de aterramento

Existem três tipos de aterramento a partir do secundário do transformador em instalações de baixa tensão:

Esquema TN Esquema IT Esquema TT

A primeira letra indica a situação da alimentação em relação à terra: **T** = ponto diretamente aterrado **I** = isolação de todas as partes vivas em relação à terra ou aterramento de um ponto através de uma impedância

A segunda letra indica a situação das massas da instalação elétrica em relação à terra:

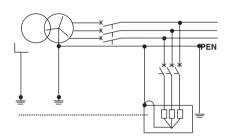
T = massas diretamente aterradas

independentemente do aterramento eventual de um ponto de alimentação.

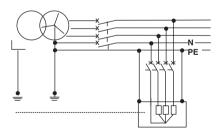
N = massas ligadas diretamente ao ponto de alimentação aterrado (em corrente alternada, o ponto aterrado é normalmente o ponto neutro).

o ponto neutro).

- outras letras (eventuais) - disposição do condutor neutro e do condutor de proteção. S = funções de neutro e de proteção asseguradas por condutores distintos C = Funções de neutro e de proteção combinadas em um condutor (condutor PEN).


Esquema TN

Por motivos técnicos (garantir que o condutor neutro possua seu potêncial em 0) e econômicos (a distribuição deve ser feita com 4 ou 5 condutores), não abordaremos em seus detalhes.


Existem dois esquemas, o TNC, onde o condutor neutro e proteção são um só (condutor PEN) e o TNS, ambos estão separados (condutor PE e N).
Pode-se utilizar em instalações isoladas

Pode-se utilizar em instalações isoladas ou central geradora. A figura mostra os esquemas de aterramento.

■ TNC

■ TNS

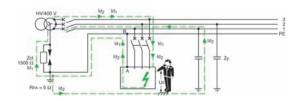
Esquema IT

Neste esquema de aterramento, a instalação é isolada da terra, ou o ponto neutro de sua fonte de alimentação conectado à terra através de uma alta impedância.

Todas partes condutoras, expostas e estranhas, são aterradas através de uma instalação de eletrodo de terra.

Nota: em um esquema IT há a intenção de evitar uma desconexão em uma primeira falta.

Primeira falta


Na ocorrência de uma falta à terra referida como "primeira falta", a corrente de falta é muito pequena obedecendo à relação Id x RA <= 50 V e não ocorrerá tensão de toque perigosa.

Na prática, a corrente Id é pequena, uma condição que não é perigosa às pessoas nem às instalações.

Entretanto, neste esquema:

- Uma supervisão permanente da condição da isolação à terra precisa ser empregada, junto com um sinal de alarme (áudio e/ou luzes piscantes, etc.) na ocorrência de uma primeira falta à terra.
- A localização rápida e o reparo de uma primeira falta é imperativa se todos os benefícios de um sistema IT tiverem que ser aproveitados. A continuidade do serviço é a grande vantagem oferecida pelo esquema.

IT

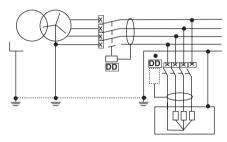
Percursos de uma corrente de falta para uma primeira falta em uma instalação IT.

Para uma malha formada por 1 km de condutores, a impedância de fuga (capacitiva) para terra ZF é da ordem de 3.500 ohms por fase. Em condições normais (sem defeito): U_o = 230 = 66 mA 7F 3 500

Durante uma falta fase à terra, a corrente que passa pela resistência do eletrodo RnA é o vetor soma das correntes capacitivas das duas fases sem defeito têm (por causa da falta) a tensão aumentada 3 vezes a tensão normal de fase, de modo que as correntes capacitivas aumentam na mesma proporção. Estas correntes são deslocadas uma da outra de 60 graus de modo que quando são somadas vetorialmente tem-se 3x66 mA = 198 mA, isto é Id2 no presente exemplo. A tensão de toque Vc é em conseqüência 198x5x10-3 = 0,99 [V] valor evidentemente sem risco.

A corrente no curto-circuito é dada pelo vetor soma da corrente pelo resistor do neutro Id1 (=153 mA) e com a corrente capacitiva (Id2). Desde que as partes condutivas expostas da instalação estejam ligadas à terra diretamente. A impedância do neutro Zct não se considera praticamente como na produção das tensões de toque para terra.

A situação de um segunda falta

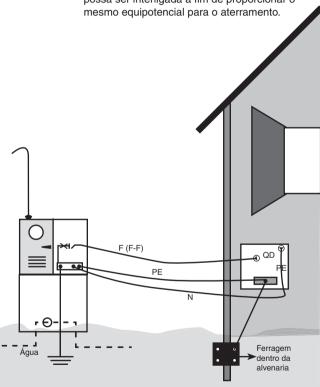

Quando aparece uma segunda falta permanecendo ainda a primeira - ela pode adquirir valores de corrente elevados. Ocorrendo a primeira falha devemos disparar o alarme e, em seguida localizar e reparar a falha

Deve-se monitorar continuamente a instalação por controle permanente de isolamento (DSI).

Esquema TT

Este sistema de aterramento é mais utilizado em redes públicas e privadas de baixa tensão.

A figura seguinte mostra o esquema da instalação.



O esquema TT possui um ponto de alimentação diretamente aterrado. As cargas da instalação devem estar interconectadas e colocadas na terra em um só ponto eletricamente distinto do eletrodo de aterramento da alimentação. O dispositivo diferencial instalado no início da instalação (pode existir outro dispostivo diferencial em outro ponto do mesmo), provocará a abertura do circuito em caso de um contato direto.

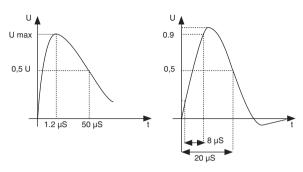
Na ocorrência de uma falha da isolação, teremos a possibilidade de um contato indireto que provocará a atuação da proteção diferencial. É essencial que a instalação tenha um aterramento com resistência muito baixa. A forma mais simples de se obter um bom aterramento é a utilização de várias hastes de aterramento.

Esquema TT (cont.)

Recomendamos que os condutores de aterramento sejam conectados na estrutura de ferragens da construção, caso possua outras pontas metálicas, como tubulações (água, esgoto ou outra qualquer), ferragens estruturais em qualquer outra parte que possa ser interligada a fim de proporcionar o mesmo equipotencial para o aterramento.

Correntes permanentes de fuga para terra

Toda instalação de BT tem uma corrente de fuga permanente para terra, a qual é devida principalmente à isolação não perfeita e à corrente capacitiva intrínseca entre os condutores vivos e a terra.


Quanto maior for a instalação menor será a resistência da isolação e maior será sua capacitância sendo em conseqüência maior a corrente de fuga.

Em sistemas trifásicos, a corrente capacitiva de fuga para terra será nula se os condutores de todas as três fases tiverem igual capacitância para terra, condição que não é conseguida em instalações práticas. A corrente capacitiva para terra é, muitas vezes, aumentada pela presença de capacitores de filtros associados com circuitos eletrônicos (automação, informática e sistemas baseados em computadores etc).

Influência de sobretensões

Os sistemas de força são submetidos a sobretensões de várias origens: atmosféricas ou devida as variações bruscas das condições de operação (faltas, operação de fusíveis, chaveamentos etc). Estas variações bruscas freqüentemente causam tensões e correntes transitórias elevadas nos circuitos indutivos e estável seja atingida.

Registros feitos mostram que nos sistemas em BT, as sobretensões permanecem geralmente abaixo de 6 kV e que elas podem ser representadas adequadamente por impulsos convencionais da forma 1,2/50 µs.

Estas sobretensões dão origem a correntes transitórias representadas por correntes de impulso convencionais tipo 8/20 µs com valor de pico de várias dezenas de ampères. As correntes transitórias fluem para terra através de uma falha da isolação ou da capacitância dos pára-raios.

Compatibilidade eletromagnética

Os transitórios de tensão e de corrente (ou impulsos unidirecionais) de alta freqüência mencionados acima, junto com outras fontes de pertubações eletromagnéticas (bobinas de contatores, relés, contatos secos), descargas eletrostáticas e radiações eletromagnéticas (rádio, sistemas de ignição etc) são parte do importante campo da CEM (compatibilidade eletromagnética, ou EMC em inglês).

É essencial que os SDCDs (Sistema Digital de Controle Distribuído) sejam imunes a possíveis maus funcionamentos devidos às perturbações eletromagnéticas.

Proteção contra descargas atmosféricas

Cerca de 100 milhões de raios caem todos os anos no Brasil, sendo hoje o país com major incidência de rajos em todo o mundo, causando enormes preiuízos aos equipamentos e aparelhos eletroeletrônicos. Apesar da proteção dos pára-raios, a queda de um raio produz um campo eletromagnético que se irradia por toda região como uma descarga indireta de energia, principalmente pelas redes elétricas e de telecomunicações. Ao atingir a rede de distribuição de energia elétrica de uma cidade, essa descarga indireta acaba provocando um aumento momentâneo de tensão, ou sobretensão transitória, que pode causar danos irreparáveis em aparelhos eletro-eletrônicos.

Um outro tipo de sobretensão transitória é a sobretensão de manobra. Manobras como a ligação e o desligamento de motores, transformadores, capacitores etc, correspondem à uma modificação brusca no estado da rede. Estas afetam mais as instalações industriais.

O DPS (Dispositivo de Proteção contra Surtos) oferece uma solução completa e de alta performance contra sobretensões conduzidas pelas linhas de energia elétrica, protegendo com total segurança os equipamentos eletro-eletrônicos.

O DPS é altamente recomendado em todas as instalações elétricas. Pode ser instalado nos esquemas de circuitos elétricos com sistemas de aterramento TN-C, TN-S, TN-C-S e TT, em conformidade com a norma ABNT NBR 5410.

Proteção contra descargas atmosféricas (cont.)

As sobretensões transitórias de origem atmosférica, a que uma instalação elétrica BT está sujeita, podem se manifestar de três formas:

■ Por condução:

É o caso das sobretensões que chegam à instalação pela linha externa que a alimenta e cuja origem são as descargas diretas ou indiretas sobre a rede de distribuição. As descargas indiretas, ou seja, as sobretensões geradas pelo efeito da indução eletromagnética, serão tanto maiores quanto mais próxima for a queda do raio.

■ Por indução ou radiação eletromagnética sobre a própria instalação:

São as sobretensões induzidas por "efeito de laço". É um problema que afeta principalmente as instalações mais complexas, sendo suavizado ou mesmo evitado com um roteamento correto dos cabos.

■ Por elevação de potencial do aterramento (terra local):

Quando o raio atinge uma edificação ou ao seu redor, o escoamento de uma corrente impulsiva pode elevar o potencial do terra local em milhares de volts, o que representa uma ameaça para o isolamento das instalações elétricas internas.

Para proteger a instalação de uma descarga direta, devemos utilizar o DPS Classe I. Esse tipo de descarga ocorre, por exemplo. quando o raio atinge uma edificação protegida por um pára-raio ou uma gaiola de Faraday (SPDA), Neste caso, o DPS deve ser instalado no ponto de entrada da instalação. Após eliminar a descarga direta. o DPS transforma a onda em uma onda curta e induzida. Esta chega à instalação através da rede (condutor de proteção) que a alimenta e só pode ser eliminada por um DPS classe II. que faz uma proteção mais fina. Este deve ser instalado nos quadros de distribuição secundários, desde que esteia localizado o mais próximo possível do equipamento a ser protegido.

Além destes, temos os DPSs destinados à proteção dos equipamentos sensíveis como redes telefônicas analógicas, numéricas, automatismos e redes de informática.

	Proteção básica	Proteção médi	a/alta
	Áreas urbanas Áreas suburbanas	Regiões montanhosas	Continuidade de serviço
	Condomínios Alimentação	Áreas úmidas Áreas críticas	Equipamentos sensíveis
	subterrânea	Alimentação aérea	Alto custo de equipamento
Quadro Geral (QGBT)	40 kA	65 kA	
Quadro de distribuição (QD)	20 kA	40 kA	

Sistema Multi 9 Proteção de circuitos Disjuntores K32a e K60

referências: ver páginas 1/65 a 1/67

Os K32a e K60 são disjuntores modulares utilizados para comando e proteção de circuitos contra sobrecargas e curtoscircuitos para instalação em quadros de distribuição:

- número de pólos: 1 a 3 pólos,
- acalibres: 6 a 63 A.
- curvas de disparo: B e C,
- K60: disjuntor altamente limitador, classe 3, conforme anexo ZA da ABNT NBR NM 60898. A limitação é uma técnica que permite ao disjuntor reduzir fortemente a corrente de curto-circuito, limitando a energia que o disjuntor deixa passar para o cabo
- acessórios: pente de conexão e dispositivo de travamento
- capacidade de interrupção:
- ☐ segundo a norma ABNT NBR NM 60898:
 - ☐ K32a: Icn = 3000 A e Ics = 3000 A
 - ☐ K60: Icn = 4500 A e Ics = 4500 A

segundo ABNT NBR IEC 60947-2-Icu:

corrente	nº de	tensão	capacid	lade de
nominal	pólos	(Vca)	interrup	ção (A)
(A)			K32a	K60
6 a 63	1P	110/127	6000	10000
	1P	220/230	4500	5000
	2P-3P	220/230	6000	10000
	2P-3P	415	4500	5000

Proteção contra choques e incêndios Interruptores diferenciais ID (RCCB) classe AC Multi 9

referências: ver página 1/68 Os interruptores diferenciais, também conhecidos por DR, asseguram o comando e o seccionamento dos circuitos elétricos, assim como:

- a proteção das pessoas contra os contatos diretos e indiretos (proteção contra choques elétricos 30 mA)
- a proteção das instalações contra os defeitos de isolamento (proteção contra incêndios 300 mA)
- ☐ segundo a norma internacional ABNT NBR NM 61008-2-1
- ☐ corrente nominal: 25, 40, 63, 80, 100 e 125 A

Classe AC: os interruptores diferenciais desta classe asseguram o desligamento para as correntes diferenciais residuais alternadas senoidais, quer sejam repentinamente aplicadas ou variando progressivamente.

ID instantâneo: interrompe um circuito manual, ou automaticamente, em caso de defeito de isolamento entre um condutor ativo e a terra, superior ou igual a 30 ou 300 mA.

ID seletivo: permite obter seletividade vertical e total com os dispositivos diferenciais instantâneos 30 mA colocados a jusante.

Classe AC SiE: reforça a continuidade de serviço em redes distorcidas com o alto risco de disparos intempestivos. É apropriado para uso em ambientes úmidos e/ou poluídos com agentes agressivos.

Proteção de circuitos

Disjuntores C60N/H/L Multi 9

referências: ver páginas 1/69 a 1/74 Os disjuntores C60N/H/L são modulares e utilizados para comando e proteção dos circuitos contra sobrecargas e curtoscircuitos para instalação em quadros de distribuição:

- número de pólos: 1 a 4 pólos,
- acalibres: 0,5 a 63 A,
- curvas de disparo: B, C e D
- funções auxiliares adaptáveis:
- □ bobina de abertura
- MX + OF, bobina de mínima tensão MN, contato auxiliar OF, sinalização de defeito - SD.
- capacidade de interrupção:

segundo ABNT NBR NM 60898-Icn:

calibre	tipo	tensão	capacidade de interrupção (A)	
(A)		(Vca)	C60N	C60H
0,5 a 63	1P	220	6000	10000
	2 a 4P	400	6000	10000

☐ segundo ABNT NBR IEC 60947-2-lcu:

tipo	tensão	capacidade de interrupção (A)				
	(Vca)	C60N	C60H	C60L		
		(0,5 a 63 A)	(1 a 63 A)	(1 a 25 A)	(32 a 40 l	A) (50 a 63 A)
1P	220/240	10000	15000	25000	20000	15000
1P ⁽¹⁾	400/415			6000	5000	4000
2 a 4P	220/240	20000	30000	50000	40000	30000
2 a 4P	400/415	10000	15000	25000	20000	15000
2 a 4P	440	6000	10000	20000	15000	10000

⁽¹⁾ capacidade de interrupção para 1 pólo em esquema IT.

curvas de disparo:

- ☐ curva B: o disparo magnético atua entre 3 e 5 ln a 30°C,
- ☐ curva C: o disparo magnético atua entre 5 e 10 ln a 30°C,
- ☐ curva D: o disparo magnético atua entre 10 e 14 ln a 40°C.

Proteção contra choques e incêndios Blocos diferenciais Vigi C60 Multi 9

referências: ver página 1/75 O Vigi C60 é um bloco diferencial modular que, acoplado a um disjuntor C60, confere proteção contra choques elétricos (30 mA) ou contra incêndios (300 mA).

- segundo a norma internacional IEC 61009-1 (disjuntor + bloco diferencial),
- calibres: 25 e 63 A

Classe AC: o bloco diferencial Vigi C60 assegura o desligamento para as correntes diferenciais residuais alternadas senoidais, quer sejam repentinamente aplicadas ou variando progressivamente.

Vigi C60 instantâneo: interrompe um circuito, manual ou automaticamente, em caso de defeito de isolamento entre um condutor ativo e a terra, superior ou igual a 30. 300 mA ou 1 A.

Vigi C60 seletivo: permite obter seletividade vertical e total com os dispositivos diferenciais instantâneos colocados a jusante: 300 mA S com 30 mA; 1 A S com 30 e 300 mA.

Proteção de circuitos Disjuntores C120N/H Multi 9

referências: ver páginas 1/76 e 1/77 O C120N/H é um disjuntor modular utilizado para comando e proteção dos circuitos contra sobrecargas e curtos-circuitos para instalação em quadros de distribuição:

- número de pólos: 1 a 4 pólos,
- alibres: 10 a 125 A.
- curvas de disparo: C e D
- funções auxiliares adaptáveis:
- □ bobina de abertura MX + OF, bobina de mínima tensão MN, contato auxiliar OF, sinalização de defeito SD.
- capacidade de interrupção (A):
- □ segundo ABNT NBR NM 60898 Icn:

tipo	tensão	capacidade de interrupção (A)	
	(Vca)	C120N	C120H
1, 2, 3, 4P	230400	10000	15000

☐ segundo ABNT NBR IEC 60947-2 Icu:

9			
tipo	tensão	capacidade de interrupção (A)	
	(Vca)	C120N	C120H
1P	130	20000	30000
	230240	10000	15000
	400415	3000	4500 (1)
2, 3, 4P	230240	20000	30000
	400415	10000	15000
	440	6000	10000

⁽¹⁾ capacidade de interrupção para 1 pólo em esquema IT.

Proteção contra choques e incêndios Blocos diferenciais Vigi C120 Multi 9

referências: ver página 1/78 O Vigi C120 é um bloco diferencial modular que, acoplado a um disjuntor C120, confere proteção contra choques elétricos (30 mA) ou contra incêndios (300 mA).

segundo a norma internacional

IEC 61009-1 (disjuntor + bloco diferencial),

calibre: 125 A

Classe AC: o bloco diferencial Vigi C120 assegura o desligamento para as correntes diferenciais residuais alternadas senoidais, quer sejam repentinamente aplicadas ou variando progressivamente.

Vigi C120 instantâneo: interrompe um circuito, manual ou automaticamente, em caso de defeito de isolamento entre um condutor ativo e a terra, superior ou igual a 30. 300 mA ou 1A.

Vigi C120 seletivo: permite obter seletividade vertical e total com os dispositivos diferenciais instantâneos colocados a jusante: 300 mA S com 30 mA; 1 A S com 30 e 300 mA.

Proteção de circuitos Disjuntores DPN Multi 9

O DPN é um disjuntor modular utilizado para comando e proteção dos circuitos contra sobrecargas e curtos-circuitos de circuitos Fase + Neutro, para instalação em quadros de distribuição:

referências: ver página 1/81

- número de pólos: 1P + N e 3P + N.
- tensão nominal Ue: 400 Vca
- calibres: 6 a 40 A.
- curvas de disparo: B e C,
- capacidade de interrupção:

□ segundo ABNT NBR NM 60898 Icn:

calibre	tipo	capacidade de interrupção (A)
(A)		
1 a 40	1P+N	4500
	3P+N	6000

☐ segundo ABNT NBR IEC 60947-2 Icu:

calibre	tipo	capacidade de
		interrupção (A)
(A)		
1 a 40	1P+N	6000
	3P+N	10000

Proteção de circuitos + proteção contra choques

Disjuntores diferenciais DPN Vigi Multi 9

O DPN Vigi é um disjuntor modular monobloco, que confere a proteção dos circuitos monofásicos contra as sobrecargas e os curtos-circuitos, além da proteção contra choques elétricos (30 mA) e patrimônios (300 mA), para instalação em quadros de distribuição:

referências: ver página 1/81

- número de pólos: 1P + N e 3P + N
- tensão nominal Ue: 400 Vca
- calibres: 10 a 40 A
- curvas de disparo: C

Classe AC: os dispositivos de proteção diferencial desta classe asseguram o desligamento para as correntes diferenciais residuais alternadas senoidais, quer sejam repentinamente aplicadas ou variando progressivamente.

DPN Vigi instantâneo: interrompe um circuito, manual ou automaticamente, em caso de defeito de isolamento entre um condutor ativo e a terra, superior ou igual a 30 mA.

capacidade de interrupção:

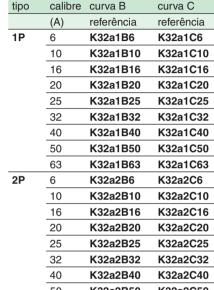
☐ segundo ABNT NBR NM 60898 lcn:

calibre	tipo	capacidade de interrupção (A)
		interrupção (A)
(A)		
10 a 25	1P+N	4500
25 e 40	3P+N	6000

Proteção contra surtos

Dispositivos de proteção contra surtos - DPS Multi 9

A família de dispositivos de proteção contra surtos é composta de dispositivos fixos ou plug-in, unipolares e multipolares. A avaliação dos riscos próprios de cada instalação é essencial para proteger eficazmente o equipamento elétrico e assegurar a continuidade de serviço.


- freqüência: 50/60 Hz
- número de pólos: 1P. 1P+N. 3P. 3P+N
- Classe I:
- □ limp: 35 kA 50 kA 100 kA
- ☐ Uc: 260 V 440 V
- Classe II:
- ☐ Imáx.: 65 kA 40 kA 20 kA
- □ Uc: 440 V 275 V
- Classe III:
- □ Imáx.: 8 kA
- ☐ Uc : 440 V 275 V
- sinalização de funcionamento por sinalizador luminoso mecânico no frontal do dispositivo
- tempo de resposta: ≤ 25 ns
- segundo norma ABNT NBR IEC 61643-1: dispositivo de proteção contra os surtos conectados às redes de distribuição
- grau de proteção:
- □ IP20 nos terminais
- ☐ IP40 na face frontal

Disjuntores K32a Multi 9 curvas B e C

3000

32	K32a2B32	K32a2C32
40	K32a2B40	K32a2C40
50	K32a2B50	K32a2C50
63	K32a2B63	K32a2C63
6	K32a3B6	K32a3C6
10	K32a3B10	K32a3C10
16	K32a3B16	K32a3C16
20	K32a3B20	K32a3C20
25	K32a3B25	K32a3C25
32	K32a3B32	K32a3C32
40	K32a3B40	K32a3C40
50	K32a3B50	K32a3C50
63	K32a3B63	K32a3C63

Disjuntores K60 Multi 9 curvas B e C

4500

Icn - 4500 A - A	Icn - 4500 A - ABNT NBR NM 60898				
Icu - 5 kA/10 k	A - ABNT NBR IE	C 60947-2			
1 pólo	referência	referência			
<u>In (A)</u>	curva B	curva C			
6	11160	11172			
10	21194	21166			
16	21195	21167			
20	21196	21168			
25	21197	21169			
32	21198	21170			
40	21199	21171			
50	-	21172			
63	-	21173			

2 pólos	referência	referência
In (A)	curva B	curva C
6	11161	11173
10	21262	21174
16	21263	21175
20	21264	21176
25	21265	21177
32	21311	21178
40	21312	21179
50	21313	21184
63	21314	21185

Disjuntores K60 Multi 9 curvas B e C

4500

	Icn - 4500 A - ABNT NBR NM 60898				
	Icu - 5 kA/10 kA - /	ABNT NBR IEC	60947-2		
	3 pólos	referência	referência		
	In (A)	curva B	curva C		
	6	-	11174		
ř	10	21315	21186		
b	16	21316	21187		
	20	21317	21188		
	25	21318	21189		
	32	21319	21190		
	40	21515	21191		
	50	21516	21192		
	63	21517	21193		

Interruptores diferenciais ID (RCCB) Multi 9 classe AC

ipo	calibre (A)	sensibi- lidade (mA)	Classe AC	Classe AC SiE	
2P	25	30	16201	60949	23354
		300	16202	60951	23356
	40	30	16204	60952	23358
		300	16206	-	23360
		300 🗉	-	60954	-
	63	30	16208	60955	23362
		300	16210	60957	23364
		300 🗉	23028	-	-
	80	30	16212	-	-
		300	16214	60958	-
		300 ছ	23032	-	23272
	100	300	23034	60959	-
		300 ছ	23035	-	23279
	125	30	16966	-	16970
		300	16967	-	16971
ŀΡ	25	30 🗉	16251	60989	23378
		300	16252	60991	23380
	40	30	16254	60992	23382
		300	16256	60994	23384
		300 🗉	23062	-	-
	63	30	16258	60995	23386

100	300	23034	60959	-
	300 🗉	23035	-	23279
125	30	16966	-	16970
	300	16967	-	16971
25	30 ছ	16251	60989	23378
	300	16252	60991	23380
40	30	16254	60992	23382
	300	16256	60994	23384
	300 ছ	23062	-	-
63	30	16258	60995	23386
	300	16260	60997	23388
	300 🗉	16265	-	-
80	30	16261	-	16909
	300	16263	60998	23326
	300 ছ	16266	-	23284
100	30	16900	-	16910
	300	23056	60999	16911
	300 🗉	23059	-	23294
125	30	16905	-	16924
	300	16907	-	16926
	300 🗉	-	-	16925

Disjuntores C60N Multi 9 curvas B, C e D

6000

Icn - 6000 A - ABNT NBR NM 60898 Icu - 10 kA - ABNT NBR IEC 60947-2

1 pólo			
In	referênci	a	
(A)	curva B	curva C	curva D
0,5		24067	
1	24045	24395	24625
2	24046	24396	24626
3	24047	24397	24627
4	24048	24398	24628
6	24049	24399	24629
10	24050	24401	24630
16	24051	24403	24632
20	24052	24404	24633
25	24053	24405	24634
32	24054	24406	24635
40	24055	24407	24636
50	24056	24408	24637
63	24057	24409	24638

2 pólos			
In	referência	a	
(A)	curva B	curva C	curva D
0,5		24068	
1	24071	24331	24653
2	24072	24332	24654
3	24073	24333	24655
4	24074	24334	24656
6	24075	24335	24657
10	24076	24336	24658
16	24077	24337	24660
20	24078	24338	24661
25	24079	24339	24662
32	24080	24340	24663
40	24081	24341	24664
50	24082	24342	24665
63	24083	24343	24666

Disjuntores C60N Multi 9 curvas B, C e D

6000

Icn - 6000 A - ABNT NBR NM 60898 Icu - 10 kA - ABNT NBR IEC 60947-2

J		ø		
1	19			3
٦	UΨ	Œ.	Œ	ľ

3 pólos			
In	referênci	a	
(A)	curva B	curva C	curva D
0,5		24069	
1	24084	24344	24667
2	24085	24345	24668
3	24086	24346	24669
4	24087	24347	24670
6	24088	24348	24671
10	24089	24349	24672
16	24090	24350	24674
20	24091	24351	24675
25	24092	24352	24676
32	24093	24353	24677
40	24094	24354	24678
50	24095	24355	24679
63	24096	24356	24680

4 pólos			
In	referênci	a	
(A)	curva B	curva C	curva D
0,5		24070	
1	24097	24357	24681
2	24098	24358	24682
3	24099	24359	24683
4	24100	24360	24684
6	24101	24361	24685
10	24102	24362	24686
16	24103	24363	24688
20	24104	24364	24689
25	24105	24365	24690
32	24106	24366	24691
40	24107	24367	24692
50	24108	24368	24693
63	24109	24369	24694
Nota: Var a capacidado do interrupção máxima em			

Disjuntores C60H Multi 9 curvas B, C e D

10000

Icn - 10000 A - ABNT NBR NM 60898 Icu - 15 kA - ABNT NBR IEC 60947-2

20
1.91
No.
137
.85.

i polo			
In	referência	a	
(A)	curva B	curva C	curva D
1		24968	25152
2		24969	25155
<u>2</u> 3		24970	25157
4		24971	25158
6	24643	24972	25159
10	24644	24973	25160
16	24646	24974	25161
20	24647	24975	25164
25	24648	24976	25165
32	24649	24977	25166
40	24650	24978	25167
50	24651	24979	25168
63	24652	24980	25169

2 pólos			
In	referênci	a	
(A)	curva B	curva C	curva D
1		24981	25183
2		24982	25184
3		24983	25185
4		24984	25186
6	24725	24985	25187
10	24726	24986	25188
16	24727	24987	25189
20	24728	24988	25190
25	24729	24989	25191
32	24730	24990	25192
40	24731	24991	25193
50	24732	24992	25194
63	24733	24993	25195

Disjuntores C60H Multi 9 curvas B, C e D

10000

Icn - 10000 A - ABNT NBR NM 60898 Icu - 15 kA - ABNT NBR IEC 60947-2

3 pólos			
In	referênci	a	
(A)	curva B	curva C	curva D
1		24994	25196
2		24995	25197
3		24996	25198
4		24997	25199
6	24738	24998	25200
10	24739	24999	25201
16	24740	25000	25202
20	24741	25001	25203
25	24742	25002	25205
32	24743	25003	25207
40	24744	25004	25208
50	24745	25005	25209
63	24746	25006	25210

4 pólos			
In	referência	a	
(A)	curva B	curva C	curva D
1		25007	25211
2		25008	25212
3		25009	25213
4		25010	25214
6	24751	25011	25215
10	24752	25012	25216
16	24753	25013	25217
20	24754	25014	25218
25	24755	25015	25219
32	24756	25016	25220
40	24757	25017	25221
50	24758	25018	25222
63	24759	25019	25223

Disjuntores C60L Multi 9 curvas C

tipo	C60L
1 pólo	
In	referência
(A)	curva C
	25392
1 2 3 4	25393
3	25394
4	25395
6	25396
10	25397
16	25398
20	25399
25	25400
32	25401
40	25402
50	25403
63	25404

2 pólos	
In	referência
(A)	curva C
1	25418
2	25419
3	25420
1 2 3 4	25421
6	25422
10	25423
16	25424
20	25425
25	25426
32	25427
40	25428
50	25429
63	25430

Disjuntores C60L Multi 9 curvas C

tipo	C60L
3 pólos	
In	referência
(A)	curva C
1	25431
2	25432
2 3	25433
4	25434
6	25435
10	25436
16	25437
20	25438
25	25439
32	25440
40	25441
50	25442
63	25443

4 pólos	
In	referência
(A)	curva C
1	-
<u>2</u> 3	-
3	-
4	-
6	-
10	25449
16	25450
20	25451
25	25452
32	25453
40	25454
50	25455
63	25456

Blocos Diferenciais Vigi C60 Multi 9

IEC	IEC 61009-1					
2 pc	2 pólos (220/415 Vca)					
In	largura	sensibilidade	referência			
(A)	múltiplo 9 mm	(mA)				
25	3	30	26581			
	3	300	26583			
63	4	30	26611			
	4	300	26613			
	4	300 S	26552			
	4	1 A S	26554			

3 pólos (220/415 Vca)				
	In	largura	sensibilidade	referência
	(A)	múltiplo 9 mm	(mA)	
	25	6	30	26588
ŀ		6	300	26590
	63	7	30	26620
		7	300	26622
		7	300 S	26561
		7	1 A S	26563

4 pc	4 pólos (220/415 Vca)				
In	largura	sensibilidade	referência		
(A)	múltiplo 9 mm	(mA)			
25	6	30	26595		
	6	300	26597		
63	7	30	26643		
	7	300	26645		
	7	300 S	26570		
	7	1 A S	26572		

Nota: Ver características na página 1/59

Disjuntores C120N/H Multi 9 10000 | 3 |

2 nálas

tipo	C120N		C120H
1 pólo			
In	referência		
(A)	curva C	curva D	curva C
10	-	-	18438
16	-	-	18439
20	-	-	18440
25	-	-	18441
32	-	-	18442
40	-	-	18443
50	-	-	18444
63	-	-	18445
80	18357	-	18446
100	18358	-	18447
125	18359	-	18448

2 poios			
In	referência		_
(A)	curva C	curva D	curva C
10	-	-	18449
16	-	-	18450
20	-	-	18451
25	-	-	18452
32	-	-	18453
40	-	-	18454
50	-	-	18455
63	-	-	18456
80	18361	18383	18457
100	18362	18384	18458
125	18363	18385	18459

Disjuntores C120N/H Multi 9 10000

curvas C e D			3
	tipo	C120N	C120H

3 pólos			
In	referência		
(A)	curva C	curva D	curva C
10	-	-	18460
16	-	-	18461
20	-	-	18462
25	-	-	18463
32	-	-	18464
40	-	-	18465
50	-	-	18466
63	-	-	18467
80	18365	18387	18468
100	18367	18388	18469
125	18369	18389	18470

4 pólos			
In	referência		
(A)	curva C	curva D	curva C
10	-	-	18471
16	-	-	18472
20	-	-	18473
25	-	-	18474
32	-	-	18475
40	-	-	18476
50	-	-	18477
63	-	-	18478
80	18372	18391	18479
100	18374	18392	18480
125	18376	18393	18481

Blocos Diferenciais Vigi C120 Multi 9

IEC 61009-1	IEC 61009-1				
2 pólos (220/415 Vca)					
In largura	sensibilidade	referência			
(A) múltiplo 9 mm	(mA)				
125 7	30	18563			
7	300	18564			
7	300 S	18544			
7	1 A S	18545			

3 pc	3 pólos (220/415 Vca)				
ln	largura	sensibilidade	referência		
(A)	múltiplo 9 mm	(mA)			
125	10	30	18566		
	10	300	18567		
	10	300 S	18546		
	10	1 A S	18547		

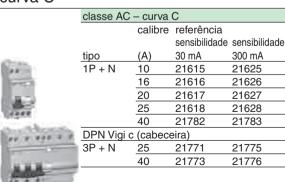
4 pól	4 pólos (220/415 Vca)			
In	largura	sensibilidade	referência	
(A)	múltiplo 9 mm	(mA)		
125	10	30	18569	
	10	300	18570	
	10	300 S	18548	
	10	1 A S	18549	

nota: Ver características na página 1/61

Auxiliares elétricos para C60/C120/ID/DPN Multi 9

Klein	Bobina de abertura MX+OF					
500		tensão de	comando		referência	
The same		(V CA)	(V CC)	em passo		
- 3				de 9 mm		
		10041	10013	2	26946	
111.5		5	0			
_		48	48	2	26947	
15km	4 th th th	12/24	12/24	2	26948	
	Bobina de abertura					
* 000	ri Oi	10041	10013	2	26476	
E1	43711	5	0			
3.5		48	48	2	26477	
	C2 C1	12/24	12/24	2	26478	
	Bobina de mínima					
+			comando			
1001		(V CA)	(V CC)	em passo		
10.45				de 9 mm		
10	Seletivo S	220240		2	26963	
NO.EU	Instantâneo	220240		2	26960	
(10)	U <	48	48	2	26961	
243		115 (400	Hz)	2	26959	
ou	Contato de sinaliza	ação de de	efeito SD			
	TIMES GO CHAILE	largura er				
Mary.	passo de 9 mm					
1000		1			26927	
16-00	154 (14)					
1100 ==						
1000						
10,000	Contato auxiliar Ol					
_		1			26924	
=						
No. of the	14 12 11	= C (ID)				
Total Co.	Contato auxiliar OI				26923	
1960		1			20923	
- L						
all parties						
400						

Acessórios mecânicos para C60/C120 Multi 9


Tipo de acessório)		referência
Manopla rotativa subconjunto da ma do disjuntor com e (acoplada ao disju			27046
	manopla fixada na parte frontal (montada na porta)	a	27047
	manopla fixada na parte lateral (montada em painel fixo)	a	27048
Base extraível plug-in (1 pólo) contato de ruptura dupla C60	espaço mínimo do centro 200 mm entre filas		26996
Dispositivo de travamento	K32a / K60 / C60 / ID	/ I	26970
	C120		27145
Protetor de parafusos	C60 e I (40 a 125 A)		26981
	C120		18527
Protetor de bornes	C60 e I (40 a 125 A)	1P 2P 3P 4P	26976 26975+269
	C120	1P	18526
Separador de pólos	C60 / C120		27001
Intercalador	C60 / C120		27062
Porta-etiquetas	C120		27150

Disjuntores DPN Multi 9 curvas B e C

tipo			
	calibre	referência	
	(A)	curva B	curva C
1P + N	1	-	21542
	2	-	21543
	3	-	21544
	6	21535	21545
	10	21536	21546
	16	21537	21547
	20	21538	21548
	25	21539	21549
	32	21540	21550
	40	21541	21551
3P + N	6	-	21595
	10	-	21596
	16	-	21597
	20	-	21598
	25	-	21599
	32	-	21600
	40	-	21601

Disjuntores diferenciais DPN Vigi curva C

Pentes de conexão Multi 9

Pentes pa	Pentes para K32a e K60 (pente branco)						
Monopolar	pente	12	10387				
	pente de 1 m	57	10388				
Bipolar	pente	12	10389				
	pente de 1 m	57	10390				
Tripolar	pente	12	10391				
	pente de 1 m	57	10392				
Pentes para DPN							
1P+N	pente	13	14880				
	cj. 2 pentes	24 (cada)	14890				
3P+N	cj. 2 pentes	24 (cada)	14899				
Pentes pa	ra K32a / K6	0 / C60N/H	l/L e I				
Monopolar	pente	12	14881				
	cj. 2 pentes	24 (cada)	14891				
	pente	54	14801				
Bipolar	pente	12	14882				
	cj. 2 pentes	24 (cada)	14892				
	pente	54	14802				
Tripolar	pente	12	14883				
	cj. 2 pentes	24 (cada)	14893				
	pente	54	14803				
Tetrapolar	pente	12	14884				
	cj. 2 pentes	24 (cada)	14894				
	pente	54	14804				
Pentes pa	ra C120						
Monopolar		16	14811				
Bipolar		16	14812				
Tripolar		16	14813				
Tetrapolar		16	14814				

pólos

referência

Pentes de conexão Multi 9

Características elétricas

Pentes uni, bi, tri e tetrapolares

- Intensidade admissível a 40°:
- Até 80 A com 1 ponto central de alimentação.
- Até 100 A com 2 pontos de alimentação (extremidades).
- Tensão de isolamento: 500 V (pela norma IEC 60664)
- Capacidade de suportar as correntes de curto-circuito, compatível com a capacidade de interrupção dos disjuntores modulares da Schneider Electric.

Acessórios				
		referência		
Cj. de 40 tampas late pentes monopolares	14886			
Cj. de 40 tampas late pentes tripolares	14887			
Cj. de 40 terminais	1P+N, 3P+N	14898		
isolantes p/pentes (40 peças)	1P, 2P, 3P, 4P	14888		
Cj. de 20 terminais	para C120	14818		
isolantes p/pentes (40 peças))			
Cj. de 4 conectores is alimentação p/cabo	14885			

Proteção contra surtos

Dispositivos de proteção contra surtos - DPS Multi 9

Dispositivos de proteção contra surtos DPS - Classe I PRF1/PRF1 Master

O dispositivo de proteção contra surto PRF1 classe 1 protege instalações elétricas contra as descargas diretas.

- PRF1: corrente de impulso limp (10/350 µs) até 35 kA/pólo e 50 kA N/PE
- PRF1 Master: corrente de impulso limp (10/350 µs) até 50 kA/pólo

Tabela de escolha

descrição	Up (kV)	In (kA)	Uc (Vca)	referência
PRF1 1P	≤ 0,9	50	260	16621
PRF1 N/PE 100	≤ 1,5	100	260	16622
PRF1 Master	≤ 1,5	50	440	16630
PRF1 1P+N	≤ 1,5	35/50	440	16625
PRF1 3P+N	≤ 1,5	35/100	440	16628

Para outras configurações, favor consultar nosso Call Center

Dispositivos de proteção contra surtos para rede de sinais

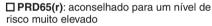
Como escolher os dispositivos de proteção contra surto:

- PRC para redes telefônicas analógicas
- PRI 12...48 V para redes telefônicas numéricas e automatismos
- PRI 6 V para redes informáticas

Tabela de escolha

descrição	Up (V)	Imáx (kA)	Uc (Vca)	referência
PRC série	300	10	220	16593
PRI 1248 V	70	10	53	16595
PRI 6V	15	10	7	16594

Para outras configurações, favor consultar nosso Call Center


Proteção contra surtos

Dispositivos de proteção contra surtos - DPS Multi 9

Dispositivos de proteção contra surtos DPS - Classe II e III PRD - versão plug-in

Os dispositivos de proteção contra surtos PRD plug-in são destinados à proteção dos equipamentos em redes de energia atendendo a todos os esquemas de aterramento. Permitem a substituição rápida dos cartuchos danificados. Os DPS extraíveis com sinalização "r" dispõem sinalização a distância da informação: "cartucho deve ser substituído".

☐ PRD40: aconselhado para um nível de risco elevado

☐ PRD20: aconselhado para um nível de risco baixo

Classe III:

☐ PRD8: assegura uma proteção fina (Classe III) dos receptores a proteger e é colocado em cascata com o DPS de cabeceira. Este DPS é necessário quando os equipamentos a proteger estão a uma distância superior a 30 m do DPS de cabeceira.

descrição	Up (kV)	lmáx (kA)	Uc (Vca)	referência
PRD65r 1P	≤ 1,5	65	340	16556
PRD40 1P	≤ 1,4	40	340	16566
PRD20 1P	≤ 1,1	20	340	16571
PRD8 1P	≤ 1,0	8	340	16576

Para outras configurações, favor consultar nosso Call Center

Telerruptores TL Multi 9

Os Telerruptores (relés de impulso) modulares TL são dispositivos para o comando de circuitos elétricos, principalmente de iluminação. Os seus contatos são comutados através de pulsos elétricos emitidos a partir de um ou mais pontos de comando.

Funções incorporadas ou adicionais permitem a operação através de comandos mantidos e controles centralizados ou locais.

calibres: 16 e 32 A.

Telerruptor inversor TLI: o TLI é unipolar (um contato inversor).

Telerruptor TLc: incorpora o controle centralizado enquanto conserva a possibilidade inicial de ordens de pulso locais.

Telerruptor TLm: incorpora o controle através de uma ordem mantida por um interruptor de duas posições (chave comutadora, interruptor horário, termostato).

Telerruptor TLs: permite indicação remota do seu status de operação.

Auxiliares para telerruptores Multi 9

ATLt - auxiliar para retardo de tempo: automaticamente retorna o telerruptor ao seu estado inicial após um período de tempo ajustável de 1 segundo a 10 horas. A contagem de tempo inicia quando o dispositivo fecha o contato.

ATL4 - auxiliar para controle passo a passo: associado a dois telerruptores, o ATL4 permite operação em cascata e passo a passo por pressões sucessivas no pulsador.

O ciclo é o que segue:

1º pulso: TL1 fechado / TL2 aberto,

2º pulso: TL1 aberto / TL2 fechado,

3º pulso: TL1 e TL2 fechados,

4º pulso: TL1 e TL2 abertos,

 $5^{\underline{o}}$ pulso: TL1 fechado / TL2 aberto, etc.

ATLz - auxiliar para pulsadores luminosos: evita o acionamento indesejado dos telerruptores quando controlados por pulsadores luminosos, sendo a corrente dos mesmos superior a 3mA (esta corrente é suficiente para manter energizada a bobina).

ATLc+s - auxiliar para controle centralizado: permite o controle centralizado de um conjunto de telerruptores controlando redes separadas, enquanto conserva a possibilidade de comandar cada telerruptor localmente. Permite indicação remota do

 \blacksquare contato auxiliar: 6 A - 240 Vca ($\cos \varphi = 1$).

ATLc+c - auxiliar para controle centralizado em vários níveis: permite o controle centralizado de vários conjuntos de telerruptores, enquanto conserva a possibilidade do comando local de cada telerruptor e controle centralizado por nível (conjuntos de telerruptores).

status mecânico de cada relé.

tipo	calibre	referências		
про	(A)	tensão de con (Vca)	(Vcc)	reierericias
TL 16 A	(A)	(VCa)	(۷00)	
1E 10 A	16	230/240	110	15510
IF	10	130	48	15511
		48	24	15512
		24	12	15513
		12	6	15514
2P	16	230/240	110	15520
21	10	130	48	15521
		48	24	15522
		24	12	15523
		12	6	15524
3P	16	230/240	110	15510 + 15530
31	10	130	48	15511 + 15531
		48	24	15512 + 15532
		24	12	15512 + 15532
		12	6	15514 + 15534
4P	16	230/240	110	15520 + 15530
41	10	130	48	15521 + 15531
		48	24	15522 + 15532
		24	12	15523 + 15533
		12	6	15524 + 15534
TLI 16A		12	0	15524 + 15554
1P	16	230/240	110	15500
ON/OFF	16	230/240 48	24	15502
ON/OFF		24	12	15502
ETL 16 A		24	12	15503
1P	16	230/240	110	15530
IF	10	130	48	15531
		48	24	15532
		24	12	15532
		12	6	15534
TL 32 A		12	0	10004
1E 32 A	16	230/240	110	15515
2P	10	230/240	110	15515 + 15505
3P				15515+2x15505
4P				15515+2x15505
ETL 32 A				13313+3213303
1P	32	230/240	110	15505
TLc	02	230/240	110	13303
120	16	230/240	110	15518
	10	48	110	15526
		24		15525
TLm	16	230/240	110	15516
TLs	16	230/240	110	15517
ATLt	10	24 a 240	24 a 110	15411
ATL4		230 a 240	110	15412
ATLz		130 a 240	110	15413
ATLC+S		130 a 240		15409
ATLc+c	l	130 a 240		15410

Contatores CT Multi 9

Os Contatores Modulares CT são utilizados como interface para controlar os circuitos de potência de aplicações domésticas como: iluminação, motores, ventilação, bombas, sistemas de água, aquecimento, persianas, câmaras climáticas etc.

- segundo a norma internacional IEC 61095.
- calibres: 16 e 63 A (categoria AC7a).

tipo	calibre	tensão de comando	referência
	(A)	(Vca)	
2P 1NA+1NF	16	127	16133
		220/240	16143
1P 1NA	25	127	16134
		220/240	16144
2P 2NA	25	127	16135
		220/240	16145
3P 3NA	25	127	16136
		220/240	16146
2P 2NF	25	127	16137
		220/240	16147
2P 2NA	40	127	16138
		220/240	16148
3P 3NA	40	127	16139
		220/240	16149
3P 3NA	63	127	16140
		220/240	16150
2P 2NA	40	127	16141
(Comando ma	anual)	220/240	16151

Minuterias MIN Multi 9

As Minuterias Modulares MIN comandam circuitos elétricos de acordo com um tempo pré-determinado.

- MIN: temporização ajustável de 1 a 7 minutos.
- MINs: temporização ajustável de 0.5 a 20 minutos.
- MINp: ajustável de 0,5 a 20 minutos (com dispositivo de pré-aviso de desligamento incorporado).
- MINt: possui as mesmas características da MINp, mas com um relé de impulso adicional ajustável de 0,5 ou 20 minutos,
- PRE: dispositivo para pré-aviso de desligamento. Somente pode ser utilizado com a MIN e MINs. Aiustável de 20 a 60 s.

tipo	consumo (VA)	tensão de emprego	referência
	em repouso	(Vca)	
Minuteria	s		
MIN	1	230	15363
MINs	<6	230	CCT15232
MINp	<6	230	CCT15233
MINt	<6	230	CCT15234
Pré-aviso	de extinção		
PRE	-	230	15376

Interruptores horários mecânicos Multi 9

A programação se realiza mediante o posicionamento de cavaletes ou segmentos imperdíveis em um quadrante de programação. O número de comutações se expressa em número de ON-OFF e varia segundo o modelo selecionado.

Os compactos

■ IH 24 h

- ☐ compacto = 18 mm,
- ☐ 48 ON 48 OFF por dia,
- □ para programação de seqüências que se repetem todos os dias.

Os clássicos

■ IH 24 h

- ☐ 24 ON 24 OFF por dia,
- ☐ para programação de seqüências que se repetem todos os dias.

- ☐ 21 ON 21 OFF por semana,
 - ☐ para programação de seqüências que se repetem a cada semana com possibilidade de intervalo de um ou mais dias sem programação.
 - programação.
 - IH 24 h + 7 dias
- 16 ON 16 OFF por dia
- 7 ON 7 OFF por semana,

Tabela de escolha

☐ para programação de seqüências que se repetem todos os dias e/ou semanas.

tipo	nº de canais	reserva de mar- cha (h)	calibre de (250 Vca) cos φ =1	contato cos φ =0,6	tensão de emprego	refer.
IH 18mm24h	1	0	16 A	4 A	230 Vca	15335
IH 18mm24h	1	100	16 A	4 A	230 Vca	15336
IH 24h cláss.	2	150	16 A	4 A	230 Vca	15337
IH 24h cláss.	1	150	16 A	4 A	230 Vca	15365
IH 24h + 7d	1+1	150	10 A	4 A	230 Vca	15366
IH 7 dias	1	150	16 A	4 A	230 Vca	15367

Interruptores horários programáveis eletrônicos Multi 9

Os Intuitivos

■ IHP (24 h e/ou 7 dias)

☐ grande simplicidade de programação: apenas 4 teclas de navegação.

☐ 28 ON - 28 OFF por dia, para ref. CCT15720 e CCT15722.

☐ 42 ON - 42 OFF por dia, para ref. CCT15721 e CCT15723.

☐ servem para programar:

 um ciclo diário que se repete, de maneira idêntica, todos os dias da semana e/ou um ciclo semanal, diferente para cada dia da semana.

☐ os IHP+ oferecem modos de comando suplementares:

- anulação momentânea da programação para férias, feriados.
- simulação de presença ao ativar a programação aleatória.
- comando por impulsos para programação de períodos de funcionamento de 1 a 59 segundos (campainha de uma escola, por exemplo).

□ Programação por blocos

 a programação por blocos permite que cada vez que haja programações idênticas nas mesmas horas, vários dias da semana, sejam memorizadas uma só vez e ocupe somente um espaço na memória. Utilizando esta função, é possível aumentar de maneira importante o número de programações possíveis.

Interruptores horários programáveis eletrônicos Multi 9

Os Anuais

- IHP 7 dias + 52 semanas
- ☐ 58 ON 58 OFF por dia,
- □ para programar um ciclo semanal, diferente para cada dia da semana, com a possibilidade de acesso à memória para programação dos períodos de não funcionamento e programação prioritária (dias festivos, férias etc),
- ☐ mudança automática: horários verão/inverno, ano bissexto.

tipo	nº de canais	reserva de marcha (ano)	nº de espaço na memória	tensão de emprego	referência	
IHP 24h e/ou 7d: os intuitivos						
IHP 1c	1	6	56	230 Vca	CCT15720	
IHP + 1c	1	6	84	230 Vca	CCT15721	
IHP 2c	2	6	56	230 Vca	CCT15722	
IHP + 2c	2	6	84	230 Vca	CCT15723	
IHP anuais						
	1	4	116	230 Vca	16355	
-	2	4	116	230 Vca	16356	

[■] calibre de contato (250 Vca): cos φ = 1 - 16 A / cos φ = 0,6 - 10 A.

Interruptores de carga I Multi 9

Os interruptores controlam a abertura e o fechamento em carga de circuitos mono, bi e trifásicos com corrente de até 125 A, já protegidos com um dispositivo contra sobrecorrentes.

- segundo as normas:
- ABNT NBR NM 60669-1 e IEC 60947-3.
- Contato auxiliar encliquetável:
- ☐ o auxiliar NF/NA, montado à esquerda do interruptor, indica a posição "aberta" ou "fechada" do interruptor,
- ☐ capacidade de interrupção dos contatos:
- 3 A em 400 Vca, 6 A em 230 Vca.

Interruptores de carga I Multi 9

tipo	tensão (Vca)	calibre (A)	referência			
1P	250	20	15005			
		32	15009			
		40	15024			
		63	15013			
		100	15090			
		125	15057			
2P	415	20	15006			
		32	15010			
		40	15020			
		63	15014			
		100	15091			
		125	15058			
3P	415	20	15007			
		32	15011			
		40	15023			
		63	15015			
		100	15092			
		125	15059			
4P	415	20	15008			
		32	15012			
		40	15019			
		63	15016			
		100	15093			
		125	15060			
interrupt	interruptores com indicação luminosa 230 V					
1P	230	32	15100			
1P	230	32	15101			
auxiliare	s					
cont. aux	15096					

Quadros Micro Pragma

Micro Pragma é um quadro de distribuição de uso interno para componentes modulares DIN.

Características

- versão sobrepor
- 1 fila
- corrente nominal dos quadros 63 A
- material:
- ☐ isolante, auto-extingüível
- ☐ cor: branca RAL 9003
- segundo as normas:
- ☐ ABNT NBR IEC 60439-3
- □ certificação IMQ segundo CEI 23-3 (Itália)
- qrau de proteção:
- ☐ segundo ABNT NBR IEC 60529: IP40 (proteção contra sólidos e líquidos)
- □ segundo IEC 60102: IK07 (proteção contra choques mecânicos)
- resistência ao fogo e calor excessivo segundo ABNT NBR IEC 60695-2-10: 650°C/30 s

Tabela de escolha

número de filas	capacidade em número de pólos	referência
1	2	10205
1	4	10206
1	6	10207
1	8	10208

Quadros Mini Pragma

Mini Pragma é um quadro de distribuição de uso interno para componentes modulares DIN.

Características

- nas versões com porta opaca ou transparente:
- □ 1 fila: porta com abertura vertical a 90°.
- ☐ 2 e 3 filas: porta com abertura lateral à direita ou à esquerda a 180°.
- corrente nominal dos quadros 63 A;
- material:
- ☐ isolante, auto-extingüível,
- ☐ cor: branca RAL 9003;
- segundo as normas
- ☐ ABNT NBR IEC 60439-3,
- □ certificação IMQ segundo CEI 23-3 (Itália):
- arau de proteção:
- ☐ segundo ABNT NBR IEC 60529: IP 40 (proteção contra sólidos e líquidos),
- □ segundo IEC 60102: IK 07 (proteção contra choques mecânicos),
- □ proteção contra contatos indiretos: classe 2 (Obs.: versão de sobrepor): com tampões isolantes sobre os parafusos de fixação da cuba);
- resistência ao fogo e calor excessivo segundo ABNT NBR IEC 60695-2-10: 650°C/30 s (nas versões de sobrepor e embutir quando instalado em alvenaria).

Quadros Mini Pragma

Tabela de escolha

Versão de sobrepor

número	capacidade em	referência
de filas	número de pólos	
quadros com porta or	paca	
1	12	13344
2	24	13632
3	36	13633
quadros com porta tra	ansparente	
1	12	13349
2	24	13642
3	36	13643

Versão de embutir

número	capacidade em	referência
de filas	número de pólos	
quadros com p	orta opaca	
1	12	13354
2	24	13682
3	36	13683
quadros com p	orta transparente	
1	12	13359
2	24	13692
3	36	13693

Quadros Mini Pragma

Tabela de escolha

Acessórios

tipo	largura (mm)	utilização para os quadros (nº de módulos de 18 mm)	referência
suporte de	210	12, 24 e 36	13364

tipo	largura				referência
	(mm)	bornes	ø10	ø16	
borneira	85	4	2	2	10235
	85	8	4	4	10236
	202	16	8	8	13577
	202	22	11	11	13578
	202	32	16	16	13579

tipo	largura (mm)	cor	referência
capa	85	verde	13582
isolante		vermelho	13584
para		azul	13586
borneira	202	verde	13583
		vermelho	13585
		azul	13587

tipo	característica	cor	referência
obturadores	lote de 10	branco RAL 9003	13229

tipo	quadro	referência
fechadura	1 fila	14180
	2 e 3 filas	13315

tipo	referência
dispositivo de lacre	13319
kit de fixação em parede "dry-wall"	13360
plaqueta de símbolos normais	13735

Quadros modulares Pragma

Pragma é um quadro de distribuição de uso interno para componentes modulares DIN. O quadro Pragma é a melhor solução TTA. Isto significa que o quadro de distribuição foi aprovado nos ensaios de tipo da norma ABNT NBR IEC 60439-3, garantindo maior segurança, continuidade de serviço, qualidade e confiabilidade.

Portas

Permite obter IP40 devido a sua junta de borracha fornecida com a porta. Montagem direta na face frontal do quadro sem desmontar o mesmo. Porta reversível: abertura à direita ou à esquerda. Como opção, pode ser equipada com uma fechadura com chave.

Características:

- corrente admissível: até 160 A
- material:
- □ quadro
- de 13 e 18 módulos: tecnoplástico (1)
- de 24 módulos: metal e tecnoplástico (1)
- □ porta transparente
- para 13 e 18 módulos: tecnoplástico (1)
- para 24 módulos: metal e vidro

porta opaca

- de 13 e 18 módulos: tecnoplástico (1)
- de 24 módulos: metal
- extensão: tecnoplástico (1)
- Resistência ao fogo e calor excessivo
- segundo ABNT NBR IEC 60695-2-10: 650°C
- grau de proteção segundo a norma
- ABNT NBR IEC 60529:
 ☐ quadro sem porta IP 30
- quadro com porta IP 40
- grau de proteção contra choques mecânicos segundo IEC 60102:
- ☐ quadro sem porta: IK 08
- quadro com porta: IK 09
- classe de isolação: classe II "isolação total", segundo a ABNT NBR IEC 60439-3
- (1) Tecnoplástico: material especialmente desenvolvido pela Schneider Electric.

Quadros modulares Pragma

Quadros modulares						
ABNT NE	ABNT NBR IEC 60439-3					
nº de	nº de	cap. em mód.	referência	referência		
mód./fila	filas	de 18 mm	Sobrepor	Embutir		
13	1	13	PRA20113	PRA25113		
	2	26	PRA20213	PRA25213		
	3	39	PRA20313	PRA25313		
	4	52	PRA20413	PRA25413		
18	1	18	PRA20118	PRA25118		
	2	36	PRA20218	PRA25218		
	3	54	PRA20318	PRA25318		
	4	72	PRA20418	PRA25418		
24	1	24	PRA20124	PRA25124		
	2	48	PRA20224	PRA25224		
	3	72	PRA20324	PRA25324		
	4	96	PRA20424	PRA25424		
	5	120	PRA20524	PRA25524		
	6	144	PRA20624	PRA25624		

Extensão para quadros de sobrepor (1)				
nº de	capac.	associação	referência	
filas	mód. de	com quadros		
	18 mm	modulares		
1	7	13/18 mód.	PRA06118	
2	14	13/18 mód.	PRA06218	
3	21	13/18 mód.	PRA06318	
1	7	24 módulos	PRA06124	
2	14	24 módulos	PRA06224	
3	21	24 módulos	PRA06324	

⁽¹⁾ Fornecido um kit de associação PRA90001 para cada extensão.

Quadros modulares Pragma

Acessórios			
portas para	nº de	referência	referência
quadros modulares	filas	transparente	opaca
13 módulos	1	PRA15113	PRA16113
	2 3 4	PRA15213	PRA16213
	3	PRA15313	PRA16313
		PRA15413	PRA16413
18 módulos	1	PRA15118	PRA16118
	2	PRA15218	PRA16218
	2 3 4	PRA15318	PRA16318
		PRA15418	PRA16418
24 módulos	1	PRA15124	PRA16124
	2	PRA15224	PRA16224
	3	PRA15324	PRA16324
	4	PRA15424	PRA16424
	5	PRA15524	PRA16524
	6	PRA15624	PRA16624
porta opaca para extenso		nº de	referência
(com fechadura para cha	ve 405)	filas	
13/18/24 módulos		1	PRA07118
		2	PRA07218
		3	PRA07318
montagem das extense		referência	
Kit para montagem de		PRA90065	
modulares até 7 módu			
Placa fechada para mo			PRA90066
sinalizadores e botões		ncia	
Kit de montagem de ap			PRA90068
Compact (somente em	24 módulo	s)	
Outros acessórios			
para colocação	nº de	tipo de	referência
em obra	módulos	quadro	
Kit de associação	13	embutir	PRA90004
Kit de associação	18/24	embutir	PRA90005
Kit de associação	13/18/24	sobrepor	PRA90001
Reforço ext. metálico	24	sobrepor	PRA90003
Placas fixação externa	13/18/24	sobrepor	PRA90009
Kit de fixação Dry-wall	13/18/24	embutir	PRA90011

Quadros modulares Pragma

	Outros acessórios (cont.)						
Para instalação e	Nº de	Tipo de	Referências				
acabamento	módulos	quadro					
Espelhos fechados	13	embutir/sobrepor	PRA90016				
	18	embutir/sobrepor	PRA90017				
	24	embutir/sobrepor	PRA90018				
Obturadores	13/18/24	embutir/sobrepor	PRA90020				
(2x13 + 2x18 + 2x24))						
Porta-etiquetas	13	embutir/sobrepor	PRA90027				
	18	embutir/sobrepor	PRA90028				
	24	embutir/sobrepor	PRA90029				
Bolsa porta	13/18/24	embutir/sobrepor	PRA90082				
esquemas							
Compartimentação	13	embutir/sobrepor	PRA90006				
de filas	18	embutir/sobrepor	PRA90007				
	24	embutir/sobrepor	PRA90008				
Folhas de etiquetas	13/18/24	embutir/sobrepor	PRA90024				
(lote de 10)							
Placas de montagem	13	embutir/sobrepor	PRA90032				
universal	18	embutir/sobrepor	PRA90033				
	24	embutir/sobrepor	PRA90034				
Para fechamento	Nº de	Tipo de	Referências				
	módulos	quadro					
Fechadura 405	13/18/24	embutir/sobrepor	PRA90039				
(com 2 chaves)							
Kit para lacre	13/18/24	embutir/sobrepor	PRA90083				
Para porta	Nº de	Tipo de	Referências				
	módulos	quadro					
Dobradiça	13/18/24	embutir/sobrepor	PRA90043				
Acessórios elétric	os						
Bornes			Referências				
Kit de bornes de 50	mm ²	lote de 2	PRA90045				
Kit de bornes de 25	mm ²	lote de 5	PRA90046				
Kit de bornes de 4 x	c 6 mm ²	lote de 10	PRA90047				
Kit de união de 8 blocos		lote de 1	PRA90050				
Kit de união de 2 bl	ocos	lote de 10	PRA90049				
Kit suporte de barra	ımento	lote de 1	PRA90051				

Interpact

Interpact INS40 a 2500

Os interruptores-seccionadores Interpact INS40 a 2500 são dispositivos próprios para o comando em carga e o seccionamento de circuitos elétricos em baixa tensão.

Características

- performances industriais em conformidade com as normas IFC 60947-1 e IFC 60947-3
- tensão de operação nominal de 500 e 690 V
- corrente de operação nominal: AC21A, AC22A, AC23A, DC21A, DC22A, DC23A
- tensão suportável de impulso nominal: 8 kV
- correntes de operação nominal referenciada a 60°C
- comando rotativo frontal e lateral para dispositivos até 250 A
- seccionamento plenamente aparente
- seccionamento visível (INV)

Grau de poluição

Os interruptores-seccionadores Interpact são próprios para serem instalados em ambiente com grau de poluição 3 segundo a IEC 60947-1.

Categoria de utilização

Os interruptores-seccionadores Interpact são aptos a serem operados nas mais severas condições de carga, como os circuitos com motores de indução, mantendo os valores da corrente de operação nominal inalterados para todas as categorias de utilização e tensão de operação nominal.

Seccionamento plenamente aparente

Esta prescrição da NBR IEC 60947-2 é atendida por toda a gama Interpact.

- a posição aberta, corresponde a posição O (OFF)
- a posição O não pode ser indicada se os contatos de força não estiverem abertos
- o dispositivo de travamento do interruptor-seccionador não poderá ser acionado na posição O se os contatos de força não estiverem abertos.

Notas: os interruptores-seccionadores Interpact estão disponíveis até 2500 A. Para a composição das referências e especificação, consultar nosso Call Center 0800 7289 110.

Interruptores-seccionadores

Categoria	Categoria de utilização					
Tipo de	Categoria c	le utilização	Aplicação típica			
corrente	Operação freqüente	Operação não freqüente				
Alternada	AC-20A	AC-20B	Abrir e fechar sem carga			
	AC-21A	AC-21B	Comandar cargas resistivas considerando inclusive sobrecargas moderadas			
	AC-22A	AC-22B	Comandar cargas mistas, resistivas com indutivas, considerando inclusive sobrecargas moderadas			
	AC-23A	AC-23B	Comandar motores elétricos ou cargas altamente indutivas			
Contínua	DC-20A	DC-20B	Abrir e fechar sem carga			
	DC-21A	DC-21B	Comandar cargas resistivas, considerando inclusive sobrecargas moderadas			
	DC-22A	DC-22B	Comandar cargas mistas, resistivas com indutivas, considerando inclusive sobrecargas moderadas (ex. motor shunt)			
	DC-23A	DC-23B	Comandar cargas altamente indutivas (ex. motor série)			

Performance operacional

As categorias de performance operacional A e B são adicionadas à categoria de utilização em função do uso freqüente (A) e uso não freqüente (B) do dispositivo.

Interruptores-seccionadores INS40 a 80

Interruptores-seccionadores Inte	erpact	INS / INV
Número de pólos	-	
Características elétricas segundo IEC 609	947-3	
Corrente térmica convencional (A)	lth	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
		DC
Tensão de operação nominal AC20 e DC20	(V)	AC 50/60 Hz
Corrente de operação nominal (A)	le	AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)		com proteção
Corrente suportável de curta duração	lcw	0,5
nominal (A rms)		1 s
		3 s
		20 s
		30 s
Apto ao seccionamento		·
Vida Categoria A ciclo O-C-O		mecânica
·		AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau)		
Dimensões (mm) L x A x P		3P/4P
Peso (kg)		3P/4P

INS40		INS63	INS63		INS80	
3, 4		3, 4		3, 4	3, 4	
40		63	63			
690		690		690		
8		8		8		
500		500		500		
250		250		250		
690		690		690		
INS AC22A	INS AC23A	INS AC22A	INS AC23A	INS AC22A	INS AC23A	
40	40	63	63	80	80 80	
40	40	63	63	80	72	
40	40	63	63		63	
40			40	80		
	32	63			40	
-	-	-	-	-	-	
INS DC22A	INS DC23A	INS DC22A	INS DC23A	INS DC22A	INS DC23A	
40	40	63	63	80	80	
40	40	63	63	80	80	
15		15		15		
75		75		75		
-		-		-		
3000		3000		3000		
1730		1730		1730		
670		670		670		
550		550		550		
20.000		20.000		20.000		
INS	INS	INS	INS	INS	INS	
AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
-	-	-	-	-	-	
INS	INS	INS	INS	INS	INS	
DC22A	DC23A	DC22A	DC23A	DC22A	DC23A	
1500	1500	1500	1500	1500	1500	
			•		•	
3		3		3		
81 x 90 x	79	81 x 90 x	81 x 90 x 79		79	
0,5 / 0,6		0,5 / 0,6		0,5 / 0,6		
, ,-		. , , , ,		. , , , ,		

Interruptores-seccionadores INS100 a 160

Interruptores-seccionadores Inte	erpact	INS / INV
Número de pólos	-	
Características elétricas segundo IEC 609	947-3	
Corrente térmica convencional (A)	lth	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
		DC
Tensão de operação nominal AC20 e DC20	(V)	AC 50/60 Hz
Corrente de operação nominal (A)	le	AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)		com proteção
Corrente suportável de curta duração	lcw	0,5
nominal (A rms)		1 s
		3 s
		20 s
		30 s
Apto ao seccionamento		·
Vida Categoria A ciclo O-C-O		mecânica
·		AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau)		
Dimensões (mm) L x A x P		3P/4P
Peso (kg)		3P/4P

INS100		INS125		INS160	INS160	
3, 4		3, 4		3, 4	3, 4	
100		125	125		160	
750		750		750		
8		8		8		
690		690		690		
250		250		250		
750		750		750		
INS AC22A	INS AC23A	INS AC22A	INS AC23A	INS AC22A	INS AC23A	
100	100	125	125	160	160	
100	100	125	125	160	160	
100	100	125	125	160	160	
100	100	125	125	160	160	
100	63	125	80	160	100	
INS DC22A	INS DC23A	INS DC22A	INS DC23A	INS DC22A	INS DC23A	
100	100	125	125	160	160	
100	100	125	125	160	160	
20	•	20	•	20		
154		154		154		
-		-		-		
5500		5500		5500		
3175		3175		3175		
1230		1230		1230		
1000		1000		1000		
15.000		15.000		15.000		
INS AC22A	INS AC23A	INS AC22A	INS AC23A	INS AC22A	INS AC23A	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
1500	1500	1500	1500	1500	1500	
INS	INS	INS	INS	INS	INS	
DC22A	DC23A	DC22A	DC23A	DC22A	DC23A	
1500	1500	1500	1500	1500	1500	
	•		•		•	
3		3		3		
100 x 135	x 79	100 x 135	x 79	100 x 135	x 79	
0,8 / 0,9				0.8 / 0.9		
. ,						

Interruptores-seccionadores INS250-200 a 250 / INV200 a 250

Interruptores-seccionadores Interruptores	erpact	INS / INV
Número de pólos		
Características elétricas segundo IEC 609	947-3	
Corrente térmica convencional (A)	lth	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
, ,		DC
Tensão de operação nominal AC20 e DC20	(V)	AC 50/60 Hz
Corrente de operação nominal (A)	le	AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)	10111	com proteção
Corrente suportável de curta duração	Icw	0,5 s
nominal (A rms)	low	1 s
Horiillai (A IIIIs)		3 s
		20 s
		30 s
Apto ao seccionamento		30 8
Vida Categoria A ciclo O-C-O		maaâniaa
vida Calegoria A cicio O-C-O		mecânica
		AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
0		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau) Informações sobre a instalação		
Fixa, conexão frontal		
Fixa, conexão traseira		
Fixação em trilho DIN		
Fixação sobre placa de montagem		TNI
Torque de aperto dos terminais		N.m
Dimensões (mm) L x A x P		3P/4P
Peso (kg)		3P/4P
1/110 Schneider		

INS250-	200 / INV2	00	INS250	/ INV250	
3, 4			3, 4		
			1-, .		
200			250		
750			750		
8			8		
690			690		
250			250		
750			750		
INS/INV	INS/INV		INS/INV	INS/INV	
AC22A	AC23A		AC22A	AC23A	
200	200		250	250	
200	200		250	250	
200	200		250	250	
200	200		250	250	
200	200		250	250	
INS/INV	INS DC23A	INV DC23B	INS/INV	INS DC23A	INV DC23B
DC22A		1	DC22A		
200	200	200	250	250	200
200	200	200	250	250	200
30			30		
330			330		
-			-		
8500			8500		
4900			4900		
2200		-	2200		
1800			1800		
15.000					
15.000 INS/INV	INS/INV	-	15.000 INS/INV	INC/INIV	
AC22A				INS/INV AC23A	
1500	1500		AC22A 1500	1500	
1500	1500		1500	1500	
1500	1500		1500	1500	
1500	1500		1500	1500	
1500 INS/INV	1500	-	1500 INS/INV	1500	
	INS/INV			INS/INV	
DC22A	DC23A		DC22A		
1500	1500	.,	1500	1500	
2			3		
3		·	ال		
<u>padrão</u>			padrão		
		-			
padrão		-	padrão		
15		-	15	101	
136 x 140	x 131		136 x 140	x 131	
2/2,2			2/2,2		
		Calan	oidor		1/111

Interruptores-seccionadores INS/INV320 a 630

Interruptores-seccionadores Interruptores	erpact	INS / INV
Número de pólos		
Características elétricas segundo IEC 609	947-3	
Corrente térmica convencional (A)	Ith	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
, ,		DC
Tensão de operação nominal AC20 e DC20	(V)	AC 50/60 Hz
Corrente de operação nominal (A)	lie	AC 50/60 Hz
1 3 (/		
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)		com proteção
Corrente suportável de curta duração	lcw	0,5 s
nominal (A rms)		1 s
		3 s
		20 s
		30 s
Apto ao seccionamento		100 3
Vida Categoria A ciclo O-C-O		mecânica
Vida Gategoria A Giolo G G G		AC 50/60 Hz
		AC 30/00 112
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
		050.1/
0		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau)		
Informações sobre a instalação		
Fixa, conexão frontal		
Fixa, conexão traseira		
Fixação em trilho DIN		
Fixação sobre placa de montagem		
Torque de aperto dos terminais		N.m
Dimensões (mm) L x A x P		3P/4P
Peso (kg)		3P/4P
1/112 Schneider		

INS320	/ INV320	INS400	/ INV400	INS630	/ INV630
3, 4		3, 4		3, 4	
		•			
320		400		630	
750		750		750	
8		8		8	
690		690		690	
250		250		250	
750		750		750	
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV
AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
320	320	400	400	630	630
320	320	400	400	630	630
320	320	400	400	630	630
320	320	400	400	630	630
320	320	400	400	630	630
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV
DC22A	DC23A	DC22A	DC23A	DC22A	DC23A
320	320	400	400	550	550
320	320	400	400	550	550
50		50	,	50	1000
330		330		330	
-		-		-	
20.000		20.000		20.000	
11.500		11.500		11.500	
4.900		4.900		4.900	
4.000		4.000		4.000	
10.000		10.000		10.000	
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV
AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
1500	1500	1500	1500	1500	1500
1500	1500	1500	1500	1500	1500
1500	1500	1500	1500	1500	1500
1500	1500	1500	1500	1500	1500
1500	1500	1500	1500	1500	1500
INS/INV	INS/INV	1.000	INS/INV	1.000	INS
DC22A	DC23A		DC23A		DC23A
1000	1000		1000		1000
1000	1.000		1.000		1.000
3		3		3	
		10		10	
padrão		padrão		padrão	
Paurau		padrao		Paurau	
-		-		-	
- nodrão					
padrão		padrão		padrão	
50	v 100	50	v 100	50	v 100
205 x 185	X 10U	205 x 185	X 10U	205 x 185	X IOU
4,6 / 4,9		4,6 / 4,9		4,6 / 4,9	
		Cal	noidor		1/110

Interruptores-seccionadores INS/INV800 a 1000

Interruptores-seccionadores Int	erpac	t INS / INV
Número de pólos		
Características elétricas segundo IEC 60		
Corrente térmica convencional (A)	lth	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
		DC
Tensão de operação nominal AC20 e DC20	(V)	AC 50/60 Hz
Corrente de operação nominal (A)	le	AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)		com proteção
Corrente suportável de curta duração	Icw	0.5 s
nominal (A rms)	ICW	1 s
nominai (A mis)		3 s
		20 s
Apto ao seccionamento		30 s
Vida Categoria A ciclo O-C-O		Imagânias
vida Calegoria A cicio O-C-O		mecânica
		AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau)		
Informações sobre a instalação		
Fixa, conexão frontal		
Fixa, conexão traseira		
Fixação em trilho DIN		
Fixação sobre placa de montagem		
Torque de aperto dos terminais		N.m
		3P
Dimensões (mm) L x A x P		
D (I)		4P
Peso (kg)		3P/4P
1/114 Schneider		

INS800	INS800 / INV800		INS1000 / INV1000				
3, 4	3, 4		3, 4	3, 4			
800				1000			
1000			1000				
12			12				
690			690				
750			750				
800			800				
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV		
AC21A	AC22A	AC23A	AC21A	AC22A	AC23A		
800	800	800	1000	1000	1000		
800	800	800	1000	1000	1000		
800	800	800	1000	1000	1000		
800	800	800	1000	1000	1000		
800	800	800	1000	1000	1000		
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV		
DC21A	DC22A	DC23A	DC21A	DC22A	DC23A		
800	800	800	1000	1000	1000		
800	800	800	1000	1000	1000		
	105			105			
	330			330			
50.000			50.000	50.000			
35.000			35.000	35.000			
20.000			20.000	20.000			
10.000			10.000				
8.000			8.000				
3.000			3.000				
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV		
AC21A	AC22A	AC23A	AC21A	AC22A	AC23A		
500	500	500	500	500	500		
500	500	500	500	500	500		
500	500	500	500	500	500		
500	500	500	500	500	500		
500	500	500	500	500	500		
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV		
DC21A	DC22A	DC23A	DC21A	DC22A	DC23A		
500	500	500	500	500	500		
3			3				
padrão			padrão	padrão			
-			T-				
-			-				
padrão							
50			50	padrão 50			
300 x 340	x 198			300 x 340 x 198			
300 x 410				300 x 340 x 198			
14 / 18			14 / 18				
Schneider					1/115		

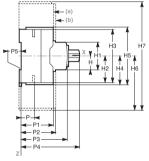
Interruptores-seccionadores INS/INV1250 a 1600

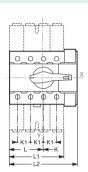
Interruptores-seccionadores Inter	erpact	INS / INV
Número de pólos		
Características elétricas segundo IEC 609		
Corrente térmica convencional (A)	Ith	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	1.2 (
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
		DC
Tensão de operação nominal AC20 e DC20		AC 50/60 Hz
Corrente de operação nominal (A)	le	AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)		com proteção
Corrente suportável de curta duração	Icw	0,5 s
nominal (A rms)	1011	1 s
nonina (A ma)		3 s
		20 s
		30 s
Apto ao seccionamento		1003
Vida Categoria A ciclo O-C-O		mecânica
Vida Categoria A cicio C C C		AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau)		
Informações sobre a instalação		
Fixa, conexão frontal		
Fixa, conexão traseira		
Fixação em trilho DIN		
Fixação sobre placa de montagem		
Torque de aperto dos terminais		N.m
Dimensões (mm) L x A x P		3P
		4P
Peso (kg)		3P/4P
1/116 Schneider		·

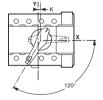
INS125	INS1250 / INV1250			INS1600 / INV1600				
3, 4	3, 4			3, 4				
1250			1600					
1000			1000					
12			12					
690			690					
750			750					
800			800					
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
AC21A	AC22A	AC23A	AC21B	AC22B	AC23A			
1250	1250	1250	1600	1600	1250			
1250	1250	1250	1600	1600	1250			
1250	1250	1250	1600	1600	1250			
1250	1250	1250	1600	1600	1250			
1250	1250	1250	1600	1600	1250			
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
DC21A	DC22A	DC23A	DC21A	DC22A	DC23A			
1250	1250	1250	1600	1600	1600			
1250	1250	1250	1600	1600	1600			
105	11200	11200	105	11000	11000			
105			105					
50.000			50.000					
35.000			35.000					
20.000			20.000					
10.000				10.000				
8.000			8.000					
0.000			0.000					
3.000			3.000					
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
AC21A	AC22A	AC23A	AC21B	AC22B	AC23B			
500	500	500	500	500	500			
500	500	500	500	500	500			
500	500	500	500	500	500			
	500	500	500	500				
500					500			
500	500	500	500	500	500			
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
DC21A	DC22A	DC23A	DC21A	DC22A	DC23A			
<u>500</u>	500	500	500	500	500			
3			3					
			1					
padrão			padrão					
-			-					
-			-					
padrão			padrão					
50			50					
300 x 340	x 198		300 x 340	x 198				
300 x 410	x 198		300 x 410	x 198				
14 / 18			14 / 18					
		Sch	neider		1/117			

Interruptores-seccionadores INS/INV2000 a 2500

Interruptores-seccionadores Int	erpact	INS / INV
Número de pólos		
Características elétricas segundo IEC 60		1
Corrente térmica convencional (A)	Ith	a 60°C
Tensão de isolamento nominal (V)	Ui	AC 50/60 Hz
Tensão suportável de impulso nominal (kV)	Uimp	1
Tensão de operação nominal (V)	Ue	AC 50/60 Hz
		DC
Tensão de operação nominal AC20 e DC20	(V)	AC 50/60 Hz
Corrente de operação nominal (A)	le	AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 - 480 V
		500 V
		660 - 690 V
		DC
		DC
		125 V (2P em série)
		250 V (4P em série)
Capacidade nominal de estabelecimento	Icm	sem proteção
em curto-circuito (KA crista)	-	com proteção
Corrente suportável de curta duração	Icw	0,5 s
nominal (A rms)		1 s
nonina (A ma)		3 s
		20 s
		30 s
Apto ao seccionamento		130 8
Vida Categoria A ciclo O-C-O		magânica
vida Galegoria A Cicio O-G-O		mecânica
		AC 50/60 Hz
		220 - 240 V
		380 - 415 V
		440 V
		500 V
		690 V
		DC
		250 V
Seccionamento plenamente aparente		
Grau de proteção contra poluição (grau)		
Informações sobre a instalação		
Fixa. conexão frontal		
Fixa, conexão traseira		
Fixação em trilho DIN		
Fixação em mino bin Fixação sobre placa de montagem		
		INI
Torque de aperto dos terminais		N.m
Dimensões (mm) L x A x P		3P
		4P
Peso (kg)		3P/4P
1/118 Schneider		




INS2000) / INV200	0	INS2500 / INV2500					
3. 4			3. 4					
0, 4			10, 4					
2000			2500					
1000			690					
12			8					
690			690					
750			750					
800			800					
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
AC21B	AC22B	AC23B	AC21B	AC22B	AC23B			
2000	2000	-	2500	2500	-			
2000	2000	-	2500	2500	-			
2000	2000	-	2500	2500	-			
2000	2000	1-	2500	2500	+			
2000	2000		2500	2500	-			
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
DC21B	DC22B	DC23B	DC21B	DC22B	DC23B			
2000	2000	-	2500	2500	-			
2000	2000	-	2500	2500	- -			
	12000	-	105	12300	1-			
105								
105			105					
50.000			50.000					
50.000				50.000				
30.000			30.000					
12.000			13.000					
11.000			11.000					
600								
600	TINIO (INI) (LINIO (INI) (600	TINIO (INI) (INIO (INI) (
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
AC21B	AC22B	AC23B	AC21B	AC22B	AC23B			
100	100	-	100	100	-			
100	100	-	100	100	-			
100	100	-	100	100	-			
100	100	-	100	100	-			
100	100	-	100	100	-			
INS/INV	INS/INV	INS/INV	INS/INV	INS/INV	INS/INV			
DC21B	DC22B	DC23B	DC21B	DC22B	DC23B			
100	100	-	100	100	-			
3			3					
padrão			padrão					
padrão			padrão					
-			-					
padrão			padrão					
50			50					
	E v 207 E			E v 207 E				
440 x 347,			440 x 347, 440 x 462,	5 x 221,5				
440 x 462, 35 / 45	J A ZZ1,J		35 / 45	J X ZZ1,3				
JU / 45			100 / 45					
		Sch	neider		1/119			

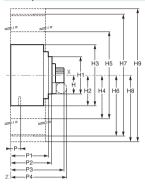

Dimensões Interpact INS40 a 160

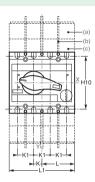
INS40 a 160

Manopla frontal

- (a) Capa de proteção de terminal INS40/63/80.
- (b) Capa de proteção de terminal INS100/125/160.

dimensões (mm)

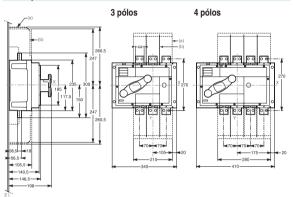

Tipo	Н	H1	H2	H3	H4	H5	H6	H7	K	K1
INS40/63/80	22,5	45	40,5	81	42,5	85	73,5	147	1	18
INS100/125/160	22,5	45	50	100	50	100	110	220	7,5	30


Tipo	L	L1	L2	Р	P1	P2	P3	P4	P5
INS40/63/80	46	73	90	21,3	43	47	62,5	79	5
INS100/125/160	67,5	119	135	21,5	45	47	62,5	79	5

Dimensões Interpact INS/INV250-200 a 630

INS250-200 a 630 / INV200 a 630

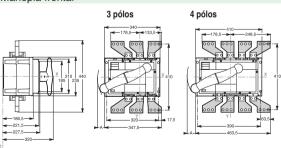
Manopla frontal


- (a) Capa de proteção de terminal
- (b) Separador de fase
- (c) Capa de proteção de terminal curto dimensões (mm)

Tipo	Н	H1	H2	НЗ	H4	H5	H6	H7	H8	H9
INS250 INV200/250	40	80	68	136	82	164	148	296	166	332
INS/INV 320/630	61,5	123	102,5	205	118	236	215	430	-	-
Tipo	H10	K	K1	L	L1	Р	P1	P2	P3	P4
I Ipo INS250 INV200/250	H10 115	17,5	K1 35	70	L1 140	P 21,5	P1 86	P2 96	P3 131	P4 138
INS250				70 92,5						

Dimensões Interpact INS/INV800 a 2500

INS800 a 1600 / INV800 a 1600


Manopla frontal

- (a) Capa de proteção de terminais
- (b) Separador de fase dimensões (mm)

INS2000 a 2500 / INV2000 a 2500

Manopla frontal

Interruptores-seccionadores

Referências							
Manopla preta							
	3P	4P					
INS40	28900	28901					
INS63	28902	28903					
INS80	28904	28905					
INS100	28908	28909					
INS125	28910	28911					
INS160	28912	28913					
INS250-200	31102	31103					
INS250	31106	31107					
INS320	31108	31109					
INS400	31110	31111					
INS630	31114	31115					
INS800	31330	31331					
INS1000	31332	31333					
INS1250	31334	31335					
INS1600	31336	31337					
INS2000	31338	31339					
INS2500	31340	31341					

Manopla rotativa prolongada					
	Interruptores				
INS40 a 160	28941				
INS250-200 e 250	31050				
INS320 a 630	31052				
INS800 a 2500	31288				

Disjuntor em caixa moldada

Disjuntor em Caixa Moldada EasyPact

EasyPact: gama de disjuntores destinada às aplicações standard em distribuição elétrica de baixa tensão para correntes alternada e contínua. De dimensões compactas e de alta performance está disponível na versão tripolar para todos os modelos e uni e bipolar para o EZC100H. O ajuste fixo das proteções é adequado para a proteção das instalações elétricas em geral.

		,			
Características ABNT NBR	IEC 60947-2				
Corrente nominal (A)		In	40°C		
		50°C			
			65°C		
Tensão de isolamento nomina	al (V)	Ui			
Tensão suportável de impulso nominal (kV)	D	Uimp			
Tensão de operação nominal	(V)	Ue	AC 50/60 I	Hz	
			DC		
Versão do disjuntor					
Capacidade nominal de interi		lcu	AC	220/240 V	
máxima em curto-circuito (kA	rms)		50/60 HZ	380/415 V	
				440 V	
				550 V	
			DC	125 V (1P)	
				250 V (2P	
				em série)	
Capacidade nominal de interi	rupção	lcs	% Icu		
de curto-circuito em serviço					
Apto ao seccionamento					
Categoria de utilização					
Vida (ciclos C-O)	mecânica				
	elétrica	415 V	In		
Proteção			unidade de controle		
Proteção diferencial			relés Vigirex		
Número de pólos					
Controle	manual		alavanca		
			manopla re		
			direta ou p	rolongada	
	elétrico				
Dimensões (mm) L x A x P	fixo, conex		3P		
Peso (kg)	fixo, conex	ão frontal	3P		

Calibres

Os disjuntores EasyPact estão disponíveis nos seguintes calibres:

EZC100N / H - 15, 20, 25, 30, 40, 50, 60,

80 e 100 A

EZC250N / H - 125, 150, 175, 200, 225 e

250 A

EZC400N - 250, 300, 320, 350 e 400 A

Norma

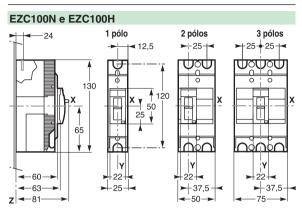
Os disjuntores EasyPact atendem as prescrições da ABNT NBR IEC 60947-2.

EZC100N	EZC100H	EZC250N	EZC250H	EZC400N
100	100	250	250	400
690	690	690	690	690
6	6	6	6	6
550	550	550	550	550
250	250	250	250	250
N	Н	N	Н	N
25	100	50	85	85
18/15	30	25	36	36
10	20	20	25	36
5	10	8	10	18
5 (125 V 1P)	10 (125 V 1P)	20	30	20
5 (250 V 2P)	10 (250 V 2P)	20	30	20
50%	50% (415 V) 25% (440 V)	50%	50%	50%
Α	Α	Α	Α	Α
8.500	8.500	10.000	10.000	4.000
1.500	1.500	5.000	5.000	1.000
TM - F/F	TM - F/F	TM - F/F	TM - F/F	TM - F/F
3	3	3	3	3
-	-	-	-	-
75 x 130 x 60	75 x 130 x 60			140 x 257 x 103
0,78	0,78	1,3	1,3	5,0

Disjuntor em caixa moldada

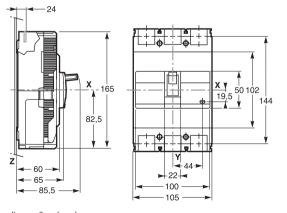
Disjuntores em Caixa	Moldada	EasyPact					
Auxiliares elétricos							
Contato auxiliar de pos	sição						
Contato auxiliar de alarme							
Contato auxiliar de pos	ição + alar	me					
Contato de atuação fechamento por manopla							
antecipada		abertura por ma	anop	la			
Bobina de desligament							
Bobina de mínima tens	ão						
Acessórios							
Manopla rotativa direta							
Dispositivo de travame		hadura					
Manopla rotativa prolor	ngada						
Capa de proteção de te	erminais						
Separadores de fases							
Terminal de parafuso							
Terminal derivador							
Terminal para conexão	traseira						
Extensor de terminal							
Dispositivo fixo de trava	amento po	r cadeado					
Dispositivo móvel de tra	avamento	por cadeado					
Moldura de acabament	0						
Características das un							
EasyPact EZC100N e H Ui			ignét	ticas			
<u>Ca</u>	alibre	50°C					
		valor de ajuste (A)	lr	fixo			
		valor de ajuste (A)	lm	fixo			
EasyPact EZC250N e H Ui			ignét	ticas			
<u>Ca</u>	alibre	50°C					
	obrecarga		lr	fixo			
		valor de ajuste (A)	lm	fixo			
		controle termoma	ignét	ticas			
	alibre	50°C					
	obrecarga	valor de ajuste (A)	lr	fixo			
Cı	urto-circuito	valor de ajuste (A)	lm	fixo			

EZC100



E7C400

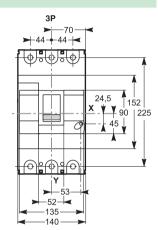
	EZC100N	EZC100H	EZC250N	EZC250H	EZC400N
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-


15	20	25	30	40	50	60	80	100
15	20	25	30	40	50	60	80	100
300	300	300	300	500	500	600	1000	1000
125	150	175	200	225	250			
125	150	175	200	225	250			
1250	1500	1750	2000	2250	2500			
250	300	320	350	400				
250	300	320	350	400				
2500	3000	3200	3500	4000				

Dimensões EasyPact EZC100 e EZC250

dimensões (mm)


EZC250N e EZC250H



dimensões (mm)

Dimensões EasyPact EZC400

EZC400N

dimensões (mm)

EasyPact EZC100N/H Com disparador termomagnético Tripolares

EZC100N

EZC100H

	EZC100N	EZC100H				
Calibre (A)	Referências	Referências				
15	EZC100N3015	EZC100H3015				
20	EZC100N3020	EZC100H3020				
25	EZC100N3025	EZC100H3025				
30	EZC100N3030	EZC100H3030				
40	EZC100N3040	EZC100H3040				
50	EZC100N3050	EZC100H3050				
60	EZC100N3060	EZC100H3060				
80	EZC100N3080	EZC100H3080				
100	EZC100N3100	EZC100H3100				
Auxiliares e acessórios	3					
Auxiliares elétricos						
Contatos auxiliares		Referências				
Posição	(AX)	EZAUX10				
Alarme	(AL)	EZAUX01				
Posição + Alarme	(AX + AL)	EZAUX11				
Bobinas de desligamer	nto					
100-130 Vca	(SHT)	EZASHT100AC				
200-277 Vca	(SHT)	EZASHT200AC				
380-480 Vca	(SHT)	EZASHT380AC				
24 Vcc	(SHT)	EZASHT024DC				
48 Vcc	(SHT)	EZASHT048DC				
Bobinas de mínima tensão						
100-130 Vcc	(UVR)	EZAUVR110AC				
200-270 Vca	(UVR)	EZAUVR200AC				
277 Vca	(UVR)	EZAUVR277AC				
380-415 Vca	(UVR)	EZAUVR380AC				
400-480 Vca	(UVR)	EZAUVR440AC				
24 Vcc	(UVR)	EZAUVR024DC				
48 Vcc	(UVR)	EZAUVR048DC				
100-130 Vcc	(UVR)	EZAUVR125DC				
Manopla rotativa direta	· /	EZAROTDS				
Manopla rotativa prolono	EZAROTE					
Dispositivo de travament	EZALOCK					
Dispositivo de proteção	EZATSHD3P					
- representation and provided and an arrangement of the second of the se						

EasyPact EZC250N/H Com disparador termomagnético Tripolares

EZC250N

	EZC250N	EZC250H
Calibre (A)	Referências	Referências
125	EZC250N3125	EZC250H3125
150	EZC250N3150	EZC250H3150
175	EZC250N3175	EZC250H3175
200	EZC250N3200	EZC250H3200
225	EZC250N3225	EZC250H3225
250	EZC250N3250	EZC250H3250
Auxiliares e acessórios		
Auxiliares elétricos		
Contatos auxiliares		Referências
Posição	(AX)	EZEAX
Alarme	(AL)	EZEAL
Posição + Alarme	(AX + AL)	EZEAXAL

EasyPact

EasyPact EZC250N/H (cont.)
Com disparador
termomagnético
Tripolares

EZC250N

Auxiliares e acessórios		
Bobinas de desligamento		Referências
100-120 Vca	(SHT)	EZESHT100AC
120-130 Vca	(SHT)	EZESHT120AC
200-240 Vca	(SHT)	EZESHT200AC
277 V ca	(SHT)	EZESHT277AC
380-440 Vca	(SHT)	EZESHT400AC
440-480 Vca	(SHT)	EZESHT440AC
24 Vcc	(SHT)	EZESHT024DC
48 Vcc	(SHT)	EZESHT048DC
Bobinas de mínima tensão		
100-130 Vca	(UVR)	EZEUVR110AC
200-240 Vca	(UVR)	EZEUVR200AC
277 Vca	(UVR)	EZEUVR277AC
380-415 Vca	(UVR)	EZEUVR400AC
400-480 Vca	(UVR)	EZEUVR440AC
24 Vcc	(UVR)	EZEUVR024DC
48 Vcc	(UVR)	EZEUVR048DC
125 Vcc	(UVR)	EZEUVR125DC
Manopla rotativa direta		EZEROTDS
Manopla rotativa prolongada		EZEROTE
Dispositivo de travamento por	cadeado	EZELOCK
Terminal de parafuso		EZELUG2503
Capa de proteção de terminal		EZETSHD3P
Separador de fase		EZEFASB2
Extensor de terminal	distanciador	EZESPDR3P
	reto	EZETEX

EasyPact

EasyPact EZC400N Com disparador termomagnético Tripolares

EZC400N

		EZC400N
Calibre (A)		Referências
250		EZC400N3250
300		EZC400N3300
320		EZC400N3320
350		EZC400N3350
400		EZC400N3400
Auxiliares e acessórios		
Auxiliares elétricos		
Contatos auxiliares		Referências
Posição ou Alarme	(AX ou AL)	EZ4AUX
2 x Posição ou Alarme	2 x (AX ou AL)	EZ4AUX2
Bobinas de desligamento		
100-240 Vca/cc	(SHT)	EZ4SHT200ACDC
277 Vca	(SHT)	EZ4SHT277AC
380-480 Vca	(SHT)	EZ4SHT400AC
24-48 Vca/cc	(SHT)	EZ4SHT048ACDC
Bobinas de mínima tensão		
100-110 Vca/cc	(UVR)	EZ4UVR110ACDC
120-130 Vca/cc	(UVR)	EZ4UVR130ACDC
200-240 Vca	(UVR)	EZ4UVR200AC
277 Vca	(UVR)	EZ4UVR277AC
380-480 Vca	(UVR)	EZ4UVR400AC
24 Vca/cc	(UVR)	EZ4UVR024ACDC
48 Vca/cc	(UVR)	EZ4UVR048ACDC
Manopla rotativa direta		EZ4ROTDS
Manopla rotativa prolongada		EZ4ROTE
Dispositivo de travamento por o	adeado	EZ4LOCK
Terminal de parafuso		EZELUG4003
Capa de proteção de terminal		EZ4TSHD3P
Separador de fase		EZ4FASB2
Extensor de terminal	distanciador	EZ4SPDR73P
	reto	EZ4TEX3P
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

Disjuntor em caixa moldada

Os disjuntores Compact NB são dispositivos de proteção destinados às aplicações "standard", compactos e de performance média.

O ajuste fixo das proteções é adequado para a proteção das instalações elétricas em geral.

Disjuntor em Caixa M	oldada Co	ompact	NB	
Características ABNT NBR I				
Corrente nominal (A)		In	40°C	
			50°C	
			65°C	
Tensão de isolamento nomina	al (V)	Ui		
Tensão suportável de impulso nominal (kV)		Uimp		
Tensão de operação nominal	(V)	Ue	AC 50/60	Hz
			DC	
Versão do disjuntor				
Capacidade nominal de interr		Icu	AC	220/240 V
máxima em curto-circuito (kA	rms)		50/60 Hz	380/415 V
				440 V
				500 V
				525 V
				660/690 V
			DC	250 V (1P)
				500 V (2P
				em série)
Capacidade nominal de interr	upção	Ics	% Icu	
de curto-circuito em serviço				
Apto ao seccionamento				
Categoria de utilização				
Vida (ciclos C-O)	mecânica			
	elétrica	415 V	In	
Proteção			unidade de controle	
Proteção diferencial			relés Vigir	ex
Número de pólos				
Controle	manual		alavanca	
			manopla rotativa	
			direta ou prolongada	
	elétrico			
Dimensões (mm) L x A x P	fixo, conexã	ăo frontal	3P	
Peso (kg)	fixo, conexã	ão frontal	3P	
			-	

Estrutura

Os disjuntores Compact NB são disponíveis nos seguintes calibres:

- NB600N 500 e 600 A
- NB800N 600, 700 e 800 A

Norma

Os disjuntores Compact NB atendem as prescrições da ABNT NBR IEC 60947-2.

NB6	00	NB800
600		800
690		750
6		8
500		690
-		-
N		N
30		42
25		36
18		35
15		-
-		-
-		-
-		-
-		-
50%		50%
Α		A
		2.000
		500
TM - F	F/F	TM - F/A
3		3
		-
-		-
140 x	255 x 110	199 x 327 x 205
6		12

Disjuntor em caixa moldada

Disjuntores em Caixa Moldada Compact

Auxiliares elétricos		
Contato auxiliar de posição		
Contato auxiliar de alarme		
Contato auxiliar de posição + aları	me	
Contato de atuação	fechamento por manopla	
antecipada	abertura por manopla	
Bobina de desligamento		
Bobina de mínima tensão		
Acessórios		
Manopla rotativa direta		
Dispositivo de travamento por fech	nadura	
Manopla rotativa prolongada		
Capa de proteção de terminais		
Separadores de fases		
Terminal de parafuso		

Terminal para conexão traseira Extensor de terminal

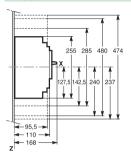
Terminal derivador

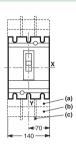
Dispositivo fixo de travamento por cadeado

Dispositivo móvel de travamento por cadeado

Moldura de acabamento

aracterísticas das unidades de controle			
Unidades de controle termomagnéticas			
Calibre	50°C		
Sobrecarga	valor de ajuste (A)	lr	fixo
Curto-circuito	valor de ajuste (A)	lm	fixo
Unidades de	controle termoma	gné	ticas
Calibre	50°C		
Sobrecarga	valor de ajuste (A)	lr	fixo
Curto-circuito	valor de ajuste (A)	lm	fixo
	Unidades de Calibre Sobrecarga Curto-circuito Unidades de Calibre Sobrecarga	Calibre 50°C Sobrecarga valor de ajuste (A) Curto-circuito valor de ajuste (A) Unidades de controle termoma Calibre 50°C	Calibre 50°C Sobrecarga valor de ajuste (A) Im Unidades de controle termomagnér Calibre 50°C Sobrecarga valor de ajuste (A) Im Unidades de controle termomagnér Calibre 50°C Sobrecarga valor de ajuste (A) Ir

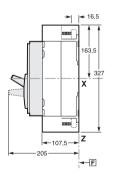


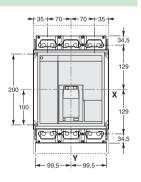

NB600	NB800
-	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

500	600	
500	600	
5000	6000	
600	700	800
600	700	800
210 x ln	210 x ln	210 x ln

Dimensões Compact NB600 e 800

NB600N





- (a) capa de proteção de terminal curto
- (b) capa de proteção de terminal longo
- (c) separador de fase

dimensões (mm)

NB800N

F referência de fixação

dimensões (mm)

Compact NB 600/800N Tripolares

NB600N

NB800N

	NB600N	NB800N
Calibre (A)	Referências	Referências
500	32877	-
600	32876	33906
700	•	33907
800	-	33908

19 Compact NR

Disjuntor em caixa moldada NR

Disjuntor em Caixa Moldada Compact NR

A gama Compact NR foi desenvolvida para atender uma demanda do mercado onde os níveis de performance são médios. Derivados da gama Compact NS agregam toda a tecnologia aplicada nesta gama.

Disjuntor em Caixa M	ioidada Co	ompaci	INIT	
Características ABNT NBR	IEC 60947-2			
Corrente nominal (A)		In	40°C	
, ,			50°C	
			65°C	
Tensão de isolamento nomina	al (V)	Ui	'	
Tensão suportável de impulso nominal (kV)		Uimp		
Tensão de operação nominal	(V)	Ue	AC 50/60	Hz
			DC	
Versão do disjuntor				
Capacidade nominal de inter		lcu	AC	220/240 V
máxima em curto-circuito (kA	rms)		50/60 Hz	380/415 V
				440 V
				500 V
				525 V
				660/690 V
			DC	250 V (1P)
				500 V (2P
				em série)
Capacidade nominal de inter	rupção	Ics	% Icu	
de curto-circuito em serviço				
Apto ao seccionamento				
Categoria de utilização				
Vida (ciclos C-O)	mecânica	1	т.	
	elétrica	415 V	In	
Proteção			unidade de controle relés Vigirex	
Proteção diferencial				
Número de pólos				
Controle	manual		alavanca	
			manopla rotativa	
			direta ou p	orolongada
	elétrico			
Conexões	fixo		conexão fr	rontal
			conexão tr	raseira
Dimensões (mm) L x A x P	fixo, conexã	ão frontal	3P	
Peso (kg)	fixo, conexa	ão frontal	3P	
			•	

Calibres

- NR160F 125 e 160 A ajustáveis de 80 a 100%
- NR250F 200 e 250 A ajustáveis de 80 a 100%
- NR400F 400 A ajustáveis de 40 a 100%
- NR630F 630 A ajustáveis de 40 a 100%

Norma

A gama Compact NR foi concebida com base nas prescrições da NBR IEC 60947-2.

NR160	NR250	NR400	NR630
160	250	400	630
690	690	690	690
6	6	6	6
500	500	500	500
-	-	-	-
F	F	F	F
35	35	40	40
25	25	36	36
20	20	30	30
15	15	25	25
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
75%	75%	75%	75%
A	Α	Α	Α
25.000	15.000	12.000	12.000
10.000	6.000	5.000	4.000
TM-D - A/F	TM-D - A/A	STR23SE - A/A	STR23SE - A/A
3	3	3	3
-	-	-	-
105 x 161 x 86	105 x 161 x 86	140 x 255 x 110	140 x 255 x 110
1,6	1,7	6	6

Compact NR

Disjuntor em caixa moldada

Disjuntores em	Caixa	Moldada	Compact
A 111 1/1 1			

Auxiliares elétricos

Contato auxiliar de posição OF

Contato auxiliar de

sinalização de defeito SD

Contato auxiliar de

sinalização de defeito elétrico SDE

Contato de atuação antecipada

Bobina de desligamento

Bobina de mínima tensão

Módulo de telecomando

Acessórios

Manopla rotativa direta

Dispositivo de travamento por fechadura

Manopla rotativa prolongada

Capa de proteção de terminais

Separadores de fases

Terminal de parafuso

Terminal derivador

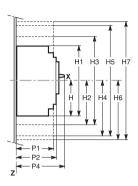
Terminal para conexão traseira

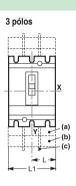
Extensor de terminal

Dispositivo fixo de travamento por cadeado

Dispositivo móvel de travamento por cadeado

Moldura de acabamento




NR160 / NR250	NR400 / NR630
	•
-	-
-	
	-

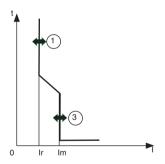
Compact NR

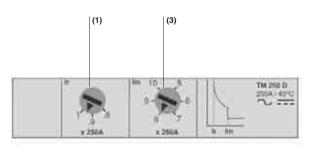
Dimensões Compact NR160 a 630

NR160 a 630

- (a) capa de proteção de terminal curto
- (b) capa de proteção de terminal longo (c) separador de fase

dimensões (mm)


Disjuntor	Н	H1	H2	НЗ	H4	H5	H6
NR160/250F	80,5	161	94	188	160,5	321	178,5
NR400/630F	127,5	255	142,5	285	240	480	237
Tipo	H7	L	L1	L2	P1	P2	P4
NR160/250F	357	52,5	105	140	81	86	111 (1)
NR400/630F	474	70	140	182	95.5	110	168


(1) P4 = 126 mm para NR250F

Proteção para Compact NR 160/250F

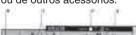
Proteção termomagnética TM-D

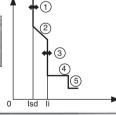
Protege contra sobrecargas através do dispositivo térmico regulável Ir = 0.8 a 1 x In (1). Protege contra curtos-circuitos através do dispositivo magnético, fixo nos NS 100/160 e regulável nos NS 250 Im = 5 a 10 x In (3).

Proteção para Compact NR400/630F

Proteção eletrônica STR 23SE

- proteção LR (longo retardo) contra sobrecargas com valor ajustável, baseada no valor eficaz verdadeiro da corrente, segundo ABNT NBR IEC 60947-2, anexo F:
- □ valor ajustável com 6 posições pré-calibradas de I₀ (0,5 a 1) e ajuste fino Ir com 8 posições (0,8 a 1),
- tempo de disparo não ajustável (2):
- proteção CR (curto retardo) contra sobrecargas de curto retardo:
- □ com valor Isd ajustável (3),
- □ com temporização fixa (4);
- proteção instantânea I contra curtos-circuitos, com valor li fixo (5).


Sinalização


Indicação de carga por LED na face frontal (7):

- aceso: ≥ 90% do valor de ajuste Ir;
- piscante: >105% do valor de ajuste Ir.

Teste

Tomada de teste na face frontal (8), permite conectar mala de ensaio ou caixa de teste para verificar o bom funcionamento do disjuntor após a instalação do disparador ou de outros acessórios.

Qual é o valor de proteção contra sobrecargas de um Compact NS400 equipado com um disparador STR23SE ajustado para lo = 0,5 e Ir = 0,8? Resposta:

nesposia.

valor = 400 x 0,5 x 0,8 = 160 A
Este mesmo disparador, ajustado da
mesma forma, instalado em um NS630
terá um valor do disparo de:

valor = 630 x 0,5 x 0,8 = 250 A

Compact NR

Compact NR160/250 F Com disparador termomagnético TM-D

Tripolares

NR160F

NR250F

	NR160F	NR250F
Calibre (A)	Referências	Referências
125	30761	-
160	30760	-
200	-	31761
250	-	31760

Compact NR400/630 F Com disparador eletrônico STR-23 SE Tripolares

NR630F

	NR400F	NR630F
Calibre (A)	Referências	Referências
400	32740	-
630	-	32940

Compact NS: gama de disjuntores com os mais variados níveis de performance e correntes de 80 a 1600 A, são utilizados nas mais diversas aplicações.

Disjuntor em caixa moldada NS100...250

Disjuntor em Caixa	Moldada	Comp	act NS		
Características ABNT NBI	R IEC 6094	7-2			
Corrente nominal (A)		In	40°C		
Tensão de isolamento nomi	nal (V)	Ui			
Tensão suportável de impul nominal (kV)	SO SO	Uimp			
Tensão de operação nomina	al (V)	Ue	AC 50/60) Hz	
. ,	. ,		DC		
Versão do disjuntor					
Capacidade nominal de inte	errupção	lcu	AC	220/240 V	
máxima em curto-circuito (k	(A rms)		50/60 Hz	380/415 V	
				440 V	
				500 V	
				525 V	
				660/690 V	
			DC	250 V (1P)	
				500 V(2P em série)	
Capacidade nominal de inte	Ics	% Icu			
de curto-circuito em serviço					
Apto ao seccionamento					
Categoria de utilização					
Vida (ciclos C-O)	mecânica				
	elétrica	440 V	In/2		
			In	·	

Proteção

Unidade de controle

Proteção diferencial	dispositivo adicional Vigi				
l Totogao alloronolai	relés Vigirex				
Número de pólos		rnecido em estrutura tripolar			
					
Controle	manual	alavanca			
		manopla rotativa			
		direta ou prolongada			
	elétrico	_			
Conexões	fixo	conexão frontal			
		conexão traseira			
	plug-in	conexão frontal			
	(na base)	conexão traseira			
	extraível	conexão frontal			
	(no chassi)	conexão traseira			
Dimensões (mm) L x A x P	fixo, conexão frontal	2-3/4P			
Peso (kg)	fixo, conexão frontal	3/4P			

Os disjuntores Compact NS, de 100 a 630 A, atendem as prescrições da norma ABNT NBR IEC 60947-2.

	NS1	00		NS160			NS250					
	100				160				250			
	750				750				750			
8	8			8				8				
(690				690				690			
į	500			500				500				
	N	SX	Н	L	N	SX	Н	L	N	SX	Н	L
8	85	90	100	150	85	90	100	150	85	90	100	150
(36	50	70	150	36	50	70	150	36	50	70	150
(35	50	65	130	35	50	65	130	35	50	65	130
	25	36	50	100	30	35	50	70	30	35	50	70
2	22	35	35	100	22	35	35	50	22	35	35	50
8	В	10	10	75	8	10	10	20	8	10	10	20
į	50	70	85	100	50	70	85	100	50	70	85	100
į	50	70	85	100	50	70	85	100	50	70	85	100
	100%			•	100%		•		100%		•	
	A			A				A				
	50.000			40.000			20.000					
	50.000				40.000			20.000				
	30.000				20.00				10.000			
-	TM-D			A/F				A/F				A/A
-	TM-G			A/F	STR2	2SE		A/A	STR2	2SE		A/A
-	STR2	2SE		A/A	STR22GE A/A			STR22GE A/A			A/A	
-	STR2	2GE		A/A	MA -/A			MA			-/A	
Ī	MA			-/A	STR2	2ME		A/F	STR22ME		A/F	
-	STR2	2ME		A/F								
2	2(1), 3,	4			2(1), 3, 4			2(1), 3, 4				
					•							
	_											
	-											
_	_											
_	105 x 161 x 86 / 140 x 16											
	1,6 / 2		00 / 14	TU A IC	1,6 / 2,1			1,6/2	7 1			
1,0 / 2,1				11,0/2	-, '			11,0/2	-, '			

Disjuntor em caixa moldada NS100...250

Disjuntores em Caixa Moldada Compact

Auxiliares elétricos

Contato auxiliar de posição OF

Contato auxiliar de defeito SD

e defeito elétrico SDE

Bobina de desligamento

Bobina de mínima tensão

Módulo de telecomando

Acessórios

Terminais traseiros

Terminal tipo gaiola

Terminais de compressão

Extensões de terminais

Separadores de fases

Capa de proteção de terminais

Manopla rotativa direta

Manopla rotativa prolongada

Dispositivo móvel/fixo de travamento por cadeado

Dispositivo de travamento para módulo de telecomando

Intertravamento mecânico para

disjuntores com alavança/manopla

Moldura de acabamento

Kit plug-in

Kit chassi extraível

NS100	NS160	NS250

Disjuntor em caixa moldada NS400...630

Disjuntor em Caixa M	loldada Co	ompact	NS		
Características ABNT NBR	IEC 60947-2	•			
Corrente nominal (A)		In	40°C		
Tensão de isolamento nomin	Ui				
Tensão suportável de impuls	0	Uimp			
nominal (kV)					
Tensão de operação nominal	(V)	Ue	AC 50/60	Hz	
			DC		
Versão do disjuntor					
Capacidade nominal de inter		lcu	AC	220/240 V	
máxima em curto-circuito (kA	rms)		50/60 Hz	380/415 V	
(0) 11 1 1 1 1 1	/r:			440 V	
(2) Unidade de controle espe disponível para tensões de	cifica			500 V	
operação > 525 V.				525 V	
operação > 525 v.				660/690 V	
			DC	250 V (1P)	
				500 V (2P	
				em série)	
Capacidade nominal de inter de curto-circuito em serviço	rupção	Ics	% Icu		
Apto ao seccionamento					
Categoria de utilização					
Vida (ciclos F-O)	mecânica				
	elétrica 440 V		In/2		
			In		
Proteção Unidade de controle					
Proteção diferencial	dispositivo	adicional \	/igi		
3	relés Vigire				
Número de pólos	1 5 -				
Controle	manual		alavanca		
			manopla rotativa		
			direta ou prolongada		
	elétrico		Junota ou p	7. Ololigada	
Conexões	fixo		conexão frontal		
00.10.000	plug-in (na base)		conexão traseira		
			conexão frontal		
			conexão traseira		
			conexão fi		
	(no chassi)		conexão ti		
Dimensões (mm) L x A x P	fixo, conexa		3/4P	ascila	
Peso (kg)	fixo, conexa		3/4P		
resu (kg)	THEO, COHEX	ao IIUIIIdl	J3/4F		

NS400)		NS630	NS630			
			1				
400			630				
750			750				
8			8				
690			690				
500			500				
N	H	L	N	H	L		
85	100	150	85	100	150		
50	70	150	50	70	150		
42	65	130	42	65	130		
30	50	100	30	50	70		
22	35	100	22	35	50		
10(2)	20(2)	75(2)	10(2)	20(2)	35(2)		
-	85	-	-	85	-		
-	85	-	-	85	-		
100%			100% ⁽³⁾ Tensão de operação ≤ 500 V				
			•				
Α			A				
15.000			15.000				
12.000			8.000				
6.000	_	1.4	4.000	_	1		
STR23S		A/A	STR23S		A/A		
STR53U		A/A	STR53U		A/A		
STR43N	1E	A/A		STR43ME A/A			
<u> </u>			1				
3, 4			3, 4				
			•				
140 x 25	55 x 110 / 185	x 255 x 110	-				
			6,0 / 7,8				

Disjuntor em caixa moldada NS400...630

Disjuntores	s em Caixa	a Moldada	Compact

Auxiliares elétricos

Contato auxiliar de posição OF

Contato auxiliar de defeito SD e defeito elétrico SDE

Bobina de desligamento

Bobina de mínima tensão

Módulo de telecomando

Acessórios

Terminais traseiros

Terminal tipo parafuso

Terminais de compressão

Extensões de terminais

Separadores de fases

Capa de proteção de terminais

Manopla rotativa direta

Manopla rotativa prolongada

Dispositivo móvel/fixo de travamento por cadeado

Dispositivo de travamento para módulo de telecomando

Intertravamento mecânico para

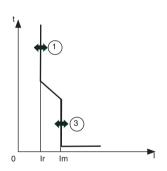
disiuntores com alavanca/manopla

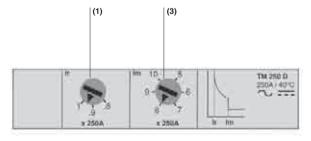
Moldura de acabamento

Moldula de acabamento

Kit plug-in

Kit chassi extraível


NS400	NS630
·	
•	•

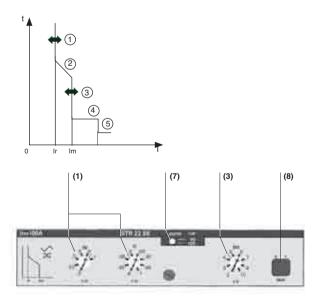

Proteção para Compact NS 100/160/250N/SX/H/L

Proteção termomagnética TM-D

Protege contra sobrecargas através do dispositivo térmico regulável Ir = 0,8 a 1 x In (1).

Protege contra curtos-circuitos através do dispositivo magnético, fixo nos NS 100/160 e regulável nos NS 250 lm = 5 a 10 x ln (3).

Proteção para Compact NS100/160/250N/SX/H/L


Proteção eletrônica STR 22 SE

- Protege contra sobrecargas através do dispositivo LR de longo retardo Ir = 0,4 a 1x In(1).
- Protege contra sobrecargas de curto retardo através do dispositivo de curto retardo CR:

Valor regulável lsd = 2 a 10 x lr (3).

Temporização fixa de 40 ms (4).

- Protege contra curtos-circuitos de grande intensidade de acordo com seu dispositivo INST, de range fixo Ii = 11 x In (5).
- Sinalização por led de % de corrente de ajuste Ir (aceso: 90%, piscante > 105%) (7).
- Conexão de teste para acoplar maleta de ensaio (8).

Proteção para Compact NS 400/630N/H/L

Proteção eletrônica STR 23SE

- proteção LR (longo retardo) contra sobrecargas com valor aiustável, baseada no valor eficaz verdadeiro da corrente. segundo ABNT NBR IEC 60947-2, anexo F:
- □ valor aiustável com 6 posições pré-calibradas de l (0,5 a 1) e ajuste fino Ir com 8 posições (0,8 a 1),
- ☐ tempo de disparo não ajustável (2):
- proteção CR (curto retardo) contra sobrecargas de curto retardo:
- com valor Isd aiustável (3).
- □ com temporização fixa (4):
- proteção instantânea I contra curtos-circuitos, com valor li fixo (5).

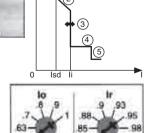
Sinalização

Indicação de carga por LED na face frontal (7):

- aceso: ≥ 90% do valor de aiuste Ir:
- piscante: >105% do valor de ajuste Ir.

Teste

Tomada de teste na face frontal (8), permite conectar mala de ensaio ou caixa de teste para verificar o bom funcionamento do disjuntor após a instalação do disparador ou de outros acessórios.



Qual é o valor de proteção contra sobrecargas de um Compact NS400 equipado com um disparador STR23SE ajustado para lo = 0.5 e lr = 0.8?

Resposta:

valor = 400 x 0.5 x 0.8 = 160 A Este mesmo disparador, ajustado da mesma forma, instalado em um NS630 terá um valor do disparo de:

valor = 630 x 0,5 x 0,8 = 250 A

x lo

x in

Proteção para Compact NS400/630N/H/L

Proteção eletrônica universal STR 53 UE

Sobrecargas (LR):

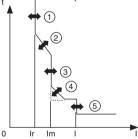
Pré-calibração e calibração final mediante I_0 e Ir similares as do STR 23 SE (1).

Tempo de disparo regulável tr (2).

Sobrecargas de curto retardo (CR):

Valor regulável Isd = 1,5 a 10 lr (3).

Temporização regulável tm, (4) em duas opções:

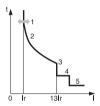

- a) Tempo regulável (3 passos).
- b) Função de l²t ou plana.

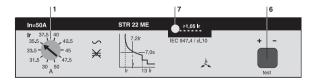
Curtos-circuitos (INST):

Valor regulável de 1,5 a 11 ln (5).

■ Possui várias funções adicionais de sinalização e teste.

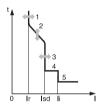
(Consultar os catálogos específicos).

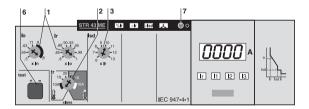



Proteção para Compact NS

Proteção para partidas de motores STR22ME. STR43ME. MA

Disparadores eletrônicos STR22ME (NS100 a 250)

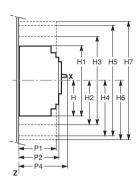

- 1 níveis Longo Retardo
- 2 classe de disparo tipo 10 segundo IEC 60947-4
- 3 níveis Curto Retardo
- 4 temporização Curto Retardo
- 5 níveis Instantâneos
- 6 tomada de teste
- 7 indicação de carga

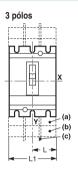

Proteção para Compact NS

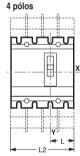
Os disparadores eletrônicos STR22ME, STR43ME e o disparador magnético MA, foram especialmente concebidos para proteção de partidas de motores.

Disparadores eletrônicos STR43ME (NS400 e 630)

- 1 níveis Longo Retardo
- 2 classe de disparo tipo 10 segundo IEC 60947-4
- 3 níveis Curto Retardo
- 4 temporização Curto Retardo
- 5 níveis Instantâneos
- 6 tomada de teste
- 7 indicação de carga




Proteção para Compact NS (cont.)


Compact P	1S80H/100/16	0/250N	Compact NS80H/100/160/250N/H/L/400/630H/L	30H	ے										
Disparadores magnéticos	magnéticos								MA	4					
calibres (A)	65°C	드		1,5	2,5	6,3	12,5	52	20	80	100	150	220	320	200
		_	NS80	1,5	2,5	6,3	12,5	52	20	80					
		_	NS100		2,5	6,3	12,5	52	20		100				
		_	NS160					52	20		100	150			
		_	NS250								100	120	220		
		_	NS400											320	
		_	NS630												200
curto-circuito	valor de disparo	E	ajustável				6 a 14 x ln	4×In					9a 14 x In	1×h	
Disparadore	Disparadores eletrônicos					S	STR22ME	ш				S	STR43ME		
calibres (A)	40°C		드	10	10 12,5 20 25 40 50 80 100 150 220	25 4	10 20	80	00 150	220	120	200	_	_	200
sobrecarga	valor de d	valor de disparo (A)	lr ajustável		9,0	3a1x	In (10	0,6 a 1 x In (10 valores)	·		0,4	a 0,8 x	0,4 a 0,8 x In (40 valores)	valores	
)	classe de deslig.	deslig.	+				10					10,	10A 10 20		
	tempo de	tempo de disparo (s)					lixo					·æ	ajustável		
			tr a 1,5 x lr			12	120 a 320	0		,	144 a 198		270 a 357		433 a 595
			a 6 x lr				6 a 15				5,8 a 7,3		10,9 a 13,1 17,4 a 21,8	17,4 8	1 21,8
			a 7,2 x lr				4 a 10				4 a 5		7,3a9,1	12 8	12 a 15
curto-circuito	valor de d	valor de disparo (A)	<u>m</u>			fixo / 1	fixo / 13 x Ir ±20%	±20%		מ	ajustável (8 valores) / 6 a 13 x lr ±15%	(8 valor	es) / 6 s	a 13 x lı	. ±15%
curto retardo	(ms) tempo	s)			≥ 60 (te	empo t	otal de	s 60 (tempo total de interrupção)	pção)		s 60 (t	tempo to	< 60 (tempo total de interrupção)	nterrupç	(jao
curto-circuito ins	curto-circuito instantâneo valor de disparo (A)	isparo (A)	li fixo				15 x In					13	13 x lr máx.	J	
falta de fase	tempo de	tempo de disparo (s)				enti	entre 3, 5 e 6	9 e				4	4 ±10%		

Dimensões Compact NS100 a 630

NS100 a 630

- (a) capa de proteção de terminal curto
- (b) capa de proteção de terminal longo
- (c) separador de fase

dimensões (mm)

Disjuntor	Н	H1	H2	НЗ	H4	H5	H6
NS100 a 250N/H/L	80,5	161	94	188	160,5	321	178,5
NS400/630N/H/L	127,5	255	142,5	285	240	480	237

Tipo	H7	L	L1	L2	P1	P2	P4
NS100 a 250N/H/L	357	52,5	105	140	81	86	111 (1)
NS400/630N/H/L	474	70	140	182	95,5	110	168

(1) P4 = 126 mm para NS250N/H/L

Compact NS100/160/250N Tripolares – TMD - STR22SE

NS100N

NS160N

NS250N

NS100N

	Com proteção t	ipo
	TM-D	STR22SE
Calibre (A)	Referências	Referências
16	29635	-
25	29634	-
32	29637	-
40	29633	29772
50	29636	-
63	29632	-
80	29631	-
100	29630	29770

NS160N

14010014			
125	30631	-	
160	30630	30770	

NS250N

11020011			
200	31631	-	
250	31630	31770	

NOTA:

1/164

Icu:(kA) 220/240V = 85kA 380V = 36kA 440 = 35kA

Compact NS100/160/250N Tripolares – MA / STR22ME

NS100N

NS160N

NS250N

NS100N

	Com proteção t	ipo
	MA	STR22ME
Calibre (A)	Referências	Referências
2,5	AA017	-
6,3	AA018	-
12,5	AA019	-
20	-	AA031
25	AA020	AA032
40	-	AA033
50	AA021	AA034
80	-	AA035
100	AA022	AA036

NS160N

150	AD003	AD005
NS250N		
11023011		
220	AG003	AG005

NOTA:

Icu:(kA) 220/240V = 85kA 380/415V = 36kA 440V = 35kA 500V = 25kA

Compact NS100/160/250SX Tripolares – TMD / STR22SE

NS100SX

NS160SX

NS250SX

NS100SX

	Com proteção	tipo
	TM-D	STR22SE
Calibre	Referências	Referências
16	35857	-
25	35856	-
32	35855	-
40	35854	35971
50	35853	-
63	35852	-
80	35851	-
100	35850	35970

NS160SX

14010007		
125	35891	-
160	35890	35980

NS250SX

200	35931	-
250	35930	35990

NOTA:

Icu:(kA) 220/240V = 90kA 380 a 440V = 50kA

Compact NS100/160/250SX Tripolares – MA / STR22ME

NS100SX

NS160SX

NS250SX

NS100SX

11010001			
	Com proteção	Com proteção tipo	
	MA	STR22ME	
Calibre	Referências	Referências	
2,5	AP017	-	
6,3	AP018	-	
12,5	AP019	-	
20	-	AP031	
25	AP020	AP032	
40	-	AP033	
50	AP021	AP034	
80	-	AP035	
100	AP022	AP036	

NS160SX

NS250SX

220	AR003	AR005

NOTA:

Icu:(kA) 220/240V = 90kA 380/415V = 50kA 440V = 50kA 500V = 36kA

Compact NS100/160/250H Tripolares – TMD / STR22SE

NS100H

NS160H

NS250H

NS100H

	Com proteção tipo	
	TM-D	STR22SE
Calibre (A)	Referências	Referências
16	29675	-
25	29674	-
32	29677	-
40	29673	29792
50	29676	-
63	29672	-
80	29671	-
100	29670	29790

N I	\sim	60	
I		ını	н

125	30671	
160	30670	30790
NS250H		
200	31671	
250	31670	31790

NOTA:

Icu:(kA) 220/240V = 100kA 380V/415V = 70kA 440V = 65kA

Compact NS100/160/250H Tripolares – MA / STR22ME

NS100H

NS160H

NS250H

NS100H

	Com proteção tipo	
	MA	STR22ME
Calibre (A)	Referências	Referências
2,5	AB017	-
6,3	AB018	-
12,5	AB019	-
20	-	AB031
25	AB020	AB032
40	-	AB033
50	AB021	AB034
80	-	AB035
100	AB022	AB03617

NS160H

110011		
150	AE003	AE005
NS250H		

AH003

NOTA:

220

Icu:(kA) 220/240V = 100kA 380V/415V = 70kA 440V = 65kA 500V = 50kA AH005

Compact NS100/160/250L Tripolares – TMD / STR22SE

NS100L

NS160L

NS250L

NS100L

	Com proteção	tipo
	TM-D	STR22SE
Calibre	Referências	Referências
16	29715	-
25	29714	-
32	29717	-
40	29713	29812
50	29716	-
63	29712	-
80	29711	-
100	29710	29810

R I	0	-	\sim 1	
Ν	51	16	111	

INCTOOL			
125	30711	-	
160	30710	30810	

NS250L

200	31711	-	
250	31710	31810	

NOTA:

Icu:(kA) 220 a 415V = 150kA 440V = 150kA

Compact NS100/160/250L Tripolares – MA / STR22ME

NS100L

NS160L

NS250L

NS100L

	Com proteção tipo	
	MA	STR22ME
Calibre	Referências	Referências
2,5	AC017	-
6,3	AC018	-
12,5	AC019	-
20	-	AC031
25	AC020	AC032
40	-	AC033
50	AC021	AC034
80	-	AC035
100	AC022	AC036

NS160L

150	AF003	AF005

NS250L

110000			
220	AI003	AI003	

NOTA:

Icu:(kA) 220/240V = 150kA 380/415V = 150kA 440V = 130kA 500V = 100kA

Compact NS400/630N Tripolares – STR23SE / STR53UE

NS400N

NS630N

Ν	IS4	ററ	Ν

	Com proteção	Com proteção tipo		
	STR23SE	STR53UE		
Calibre	Referências	Referências		
150	32719	32725		
250	32707	32713		
400	32693	32699		

<u>NS630N</u>

<u>630</u> **32893 32899**

Compact NS400/630H Tripolares – STR23SE / STR53UE

THE STATE OF THE S

NS400H

NS630H

NS400H

Com proteção tipo		
STR23SE	STR53UE	
Referências	Referências	
32721	32727	
32709	32715	
32695	32701	
	STR23SE Referências 32721 32709	

NS630H

11000011		
630	32895	32901

1/172

Compact NS400/630N Tripolares - MA / STR43ME

NS400N

NS630N

Ν	2.0	:4	n	n	٨

N3400N			
	Com proteção tipo		
	MA	STR43ME	
Calibre	Referências	Referências	
400	-	AJ011	
NS630N			

630	-	AMUTT
<u> </u>		

Compact NS400/630H Tripolares - MA / STR43ME

NS400H

NS630H

NS400H

	Com proteção	Com proteção tipo		
	MA	STR43ME		
Calibre	Referências	Referências		
320	32750	-		
400	-	AK011		

NS630H

500	32950	-
630	-	AN011

Compact NS400/630L Tripolares – STR22SE / STR53UE

NS630L

NS400L

Com proteção tipo		
STR23SE	STR53UE	
Referências	Referências	
32723	32729	
32711	32717	
32697	32703	
	STR23SE Referências 32723 32711	

NS630L

110000			
630	32897	32903	

NOTA:

Icu:(kA)				
	N	Н	L	
220/240V	85	100	150	
380/415V	50	70	150	
440V	42	65	130	

Compact NS400/630L Tripolares – MA / STR43ME

NS630L

NS400L

	Com proteção tipo			
	MA STF			
Calibre	Referências	Referências		
320	37751	-		
400	-	AL011		

NS630L

320	32951	-
630	-	AO011

NOTA:

1001(101)			
	N	Н	L
220/240V	85	100	150
380/415V	50	70	150
440V	42	65	130

Disjuntor em caixa moldada NS630b...800

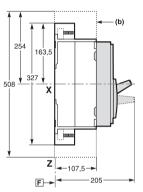
Disjuntor em Caixa I	Moldada	Compa	ct NS	
Número de pólos				
Características ABNT NBF	R IEC 6094	7-2		
Corrente nominal (A)		In	50°C	
,			65°C	
Tensão de isolamento nomi	nal (V)	Ui		
Tensão suportável de impulso		Uimp		
Tensão de operação nomina		Ue	AC 50/60) Hz
, ,	,		DC	
Versão do disjuntor			•	
Capacidade nominal de inte	rrupção	lcu	AC	220/240 V
máxima em curto-circuito (k			50/60 Hz	380/415 V
	,			440 V
				500/525 V
				660/690 V
Capacidade nominal de inte	rruncão	lcs	% Icu	1000/000
de curto-circuito em serviço		.00	/ 0 .00	
Corrente suportável de curt	a duração	lcw	0,5 s	
(kA rms) V CA 50/60 Hz	a daração	1011	1 s	
Proteção instantânea integr	ada		kA crista	+10%
Apto ao seccionamento	uuu		III/ CI ISIU	11070
Categoria de utilização				
Vida (ciclos C-O)	mecânica			
vida (cicios C-O)	elétrica	440 V	In/2	
	eletitica	440 V	In	
		690 V	In/2	
		090 V	In	
Grau de poluição			1111	
	www.do.o.NIC	MAA AD1		
Características elétricas sec Poder de corte a 60 Hz (kA)		IVIA AD I		240 V
Poder de corte a 60 Hz (KA)				
				480 V
Duntania a usadini a				600 V
Proteção e medições				
Disparadores			la: ./ .	
Proteção contra sobrecarga				Ir (ln x)
Proteção contra curto-circuito				Isd (Ir x)
		<u>stantânea</u>		li (ln x)
Proteção contra falta à terra			Ajustável	lg (ln x)
Proteção diferencial residua	ıl		Ajustável	l∆n
Seletividade lógica			•	ZSI
Medidas de corrente				•
Tipo de disjuntor				
Conexões	fixo		conexão	frontal
Concaccs	IIXO		conexão	
	autra (ual			
	extraível	\	conexão	
D: ~ / \	(no chassi		conexão	traseira
Dimensões (mm)	fixo, conex	ao trontal	3P	
LxAxP			4P	
Peso (kg)	fixo, conex	ao frontal	3P	
			4P	
1/170	Calana			

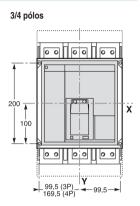
NS630b	NS800			
3-4	3-4			
630	800			
630	800			
800	800			
8	8			
690	690			
-	-			
LB	N	H	L	LB
200	50	70	150	200
200	50	70	150	200
200	50	65	130	200
100	40	50	100	100
75	30	42	25	75
100%	100%	75%	100%	100%
7	25	25	10	7
5	19,2	19,2	7	5
<u>5</u>	40	40	/	<u> </u>
•		140	-	-
Α	В	В	Α	Α
10000	Ь	D	ĮA.	IA .
4000	6000	6000	4000	4000
3000	5000	5000	3000	3000
3000	4000	4000	3000	3000
2000	2000	2000	2000	2000
III	III	12000	12000	2000
LB	N	Н	L	LB
200	50	65	125	200
200	35	50	100	200
100	25	50	-	100
100	120	100		1100
Micrologic 2.0)	Micrologic	5.0	Micrologic 2.0 A
0.4 - 1 ln		0,4 - 1		0.4 - 1 ln
-		1,5 - 10	İr	-,
1,5 - 10 lr		2 - 15 ln e		2 - 15 In e OFF
-			011	-
-		_		-
-		-		
_		_		
LB	N	Н	L	LB
327 x 210 x		, 		,
327 x 280 x				
14				
18				
	<u> </u>	Calanat		4/477

Disjuntorem caixa moldada NS1000...1600

Disjuntor em Caixa I	Moldada	Compa	ct NS	
Número de pólos				
Características ABNT NBF	R IEC 6094	7-2		
Corrente nominal (A)		In	50°C	
,			65°C	
Tensão de isolamento nomi	nal (V)	Ui		
Tensão suportável de impulso		Uimp		
Tensão de operação nomina		Ue	AC 50/60) Hz
	(- /		DC	
Versão do disjuntor				
Capacidade nominal de inte	rruncão	lcu	AC	220/240 V
máxima em curto-circuito (k			50/60 Hz	380/415 V
maxima om oanto onoanto (n	, , , , , , ,		00,001.12	440 V
				500/525 V
				660/690 V
Capacidade nominal de inte	rruncão	lcs	% Icu	000/030 V
de curto-circuito em serviço		103	/o Icu	
Corrente suportável de curt	a duração	Icw	0,5 s	
(kA rms) V CA 50/60 Hz	a duração	ICW	1 s	
Proteção instantânea integr	ada		kA crista	±10°/
Apto ao seccionamento	aua		INA CIISIA	<u> </u>
Categoria de utilização				
Vida (ciclos C-O)	mecânica	440 \/	1 /0	
	elétrica	440 V	In/2	
			In	
		690 V	IN/2	
			ln	
Grau de poluição				
Características elétricas seg		MA AB1		
Poder de corte a 60 Hz (kA)				240 V
				480 V
				600 V
Proteção e medições				
Disparadores				
Proteção contra sobrecarga				Ir (ln x)
Proteção contra curto-circuito	cur	to retardo	Ajustável	Isd (Ir x)
	in	stantânea	Ajustável	li (ln x)
Proteção contra falta à terra				Ig (ln x)
Proteção diferencial residua			Ajustável	
Seletividade lógica			rijustavci	ZSI
Medidas de corrente				231
Tipo de disjuntor				
	r.		~	f 1.1
Conexões	fixo		conexão	
			conexão	
	extraível		conexão	frontal
	(no chassi)	conexão	traseira
Dimensões (mm)	fixo, conex		3P	
LxAxP	-,		4P	
Peso (kg)	fixo, conex	ão frontal		
			4P	
4			1.55	· · · · · · · · · · · · · · · · · · ·
4/470	Calana	Editor.		

NS1000			NS1250		NS1600		
3-4			3-4		3-4		
1000			1250		1600		
1000			1250		1510		
800			800		800		
8			8		8		
690			690		690		
-			<u> </u> -		T-		
N	Н	L	N	H	N	H	
50	70	150	50	70	50	70	
50	70	150	50	70	50	70	
50	65	130	50	65	50	65	
40	50	100	40	50	40	50	
30	42	25	30	42	30	42	
100%	75%	100%	100%	75	75%	50%	
100 /0	7 5 70	10070	10070	1,2	1070	30 70	
25	25	10	25	25	25	25	
19,2	19,2	7	19,2	19,2	19,2	19,2	
40	40	-	40	40	40	40	
40	40		1 40	140	40	140	
	В	Α	В	В	В	В	
В	D	ĮA.	10000	ĮΒ	10000	ĮD.	
0000	0000	14000					
6000	6000	4000	5000		5000		
5000	5000	3000	4000		2000		
4000	4000	3000	3000		2000		
2000	2000	2000	2000		1000		
<u> III </u>			III		III		
	Н	L	N	Н	N	Н	
50	65	125	50	65	50	65	
35	50	100	35	50	35	50	
25	50	-	25	50	25	50	
Micrologic 2.0 A	Microl	ogic 5.0 A	Microl	ogic 6.0 A	Micro	logic 7.0 A	
0,4 - 1 ln	0.4	1 - 1 ln	0.4	4 - 1 ln	0.	4 - 1 ln	
0,4 - 1 111		- 10 lr		- 10 lr		5 - 10 lr	
-	1,5	- 10 11			2 - 15 In e OFF		
-					2 - 1	5 In e OFF	
2 - 15 ln e OFF		In e OFF		In e OFF	2 - 1	5 In e OFF -	
2 - 15 In e OFF -		In e OFF		In e OFF ■	2 - 1	-	
2 - 15 In e OFF - -		In e OFF - -		In e OFF ■ -	2 - 1	5 In e OFF	
2 - 15 In e OFF - -		In e OFF		In e OFF -	2 - 1	-	
2 - 15 In e OFF	2 - 15	In e OFF	2 - 15	In e OFF -		-	
- 2 - 15 In e OFF - - - N	2 - 15 H	In e OFF	2 - 15 N	In e OFF	N	- 	
2 - 15 In e OFF	2 - 15	In e OFF	2 - 15 N	In e OFF - H H	N •	- - - - - - - - - - - -	
- 2 - 15 In e OFF - - - N	2 - 15	In e OFF	2 - 15 N	In e OFF	N	- 	
2 - 15 In e OFF - - - N	2 - 15	In e OFF	2 - 15 N	In e OFF - H H	N •	- - - - - - - - - - - -	
2 - 15 In e OFF - - - N	2 - 15	In e OFF	2 - 15 N	In e OFF	N ■	-	
2 - 15 In e OFF N	2 - 15	in e OFF L	2 - 15	In e OFF	N	- - - - - - - - - - - - - - - - - - -	
2 - 15 In e OFF N	2 - 15	in e OFF L	2 - 15	In e OFF	N	- - - - - - - - - - - - - - - - - - -	
2 - 15 In e OFF N - 327 x 210 x 147	2 - 15	in e OFF L	2 - 15	In e OFF	N	- - - - - - - - - - - - - - - - - - -	


Acessórios para disjuntores Compact NS630b a 1600


Acessórios disponíveis para Compact NS800 a 1600
Auxiliares elétricos
Contato auxiliar de posição OF
Contato auxiliar de defeito SD e defeito elétrico SDE
Contato de posição (conectado/desconectado/teste)
Bobina de desligamento
Bobina de mínima tensão
Temporizador para bobina de mínima tensão
Acessórios
Terminais traseiros verticais/horizontais
Terminal de parafuso
Extensões de terminais
Separadores de fases
Manopla rotativa direta
Manopla rotativa prolongada
Dispositivo fixo/móvel de travamento
da alavanca por cadeado
Contador de manobras CDM
Intertravamento mecânico para disjuntores com manopla
rotativa prolongada
Prolongador de manopla
Moldura de acabamento
Tampa transparente
Acessórios do chassi (disjuntor extraível)
Travamento na posição "desconectado"
Travamento da porta com disjuntor conectado
Travamento do encaixe da manivela e porta aberta

Dispositivos contra enganos Tampa dos bornes auxiliares

Dimensões Compact NS800 a 1600

NS800 a 1600

- E referência de fixação
- (b) capa de proteção de terminal longo

Micrologic

Unidades de controle Micrologic

Segurança de funcionamento

A integração das funções de proteção num componente eletrônico, ASIC, comum a todas as unidades de controle, garante grande confiabilidade e imunidade às perturbações eletromagnéticas.

No Micrologic A, P e H, as funções complementares são controladas por um microprocessador independente.

Denominação dos Micrologic

dos Micrologia

X Y Z X: tipo de proteção

- 2 p/proteção básica
- 5 p/proteção seletiva
- 6 p/proteção seletiva + terra
- 7 p/proteção seletiva + diferencial

Y: geração da unidade de controle Identificação das gerações. "0" significa a primeira geração.

Z: tipo de medição

- A para "amperímetro"
- P para "potência"
- H para "harmônico"

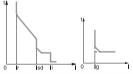
Proteções de corrente

Micrologic 2: proteção básica

Proteção:

Longo Retardo + Instantâneo

Micrologic 5: proteção seletiva

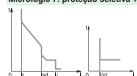


Proteção:

Longo Retardo

+ Curto Retardo + Instantânego

Micrologic 6: proteção seletiva + terra


Proteção:

Longo Retardo

+ Curto Retardo + Instantâneo

+ Terra

Micrologic 7: proteção seletiva + diferencial

Proteção:

Longo Retardo + Curto Retardo

+ Instantâneo

+ Diferencial

Medições e outras proteções

A: amperímetro

- I1, I2, I3, IN, Iterra, Idiferencial e valores máximos destas medições
- sinalização dos defeitos
- valores dos ajustes em ampères e segundos.

2.0

2.0 A

5.0

5.0 A

6.0 A

7.0 A

21 Masterpact

Disjuntores abertos em baixa tensão

As novas gamas de disjuntores Masterpact são compostas de duas famílias:

- Masterpact NT, o menor disjuntor aberto do mundo, para correntes de 630 a 1600 A,
- Masterpact NW, em dois tamanhos de estrutura, um para correntes de 800 a 4000 A e o outro para correntes de 4000 a 6300 A.

Masterpact NT De 630 a 1600 A

Masterpact NW De 800 a 4000 A

Masterpact NW De 4000 a 6300 A

Disjuntores abertos em baixa tensão

Os disjuntores abertos da gama Masterpact NT asseguram a proteção dos circuitos e das cargas:

- correntes nominais de 630 A a 1600 A
- um só tamanho de estrutura para 630 A a 1600 A
- tri e tetrapolar
- versões fixa e extraível
- 4 tipos de disparadores eletrônicos, com valores RMS, disponíveis como padrão
- ajustagem do longo retardo de 0,4 a 1 ln, por comutadora ou teclado, no local ou remoto
- tensão de operação nominal até 690/1000 Vca (50/60 Hz)
- capacidade nominal de interrupção de 42, 50 e 150 KA / 220 a 415 Vca
- interruptores-seccionadores Masterpact tipos HA
- funções eletrônicas para gestão de energia e análise da qualidade da energia
- entrada da energia pelos terminais superiores ou inferiores
- mecanismo de acumulação de energia para o fechamento rápido dos contatos.

Uma gama completa de acessórios e auxiliares elétricos:

- inversores de fontes, manuais ou automáticos, para 2 ou 3 disjuntores
- acionamento motorizado
- bobina de mínima tensão (MN e MNR)
- bobina de desligamento (MX)
- bobina de fechamento (XF)
- contatos auxiliares (OF, SD, SDE, PF, etc.)
- botão de comando para fechamento elétrico (BPFE)
- bloqueios por cadeados e fechaduras.

A gama Masterpact NT está em conformidade com as principais normas internacionais e certificada pelas principais organizações internacionais:

- IFC 60947-1
- ABNT NBR IFC 60947-2
- IEC 68-2-30 para tropicalização grau 2
- **UL489**
- ANSI C37-50.

Características comuns

Tensão de isolamento nominal (V)

Número de pólos

Masterpact NT06 a NT10

Tensão suportável de impulso nominal (kV)	Uimp	12	
Tensão de operação nom. (V CA 50/60 Hz)		690/1000	
Apto ao seccionamento	NBR IEC 6094	7-2 —×ı _	
Grau de poluição	IEC 60664-1	3	
Características dos disjuntores segundo	ABNT NBR IE	C 60947-2	
Corrente nominal (A) Calibre do 4º pólo (A)	In	a 40°C/50°C ⁽¹⁾	
Calibre dos sensores (A)			
Tipo do disjuntor			
Capacidade nominal de interrupção	lcu	220/415 V	
máxima em curto-circuito (kA rms)		440 V	
V CA 50/60 Hz		525 V	
		690 V	
		1000 V	
Capacidade nominal de interrupção	Ics	% Icu	
de curto-circuito em serviço (kA rms)			
Categoria de utilização			
Corrente suportável de curta duração nomir	nal Icw	0,5 s	
(kA rms) V ČA 50/60 Hz		1 s	

Hi

3-4

3 s

220/415 V

440 V

525 V

lcm

1000

690 V 1000 V Tempo de interrupção (ms) entre comando de disparo e a extinção de arco

Tempo de fechamento (ms)

em curto-circuito (kA crista)

V CA 50/60 Hz

Características elétricas segundo a NEMA AB1⁽⁴⁾
Capacidade de interrupção (kA) 240 V
V CA 50/60 Hz 480 V
600 V

Vida elétrica e mecânica segundo IEC 60947-2/3 a In/le

Vida Mecânica Sem manutenção

Proteção instantânea integrada (kA crista ±10%)
Capacidade nominal de estabelecimento

Ciclos C-O x 1000
Tipo de disjuntor

 Corrente nominal
 In (A)

 Ciclos C-O x 1000
 Elétrica
 Sem manutenção
 440 V⁽⁴⁾

ABNT NBR IEC 60947-2 690 V 1000 V

50°C: com terminais para conexão traseira verticais.
 Consultar o valor de In para outros tipos de terminais de conexão.
 Disiuntor limitador.

Escolha do sensor						
Calibre do sensor (A)	250 ⁽⁵⁾	400	630			
Ajuste do valor Ir (A)	100 a 250	160 a 400	250 a 630			

NT10

1000

(5) Para disjuntor NT02, favor consultar nosso Call Center 0800 7289 110

NT08

800

000			800	1.000	
630				1000	
400 a 6	30		400 a 800	400 a 1000	
H1	H2	L1 ⁽²⁾			
42	50	150			
42	50	130			
42	42	100			
42	42	25			
-	-	-			
100%					
В	В	Α			
42	36	10			
42	36	-			
24	20	-			
-	90	10 x In ⁽³)		
88	105	330			
88	105	286			
88	88	220			
88	88	52			
-	-	-			
25	25	9			
< 50					
42	50	150			
42	50	100			
42	42	25			

12,5

NT06

630

H1	H2	L1	H1	H2	L1	H1	H2	L1
630			800 1000					
6	6	3	6	6	3	6	6	3
3	3	2	3	3	2	3	3	2
-	-	_	-	_	-	-	-	l <u>-</u>

- (3) Sistema SELLIM.
- (4) Disponível para 480 V NEMA.

Características comuns

Tensão de isolamento nominal (V)

Número de pólos

Masterpact NT12 a NT16

Tensão suportável de impulso nominal (kV)	Uimp	12
Tensão de operação nom. (V CA 50/60 Hz)	Ue	690/1000
Apto ao seccionamento	NBR IEC 6094	7-2 —×-
Grau de poluição	IEC 60664-1	3
Características dos disjuntores segundo	ABNT NBR IE	C 60947-2
Corrente nominal (A) Calibre do 4º pólo (A)	In	a 40°C/50°C ⁽¹⁾
Calibre dos sensores (A)		
Tipo do disjuntor		
Capacidade nominal de interrupção	lcu	220/415 V
máxima em curto-circuito (kA rms)		440 V
V CA 50/60 Hz		525 V
		690 V
		1000 V
Capacidade nominal de interrupção	lcs	% Icu
de curto-circuito em serviço (kA rms)		
Categoria de utilização		
Corrente suportável de curta duração nomina	al Icw	0,5 s
(kA rms) V CA 50/60 Hz		1 s
		3 s
Proteção instantânea integrada (kA crista ±1	0%)	

Hi

3-4

lcm

220/415 V

440 V

525 V 690 V 1000 V

1000

Tempo de interrupção (ms) entre comando de disparo e a extinção de arco Tempo de fechamento (ms)

Características elétricas segundo a NEMA AB1(2)

Capacidade nominal de estabelecimento

em curto-circuito (kA crista)

V CA 50/60 Hz

 Capacidade de interrupção (kA)
 240 V

 V CA 50/60 Hz
 480 V

 600 V

Vida elétrica e mecânica segundo IEC 60947-2/3 a In/le

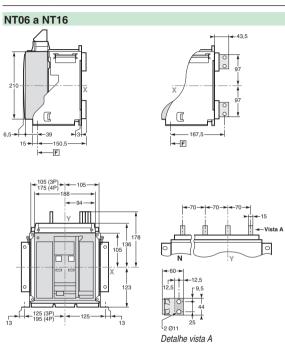
Vida Mecânica Sem manutenção Ciclos C-O x 1000

Tipo de disjuntor

Corrente nominal In (A)
Ciclos C-O x 1000 Elétrica Sem manutenção 440 V⁽⁴⁾

ABNT NBR IEC 60947-2 690 V 1000 V

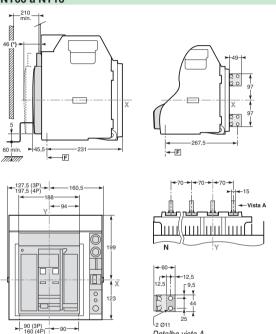
50°C: com terminais para conexão traseira verticais.
 Consultar o valor de In para outros tipos de terminais de conexão.
 Disponível para 480 V NEMA.


Escolha do sens	or			
Calibre do sensor (A)	800	100	1250	1600
Aiuste do valor Ir (A)	320 a 800	400 a 1000	500 a 1250	640 a 1600

NT12		NT16	
1250		1600	
1250		1600	
630 a 1250		800 a 1600	
H1	H1		
42	50		
42	50		
42	42		
42	42		
-	-		
100%			
В	В		
42	36		
-	36		
24	20		
-	90		
88	105		
88	105		
88	88		
88	88		
-	-		
25	25		
< 50			
42	50		
42	50		
42	42		
12,5			
H1	H2	H1	H2
1250		1250	
6	6	6	6
3		3	3
-	-	-	-

Acessórios disponíveis para Masterpact NT

Acessórios disponíveis para Masterpact NT
Auxiliares elétricos
Contato auxiliar de posição OF
Contato auxiliar de defeito SD e defeito elétrico SDE
Contato de posição (conectado/desconectado/teste)
Bobina de abertura
Bobina de fechamento
2ª bobina de abertura
Bobina de mínima tensão
Botão de fechamento elétrico
Rearme a distância após defeito
Contato de sinalização pronto para fechar
Temporizador para bobina de mínima tensão
Motorredutor
Acessórios
Terminais traseiros verticais/horizontais
Terminal para conexão frontal
Extensões de terminais
Separadores de fases
Bloqueio de acesso aos botões
Travamento do disjuntor na posição aberto
Contador de manobras CDM
Intertravamento por barras/cabos
Moldura de acabamento
Tampa transparente
Acessórios do chassi (disjuntor extraível)
Travamento na posição "desconectado"
Travamento da porta com disjuntor conectado
Travamento do encaixe da manivela e porta aberta
Dispositivo contra enganos
Tampa dos bornes auxiliares
Tampa das câmaras de extinção


Dimensões Masterpact NT06 a 16 fixo

Conexão traseira vertical dimensões (mm)

Dimensões Masterpact NT06 a 16 extraível

NT06 a NT16

Conexão traseira vertical dimensões (mm)

Detalhe vista A

Disjuntores abertos em baixa tensão

Os disjuntores abertos da gama Masterpact NW asseguram a proteção dos circuitos e das cargas:

- correntes nominais de 800A a 6300A
- um só tamanho de estrutura para 800A a 4000A
- tri e tetrapolar
- versões fixa e extraível
- 4 tipos de disparadores eletrônicos, com valores RMS, disponíveis como padrão
- ajustagem do longo retardo de 0,4 a 1 ln, por comutadora ou teclado, no local ou remoto
- tensão de operação nominal até 690/1150 Vca (50/60 Hz)
- a capacidade nominal de interrupção de 42 a 150 kA / 220 a 415 Vca
- interruptores-seccionadores Masterpact tipos NA, HA e HF
- funções eletrônicas para gestão de energia e análise da qualidade da energia
- entrada da energia pelos terminais superiores ou inferiores
- mecanismo de acumulação de energia para o fechamento rápido dos contatos.

Uma gama completa de acessórios e auxiliares elétricos:

- inversores de fontes, manuais ou automáticos, para 2 ou 3 disjuntores
- acionamento motorizado
- bobina de mínima tensão (MN e MNR)
- bobina de desligamento (MX)
- bobina de fechamento (XF)
- contatos auxiliares (OF, SD, SDE, PF, etc.)
- botão de comando para fechamento elétrico (BPFE)
- bloqueios por cadeados e fechaduras.

A gama Masterpact NW está em conformidade com as principais normas internacionais e certificada pelas principais organizações internacionais:

- IFC 60947-1
- ABNT NBR IFC 60947-2
- IEC 68-2-30 para tropicalização grau 2
- UL489
- ANSI C37-50.

Masterpact NW08 a NW20

Masterpact NVV06 a NVV20		
Características comuns		
Número de pólos	3	3-4
Tensão de isolamento nominal (V) Ui	1	1000/1250
Tensão suport. de impulso nominal (kV) Uimp	1	12
Tensão operação nom. (V CA 50/60 Hz) Ue	(590/1150
Apto ao seccionamento NBR IEC 609	47-2 -	—XI
Grau de poluição IEC 60664-1		4(1000V)/3(1250V)
Características dos disjuntores segundo ABNT NE	BR IE	C 60947-2
Corrente nominal (A)	In	a 40°C/50°C(1)
Calibre do 4º pólo (Á)		
Calibre dos sensores (A)		
Tipo do disjuntor		
Capacidade nominal de interrupção	lcu	220/415/440 V
máxima em curto-circuito (kA rms)		525 V
V CA 50/60 Hz		690 V
		1150 V
Capacidade nominal de interrupção	lcs	% Icu
de curto-circuito em serviço (kA rms)		
Categoria de utilização		
Corrente suportável de curta duração nominal	lcw	1 s
(kA rms) V CA 50/60 Hz		3 s
Proteção instantânea integrada (kA crista ±10%)		
Capacidade nominal de estabelecimento	Icm	220/415/440 V
em curto-circuito (kA crista)		525 V
V CA 50/60 Hz		690 V
		1150 V
Tempo de interrupção (ms) entre comando de disparo	eae	xtinção de arco
Tempo de fechamento (ms)		
Características elétricas segundo a NEMA AB1		
Capacidade de interrupção (kA)		240/480 V
V CA 50/60 Hz		600 V
Características dos disjuntores sem proteção:		
Desligamento por disparadores segundo ABNT NE	SK IE	C 60947-2
Tipo de disjuntor	_	000 0001/
Capac. nom. interrupção máx. (kA rms) V CA 50/60 Hz	<u>lcu</u>	220690 V
Cap. nom. interrupção de curto-circuito em serviço (kA rms)	lcs	% Icu
Corrente suportável de curta duração nominal (kA rms)	Icw	<u>1 s</u>
D		3 s
Proteção contra sobrecarga e curto-circuito com relé o		
proteção contra curto-circuito, máximo tempo de retar		
Capacidade nominal de estabelecimento em	Icm	220690 V
curto-circuito (kA crista) V CA 50/60 Hz		
Vida elétrica e mecânica segundo IEC 60947-2/3 a	In/le	. ~
Vida Mecânica		manutenção
Ciclos C-O x 1000	Sem	manutenção
Tipo de disjuntor		
Corrente nominal	In (A	1)
Ciclos C-O x 1000 Elétrica Sem manuteno	ção	440 V
ABNT NBR IEC 60947-2	•	690 V
ADIN I NUIT IEO 00347-2		1150 V
		1 1 0 0 V

(1) 50°C: com terminais p/conexão traseira verticais. Consultar o valor de In para outros tipos de terminais de conexão.

Escolha do sens	sor					
Calibre do sensor (A)	250 ⁽⁴⁾	400	630	800	100	1250
Ajuste do valor Ir (A)	100 a	160 a	250 a	320 a	400 a	500 a
	250	400	630	800	1000	1250

⁽⁴⁾ Para disjuntor NW02, favor consultar nosso Call Center 0800 7289 110

800 800	1000 1000	1250 1250	1600 1600		2000				
400 a	400 a	630 a	800 a 1	1600	1000 a	2000			
800	1000	1250							
N1	H1	H2	L1 ⁽²⁾	H10	H1	H2	H3	L1 ⁽²⁾	H10
42	65	100	150	-	65	100	150	150	-
42	65	85	130	-	65	85	130	130	-
42	65	85	100	-	65	85	100	100	- -
-	-	-	-	50	-	-	-	-	50
100%					100%				
В					В				
42	65	85	30	50	65	85	65	30	50
22	36	50	30	50	36	75	65	30	50
Sem	Sem	190	80	Sem	Sem	190	150	80	Sem
88	143	220	330	-	143	220	330	330	-
88	143	187	286	-	143	187	286	286	-
88	143	187	220	-	143	187	220	220	-
-	-	-	-	105	-	-	-	-	105
25	25	25	10	25	25	25	25	10	25
< 70					< 70				
42	65	100	150	-	65	100	150	150	-
42	65	85	100	-	65	85	100	100	-
	HA	HF ⁽³⁾			HA	HF ⁽³⁾			
	50	85			50	85			
100%					100%				
	50	85			50	85			
	36	50			36	75			
	Sem	Sem			Sem	Sem			
	105	187			105	187			
					1				
25					20				
12,5	1.4	1140			10	li a	1140		
N1/H1/H2		H10			H1/H2	L1	H10		
800/10		/1600			2000	10			
10	3	-			8	3	-		
10	3	-			6	3	-		
-	-	0,5			-	-	0,5		
(2) Disju									
(3) Equipado com disparadores com corrente de estabelecimento a 90 kA crista.							kA crista.		

(3) Equipado com disparadores com corrente de estabelecimento a 90 kA crista.

Masterpact NW25 a NW63

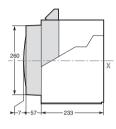
Masierpaci MVV25 a MVV05		
Características comuns		
Número de pólos	- (3-4
Tensão de isolamento nominal (V) Ui		1000/1250
Tensão suport. de impulso nominal (kV) Uimp		12
Tensão operação nom. (V CA 50/60 Hz) Ue	(590/1150
Apto ao seccionamento NBR IEC 609		
Grau de poluição IEC 60664-1		4(1000V)/3(1250V)
120 00001 1		1(10001)/0(12001)
Características dos disjuntores segundo ABNT Ni	BR IE	
Corrente nominal (A)	In	a 40°C/50°C ⁽¹⁾
Calibre do 4º pólo (Á)		
Calibre dos sensores (A)		
Tipo do disjuntor		
Capacidade nominal de interrupção	lcu	220/415/440 V
máxima em curto-circuito (kA rms)		525 V
V CA 50/60 Hz		690 V
		1150 V
Capacidade nominal de interrupção	lcs	% Icu
de curto-circuito em serviço (kA rms)		
Categoria de utilização		
Corrente suportável de curta duração nominal	lcw	1 s
(kA rms) V CA 50/60 Hz		3 s
Proteção instantânea integrada (kA crista ±10%)		
Capacidade nominal de estabelecimento	Icm	220/415/440 V
em curto-circuito (kA crista)		525 V
V CA 50/60 Hz		690 V
Tampa da intarrumaña (ma) antra camanda da dianara		1150 V
Tempo de interrupção (ms) entre comando de disparo Tempo de fechamento (ms)	еае	xunção de arco
Características elétricas segundo a NEMA AB1		
Capacidade de interrupção (kA)		240/480 V
V CA 50/60 Hz		600 V
Características dos disjuntores sem proteção:		000 V
Desligamento por disparadores segundo ABNT N	BR IF	C 60947-2
Tipo de disjuntor	D11 1E	0 00047 2
Capac. nom. interrupção máx. (kA rms) V CA 50/60 Hz	lcu	220690 V
Cap. nom. interrupção de curto-circuito em serviço (kA rms)	lcs	% lcu
Corrente suportável de curta duração nominal (kA rms)	lcw	1 s
oononio ouponaroi do ouna duragao nominar (il rimo)		3 s
Proteção contra sobrecarga e curto-circuito com relé	de pro	
proteção contra curto-circuito, máximo tempo de retai		
Capacidade nominal de estabelecimento em	Icm	220690 V
curto-circuito (kA crista) V CA 50/60 Hz		
Vida elétrica e mecânica segundo IEC 60947-2/3 a	In/le	
Vida Mecânica		manutenção
Ciclos C-O x 1000		manutenção
Tipo de disjuntor	OCITI	manutorição
Corrente nominal	In (A	1
Ciclos C-O x 1000 Elétrica Sem manuten		440 V
	yau	
ABNT NBR IEC 60947-2		690 V
		1150 V

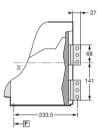
(1) 50°C: com terminais p/conexão traseira verticais. Consultar o valor de In para outros tipos de terminais de conexão.

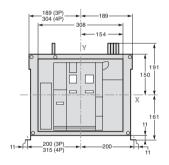
Escolha do sens	sor						
Calibre do sensor (A)	1600	2000	2500	3200	4000	5000	6300
Ajuste do valor Ir (A)	630 a	800 a	1000 a	1250 a	1600 a	2000 a	2500 a
	1600	2000	2500	3200	4000	5000	6300

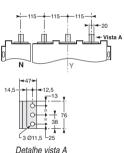
	NIMOE	NIMOO	AUAZAO		NIMAOL	NIMEO	NIMICO
	NW25	NW32	NW40		NW40b	NW50	NW63
	2500 2500	3200 3200	4000 4000		4000 4000	5000 5000	6300 6300
	1250 a	1600 a	2000 a	4000	2000 a	2500 a	3200 a
	2500 a	3200 a	2000 a	4000	4000 a	5000 a	6300 a
_	<u> 2500</u>	H2	НЗ	H10	H1	H2	10300
	65	100	150	піо	100	150	
	65	85	130	ľ	100	130	
	65	85	100	ľ	100	100	
	-	-	100	50	100	100	
	100%	IF.	-	100	100%		
	10070				1.0070		
	В				В		
	65	85	65	50	100	100	
	65	75	65	50	100	100	
	Sem	190	150	Sem	Sem	270	
	143	220	330	-	220	330	
	143	187	286	-	220	286	
	143	187	220	- -	220	220	
	-	-	-	105	-	-	
	25	25	25	25	25	25	
	< 70				< 80		
_	65	100	150	-	100	150	
	65	85	100	-	100	100	
						•	
_	НА	HF ⁽²⁾			HA		
	55	85			85		
	100%				100%		
	55	85			85		
	55	75			85		
	Sem	Sem			Sem		
	121	187			187		
	20				10		
	10				5		
	H1/H2	H3	H10		H1	H2	
	2500/320				4000b/50		
	5	1,25	-		1,5	1,5	
	2,5	1,25	-		1,5	1,5	
		L.	0,5		L'	L'	

(2) Equipado com disparadores com corrente de estabelecimento a 90 kA crista.

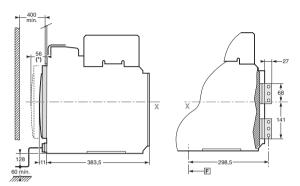

Acessórios disponíveis para Masterpact NW

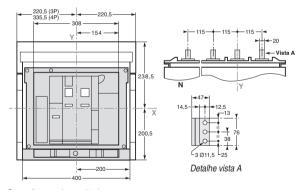

Acessórios disponíveis para Masterpact NW
Auxiliares elétricos
Contato auxiliar de posição OF
Contato auxiliar de defeito SD e defeito elétrico SDE
Contato de posição (conectado/desconectado/teste)
Bobina de abertura
Bobina de fechamento
2ª bobina de abertura
Bobina de mínima tensão
Botão de fechamento elétrico
Rearme a distância após defeito
Contato de sinalização pronto para fechar
Temporizador para bobina de mínima tensão
Motorredutor
Acessórios
Terminais traseiros verticais/horizontais
Terminal para conexão frontal
Extensões de terminais
Separadores de fases
Bloqueio de acesso aos botões
Travamento do disjuntor na posição aberto
Contador de manobras CDM
Intertravamento por barras/cabos
Moldura de acabamento
Tampa transparente
Acessórios do chassi (disjuntor extraível)
Travamento na posição "desconectado"
Travamento da porta com disjuntor conectado
Travamento do encaixe da manivela e porta aberta
Dispositivo contra enganos
Tampa dos bornes auxiliares


Tampa das câmaras de extinção


Dimensões Masterpact NW08 A 32 fixo

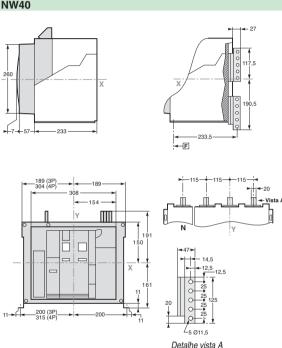
NW08 a NW32




Conexão traseira vertical dimensões (mm)

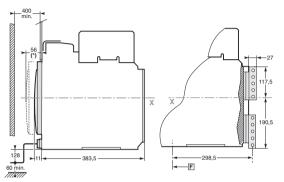
Dimensões Masterpact NW08 a 32 extraível

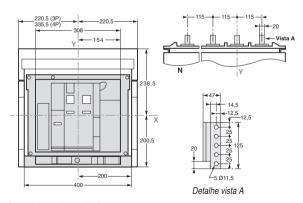
NW08 a NW32


(*) Posição desconectado

Conexão traseira vertical

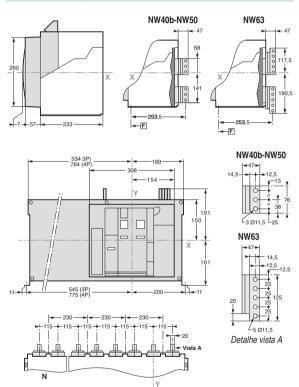
Dimensões Masterpact NW40 fixo


NW40


Conexão traseira vertical

Dimensões Masterpact NW40 extraível

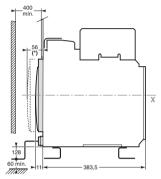
NW40


(*) Posição desconectado

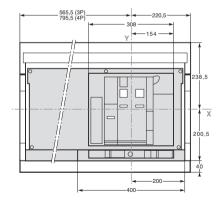
Conexão traseira vertical

Dimensões Masterpact NW40b a 63 fixo

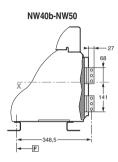
NW40b a NW63

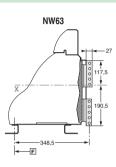


Conexão traseira vertical


Masterpact NW

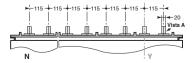
Dimensões Masterpact NW40b a 63 extraível


NW40b a NW63



(*) Posição desconectado

NW40b a NW63


NW40b-NW50

NW63

Detalhe vista A

Conexão traseira vertical dimensões (mm)

Micrologic

Unidades de controle Micrologic

Segurança de funcionamento

A integração das funções de proteção num componente eletrônico. ASIC, comum a todas as unidades de controle. garante grande confiabilidade e imunidade às perturbações eletromagnéticas.

No Micrologic A, P e H, as funções complementares são controladas por um microprocessador independente.

Denominação dos Micrologic

X: tipo de proteção

- 2 p/proteção básica
- 5 p/proteção seletiva
- 6 p/proteção seletiva + terra

Y: geração da unidade de controle Identificação das gerações. "0" significa a primeira geração.

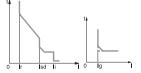
Z: tipo de medição

- A para "amperimetro"
- P para "potência"
- H para "harmônico"

Proteções de corrente

Micrologic 2: proteção básica

Proteção: Longo Retardo + Instantâneo


Micrologic 5: proteção seletiva

Proteção:

- Longo Retardo + Curto Retardo
- + Instantâneoo

Micrologic 6: proteção seletiva + terra

Proteção:

- Longo Retardo + Curto Retardo
- + Instantâneo
- + Terra

Micrologic 7: proteção seletiva + diferencial

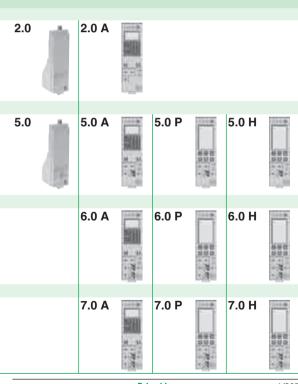
Proteção: Longo Retardo

- + Curto Retardo
- + Instantâneo
- + Diferencial

Medições e outras proteções

A: amperímetro

- 11. I2. I3. IN. Iterra. Idiferencial e valores máximos destas medições.
- sinalização dos defeitos
- valores dos aiustes em ampères e segundos.


P: A + potência + proteções parametrizáveis

- medições de V, A, W, VAR, VA, Wh, VARh, VAh, Hz, Vcrista, Acrista, cos φ e máximos e mínimos
- proteções Longo Retardo em IDMTL, mínimo e máximo em tensão e frequência, deseguilíbrios em tensão e corrente, sentido de rotação das fases. retorno de potência
- ligar e desligar em função da potência ou da corrente
- medicões das correntes interrompidas, sinalização de defeito específico.

indicadores de manutenção, datação e histórico de eventos...

H: P + harmônicos

- qualidade da energia: fundamentais, taxas de distorção, amplitude e fase das harmônicas até 31ª ordem
- captura de ondas por defeito, alarme ou por solicitação
- alarmes programáveis: níveis e acões programáveis sob medida...

Micrologic A "Amperímetro"

Proteções	Micrologic 2.0 A	
longo retardo	-	
valor de ajuste (A)	Ir = In x	
desligamento entre 1,05 a 1,20 Ir		
ajuste da temporização		tr (s)
temporização (s)	precisão: 0 a -30%	tr a 1,5 x lr
	precisão: 0 a -20%	tr a 6 x Ir
	precisão: 0 a -20%	tr a 7,2 x Ir
memória térmica	•	
(1) 0 a -40%; (2) 0 a -60%		
instantânea		
valor de ajuste (A)	lsd = lr x	
precisão: ±10%		
temporização		
Amperímetro	Micrologic 2.0 A	
medição permanente das corrente	es	
medições de 20 a 200% de In		
precisão: 1,5% (sensores inclusos)		
valores máximos		
Proteções		
longo retardo		
valor de ajuste (A)	Ir = In x	
desligamento entre 1,05 a 1,20 Ir		
ajuste da temporização		tr (s)
temporização (s)	precisão: 0 a -30%	tr a 1,5 x lr
	precisão: 0 a -20%	tr a 6 x Ir
	precisão: 0 a -20%	
memória térmica	producer of a 2070	
(1) 0 a -40%; (2) 0 a -60%		
curto retardo		
valor de ajuste (A), precisão: ±10%	lsd = lr x	
ajuste da temporização tsd (s)	valor de ajuste	I²t Off
ajuste da temponzação tsu (3)	valor de ajuste	I ² t On
temporização (ms) a	tsd (não desligamen	
10 Ir (I²t Off ou I²t On)	tsd (máx. de interrup	
instantânea	tod (max. do mtorrap	squo)
valor de ajuste (A), precisão: ±10%	li = ln x	
temporização	II - III X	
terra	Micrologic 6.0 A	
valor de ajuste (A)	lg = ln x	
precisão: ±10%	In ≤ 400 A	
precisao. ±10 /6	400 A < In ≤ 1200 A	
	In > 1200 A	
ajuste da	valor de ajuste	I²t Off
ajuste da temporização tg (s)	valor de ajuste	I ² t On
	ta (não decligament	
temporização (ms) a In ou 1200 A (I²t Off ou I²t On)	tg (não desligament	
	tg (máx. interrupção)
diferencial residual (Vigi)	Micrologic 7.0 A	
sensibilidade (A), precisão: 0 a -20%	IΔn	
temporização (ms)	valor de ajuste	-4-1
	t∆n (não desligamer	
. , .	t∆n (máx. de interru	
Amperímetro	Micrologic 5.0 / 6.0	/ 7.0 A
medição permanente das corrente	es	
medições de 20 a 200% de In		
medições de 20 a 200% de In precisão: 1,5% (sensores inclusos) valores máximos		

Schneider

auto-alimentação.

1/208

Funções e características

	0.4	0.5	0,6	0,7	0,8	0,9	0,95	0.98	1
								0,96 Retardo	
	0,5	1	2	4	8	12	16	20	24
	12,5	25	50	100	200	300	400	500	600
		1	2	4	8	12	16	20	24
	0,7 (1)								
	0,7 (2)	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6
- 4	20 min a	intes e de	epois do d	aesiigami	ento				
		0	0.5	^	4	_	^	0	10
	1,5	2	2,5	3	4	5	6	8	10
-	Tanana n	م مام س) mag / Te		, de lete		20	
	rempo n	iax. de re	earme: 20	IIIS / IE	empo má	k. de inte	rrupçao:	50 ms	
		10	10	INI					
	l1	12	13	IN					
			(para I >						
	I1 máx.		I3 máx.	IN máx.					
			6.0 / 7.0 /						
			6.0 / 7.0 /				0.05	0.00	
	0,4	0,5	0,6	0,7	0,8	0,9	0,95	0,98	1
								Retardo	
	0,5	1	2	4	8	12	16	20	24
	12,5	25	50	100	200	300	400	500	600
(0,7 (1)	1	2	4	8	12	16	20	24
(0,7 (2)	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6
- 2	20 min a	intes e de	epois do o	desligam	ento				
	1,5	2	2,5	3	4	5	6	8	10
(0	0,1	0,2	0,3	0,4				
	-	0,1	0,2	0,4	0,4				
2	20	80	140	230	350				
	80	140	200	320	500				
2	2	3	4	6	8	10	12	15	off
	Tempo n	náx. de re	earme: 20	ms / Te	empo má	k. de inte	rrupção:	30 ms	
	A	В	С	D	E	F	G	Н	J
(0,3	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
(0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
	500	640	720	800	880	960	1040	1120	1200
(0	0,1	0,2	0,3	0,4				
	0,1	0,2	0,3	0,4	,				
	20	80	140	230	350				
	80	140	200	320	500				
(0,5	1	2	3	5	7	10	20	30
	60	140	230	350	800				
	60	140	230	350	800				
	140	200	320	500	1000				
		_50	520	550	. 500				
	11	12	13	IN	Iq	lΔn			
					ig	1/4/1			
			(para I > 13 máx.		la máy	l∆n máx.			
							ávimos á	as corrent	toe do
					ellos, os v hataria	aiores m	aximos, a	as corren	ies de

interrupção memorizados e testa a bateria.

Micrologic P "Potência"

Proteções	Micrologic 5.0 / 6.0	/ 7.0 P
longo retardo (RMS)		
valor de ajuste (A)	Ir = In x	
desligamento entre 1,05 a 1,20 Ir		
ajuste da temporização		tr (s)
temporização (s)	precisão: 0 a -30%	tr a 1,5 x lr
	precisão: 0 a -20%	tr a 6 x Ir
	precisão: 0 a -20%	tr a 7,2 x Ir
regulagem IDMTL	rampa da curva	
memória térmica		
(1) 0 a -40%; (2) 0 a -60%		
curto retardo (RMS)		
valor de ajuste (A), precisão: ±10%	lsd = lr x	10. 04
ajuste da temporização tsd (s)	valor de ajuste	I ² t Off I ² t On
temporização (ms) a	tsd (não desligamen	to)
10 Ir (I ² t Off ou I ² t On)	tsd (máx. de interrup	ção)
instantânea		
valor de ajuste (A), precisão: ±10%	li = ln x	
temporização		
terra	Micrologic 6.0 P	
valor de ajuste (A)	<u>lg</u> = ln x	
precisão: ±10%	In ≤ 400 A	
	400 A < In ≤ 1200 A	
	In > 1200 A	
ajuste da temporização tg (s)	valor de ajuste	I ² t Off I ² t On
temporização (ms) a In ou 1200 A	tg (não desligament	0)
(I²t Off ou Ͳt On)	tg (máx. interrupção)
diferencial residual (Vigi)	Micrologic 7.0 P	,
sensibilidade (A), precisão: 0 a -20%	lΔn	
temporização (ms)	valor de ajuste	
	t∆n (não desligamer	ito)
	t∆n (máx. de interrup	oção)
Alarmes e outras proteções corrente	Micrologic 5.0 / 6.0	/7.0 P
desequilíbrio de corrente	Idesequilíbrio	
máx. de corrente média	Imáx. média: 11, 12, 13,	IN, Ig
terra		
	Ι [‡]	
tensão		
desequilíbrio de tensão	Udesequilíbrio	
mínimo de tensão	Umín.	
máximo de tensão	U _{máx.}	
potência	. Huni	
retorno de potência	rP	
frequência		
mínimo de freqüência	F _{mín} .	
máximo de frequência	F _{máx} .	
sentido de rotação das fases	· muA	
sentido (alarme)	ΔØ	
		/7.0.D
Ligar e Desligar corrente	Micrologic 5.0 / 6.0	/ /.U P
corrente		
CONTRIBE	Р	
potência		

Schneider

Funções e características

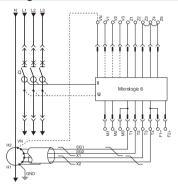
	0,4 outras fa	0,5 aixas ou i	0,6 nibição p	0,7 ela muda	0,8 ança do c	0,9 alibrador	0,95 de Longo	0,98 Retardo	1
	0,5	1	2	4	8	12	16	20	24
	12,5	25	50	100	200	300	400	500	600
	0,7(1)	1	2	4	8	12	16	20	24
	0,7 (2)	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6
	SIT	VIT	EIT	HVFuse		- / -		- / -	- / -
		antes e de	epois do						
	1,5	2	2,5	3	4	5	6	8	10
	0	0.1	0,2	0,3	0.4				
	-	0,1	0,2	0,4	0,4				
	20	80	140	230	350				
	80	140	200	320	500				
	2	3	4	6	8	10	12	15	off
		náx. de re	earme: 20			x. de inte	rrupção:	80 ms	
	Α	В	С	D	E	F	G	Н	J
	0,3	0,3	0.4	0,5	0,6	0,7	0,8	0,9	1
	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
	500	640	720	800	880	960	1040	1120	1200
	0	0,1	0,2	0,3	0,4			_	
	0,1	0,2	0,3	0,4	-,				
	20	80	140	230	350				
	80	140	200	320	500				
	0.5	1	2	3	5	7	10	20	30
	60	140	230	350	800				
	60	140	230	350	800				
	140	200	320	500	1000				
	valor de	ajuste				tempori	zação		
	5 a 60%	x Îmédia				1 a 40 s			
	0,4 In c/	nível Cu	rto Retar	do		0 a 1500) s		
	20 A a 1	200 A				1 a 10 s			
	2 a 30% x Umédia								
100 a Umáx. entre fases				1 a 40 s 1,2 a 5 s					
			ntre fase	s		1,2 a 5			
	u		0 .000	-		.,			
5 a 500 kW					0,2 a 20	s			
	- 4 550					-,- 4 -0	-		
	45 a Fm	áx				1,2 a 5 s	3		
	Fmín. a					1,2 a 5 s			
	a	0 112				.,2 0 0			
	Ø1/2/3 c	ou Ø1/3/2				0,3 s			
	,_,0	~ ., 5/2				-,00			
		-1							

200 kW a 10 MW 10 a 3600 s
O "reset" faz retornar a zero os defeitos, os valores máximos, as correntes de interrupção memorizados e testa a bateria.

valor de ajuste

0,5 a 1 Ir por fase

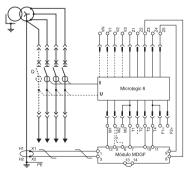
temporização


20% tr a 80% tr

Micrologic

Micrologic 6 Proteção de falta à terra

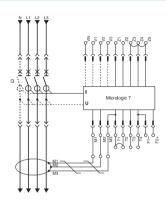
Transformador externo para proteção à terra tipo "residual"


Micrologic 6.0 A / P / H

Sensor externo (TC)

Transformador externo para proteção à terra tipo "Source Ground Return" (SGR) Micrologic 6.0 A / P / H

Transdutor MDGF



Sensor externo para proteção à terra tipo "Source ground return"

Micrologic

Micrologic 7 Proteção de falta à terra

Proteção diferencial Micrologic 7.0 A / P / H

Masterpact

Comunicação Opção COM no Masterpact

Para os disjuntores fixos, a opção COM é composta:

de um módulo de comunicação "disjuntor" instalado na parte traseira da unidade de controle Micrologic, fornecido com seu grupo de sensores (microcontatos OF, SDE, PF, CH) e seu kit de ligação às bobinas de fechamento XF e de abertura MX comunicantes.

Para os disjuntores extraíveis, a opção COM é composta:

- de um módulo de comunicação "disjuntor" instalado na parte traseira da unidade de controle Micrologic, fornecido com seu grupo de sensores (microcontatos OF, SDE, PF, CH) e seu kit de ligação às bobinas de fechamento XF e de abertura MX comunicantes.
- de um módulo de comunicação "chassi", fornecido separadamente com seu grupo de sensores (contatos CE, CD, CT).

A sinalização de estado utilizada pela COM é independente dos contatos de sinalização do disjuntor. Estes contatos permanecem disponíveis para uma aplicação convencional.

Módulo de comunicação "disjuntor" Digipact ou Modbus

Este módulo é independente da unidade de controle, transmite e recebe informações provenientes da rede de comunicação. Uma ligação infravermelho transmite os dados entre a unidade de controle e o módulo de comunicação. Consumo: 30 mA, 24 V.

Módulo de comunicação "chassi" Digipact ou Modbus

Este módulo é independente da unidade de controle. O módulo chassi Modbus permite-o endereçar e conservar este endereço, mesmo quando o disjuntor estiver extraído. Consumo: 30 mA, 24 V.

Bobinas de abertura MX e de fechamento XF comunicantes

As bobinas comunicantes MX e XF possuem conectores para a ligação ao módulo de comunicação "disjuntor". Os comandos de abertura de segurança (2a MX ou MN) são independentes dos de comunicação. Portanto, não possuem conectores para a conexão ao módulo de comunicação "disjuntor".

Masterpact

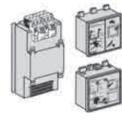
Inversor de fonte

O inversor de fonte é um elemento essencial para a continuidadede serviço e a gestão da energia.
Ele realiza a comutação entre:

- uma fonte normal N que alimenta normalmente a instalação;
- e uma fonte R (de segurança) que pode ser uma entrada de rede suplementar ou um grupo gerador.

O inversor de fonte é composto por dois dispositivos (disjuntores ou interruptores), intertravados mecanicamente e, quando possuírem acionamentos automáticos também serão intertravados eletricamente. Os intertravamentos impedem a colocação em paralelo das duas fontes.

Os dois disjuntores podem ser comandados:


- manualmente.
- automaticamente

A associação de um automatismo a um inversor de fonte com comando a distância permite o controle automático das fontes conforme seleção do modo de funcionamento. Esta solução garante uma gestão otimizada da energia:

- transferência para uma fonte de segurança em função de necessidades externas
- qestão das alimentações
- regulação
- fonte de segurança.

Ainda é possível atribuir uma comunicação com sistemas de supervisão ao automatismo.

Controladores de Fator de Potência

Varlogic NR

Varlogic é a gama dos controladores automáticos de fator de potência da Schneider Electric, que foi desenvolvida considerando dois aspectos principais:

- Simplicidade
- ☐ Programa simplificado e a disponibilidade de uma autoparametrização
- ☐ Lavout ergonômico dos botões
- Uso amigável
- ☐ Amplo display de fácil leitura, tipo backlight
- ☐ Fácil de operar, menu intuitivo
- □ Leitura direta das medidas

Linguagem

Os textos do Varlogic podem ser selecionados em sete idiomas:

- português inglês
- francês
- espanhol alemão finlandês

- sueco

Controladores de Fator de Potência

Varlogic NR

Medicões

Além da monitoração do fator de potência, o Varlogic mede:

- tensão da rede
- corrente
- potência ativa, reativa e aparente
- distorção total das harmônicas em tensão
- temperatura do painel

Programas de controle do fator de potência

- 1. Programa Linear (Stack)
- 2. Programa Normal (2+linear)
- 3. Programa Circular A
- 4. Programa Circular B
- 5. Programa Ótimo

O programa Ótimo funciona com várias configurações de bancos de capacitores:

1.1.1.1.1 1.2.2.2.2 1.2.4.4.4 1.2.4.8.8 1.1.2.2.2 1.1.2.3.3 1.1.2.4.4 1.2.3.3.3 1.2.3.4.4 1.2.3.6.6

O valor do fator de potência ajustado é atingido com a conexão de um número reduzido de bancos de capacitores e em um tempo mínimo, o algoritmo otimiza a conexão dos estágios.

O programa Ótimo seleciona o banco de capacitores conforme a capacitância, quando se aproxima do valor do fator de potência ajustado e ao mesmo tempo diminui o tempo de resposta.

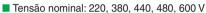
Controladores de Fator de Potência

Varlogic NR

Características técnicas	
Valor de ajuste do fator de potência	0,85 indutivo - 1 - 0,90 capacitivo
Tensão auxiliar nominal	88 a 130 ou 185 a 265 ou
	320 a 460 V
Freqüência nominal	48 - 52 ou 58 - 62 Hz
Temperatura de operação	0 a 60°C
Número de estágios	6 ou 12
Corrente nominal do contato	5 A/120 Vca, 2 A/250 Vca,
de comando dos estágios	1 A/400 V
dos bancos de capacitores	0,3 A/110 Vcc, 0,6 A/60 Vcc,
	2 A/24 Vcc
Dimensões externas (A x L x P)	150 x 150 x 70 mm
Grau de proteção	IP20 / IP41
Botões de comando de navegação	4
Display	Cristal líquido, tipo backlight
Dimensões do display (A x L)	65 x 21 mm
Contato de comando	1 x 5 A/240 V
de ventilação do painel	
Sensor de temperatura	sim
interna do painel	
Temperatura de armazenamento	- 20 a 60°C
Tensão nominal	88 a 130 ou 185 a 265
de medição	ou 320 a 460 V
Corrente nominal de medição	0 a 5 A
Relação de transformação de corrente	25/5 a 6000/5 A
Freqüência nom. de medição	48 - 52 ou 58 - 62 Hz
Consumo do circuito de tensão	10 VA
Consumo do circuito de corrente	0,7 VA
Sobrecarga admissível tensão/corrente	20% / 20%
Corrente nominal do contato de alarme	5 A/240 Vca, 1 A/24 Vcc
Sensor de temperatura interna do painel	0 a 60°C

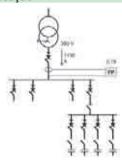
Referências

Modelo	Nº de estágios	Tensão auxiliar 50-60 Hz	Tensão de medição 50-60 Hz	Referências
NR6	6	110, 220/240, 315/400 V	110, 220/240, 315/400 V	52448
NR12	12	110, 220/240, 315/400 V	110, 220/240, 315/400 V	52449


Varplus²

Os capacitores da gama Varplus² são próprios para a correção de fator de potência de instalações elétricas em corrente alternada 60 Hz.

A terceira geração dos capacitores Varplus foi projetada com todo o conhecimento adquirido ao longo de vários anos em que a Schneider Electric atua neste segmento, aplicando os materiais da mais avançada tecnologia disponível no mercado e atendendo as prescrições das normas IEC 60831-1 e


- Freqüência nominal: 60 Hz
- Tolerância do valor da capacitância: -5 a +10%
 - Temperatura classe D:
- □ mínima: -25°C
- ☐ máxima: +55°C ciclo de 8 horas por 24 horas ☐ máxima: +45°C temperatura média de 1 dia
- ☐ máxima: +35°C temperatura média anual
- Grau de proteção:
- ☐ IP00 sem capa de proteção
- ☐ IP20 ou IP42 com capa de proteção
- Perdas: < 0,5 W/kVar (resistor de descarga incluso)
- Sobrecarga
- ☐ tensão: +10% (ciclo de 8 horas por 24 horas)
- □ corrente: +30% permanente
- Teste de tensão: 2,15 x Ue / por 10 segundos
 - Isolação
- ☐ 4 kV por 1 minuto
- □ 12 kV impulso onda 1,2 / 50 µs
- Vida: 130.000 horas
- primeiros 10 anos: sem monitoração
- ☐ após 10 anos: monitoração sugerida Terminal de parafuso M8: conexões não se
- afrouxam.
- Normas:
 - □ IEC 60831-1
 - □ IEC 60831-2

Varplus²

Capacitor Varplus ² - 60	Hz		aconselhadas
kVAr		kVAr	
220 V	Referências	220 V	Referências
2,5	51301	17	2 x 51307
5,5	51303	22	2 x 51309
7,5	51305	33	3 x 51309
8,5	51307		
11	51309		
380 V	Referências	380 V	Referências
5,5	51311	22	2 x 51317
7	51313	28	2 x 51319
8	51315	33	2 x 51321
<u>8</u> 11	51317	42	3 x 51319
14	51319	49.5	3 x 51321
16,5	51321	56	4 x 51319
22	51323		
440 V	Referências	440 V	Referências
7,3	51325	30,8	2 x 51331
9,1	51327	44.8	2 x 51335
10,9	51329	50,7	3 x 51333
15,4	51331	60,2	2 x 51335 + 51331
16,9	51333	67.2	3 x 51335
22,4	51335	76,3	3 x 51335 + 51327
480 V	Referências	480 V	Referências
10,5	51351	21	2 x 51351
12,5	51353	25	2 x 51353
15	51383	33	2 x 51357
16.5	51357	43,5	2 x 51357 + 51351
. 0,0		49,5	3 x 51357
		60	3 x 51357 + 51351
		66	4 x 51357
600 V	Referências	600 V	Referências
10	51359	20	2 x 51359
13,5	51361	30	2 x 51363
15	51363	40.5	3 x 51361
10	01000	54	4 x 51361
		60	5 x 51363
		00	0 X 0 1000
Capa de proteção	51461		
Barras de interligação	51459		
zaao ao mitoringação	0.100		

Varplus²

Exemplo de aplicação

Cálculo da potência aparente atual 1130 A x 0,38 kV x 1,732 = 743,7 kVA 743.7 kVA x 0.78 = 580.1 kW

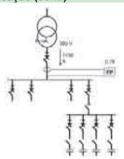
Cálculo da potência reativa atual FP medido = 0,78 > arc cos 0,78 = 38,7° 580.1 kW x tg 38,7° = 464.1 kW

Cálculo da potência reativa pretendida FP pretendido = 0,93 > arc cos 0,93 = 21,6° 580,1 kW x tg 21,6° = 229,1 kW

Cálculo da potência capacitiva necessária para a correção 464,1 kVAr – 229,1 kVAr = 235 kVAr

Adotado banco com 6 estágios e configuração 1.2.3.3.3.3 estágio unitário = 235 kVAr / 15 = 15,7 kVAr O capacitor será o de 16,5 kVAr.

Potência dos estágios conforme a configuração 1.2.3.3.3.3


1º estágio = 16,5 kVAr 2º estágio = 33 kVAr

3º ao

6º estágio = 49,55 kVAr

Varplus²

Exemplo de aplicação (cont.)

Definição dos contatores de cada estágio

```
1º estágio = 16,5 kVAr > catálogo = LC• DGK - 16,7 kVAr / 400 V
2º estágio = 33 kVAr > catálogo = LC• DPK - 33,3 kVAr / 400 V
3º ao
```

6º estágio = 49,55 kVAr > catálogo = LC• DWK - 60 kVAr / 400 V

Cálculo das proteções de cada estágio

```
1º estágio = 16,5 kVAr / 0,38 / 1,732 x 1,65 = 41,36 A > 50 A
2º estágio = 33 kVAr / 0,38 / 1,732 x 1,65 = 82,7 A > 100 A
3º ao
```

6º estágio = 49,55 kVAr / 0,38 / 1,732 x 1,65 = 124 A > 125 A

Cálculo da dos cabos de interligação nos estágios

```
1º estágio = 16,5 kVAr / 0,38 kV / 1,732 x 1,43 = 35,8 A
2º estágio = 33 kVAr / 0,38 kV / 1,732 x 1,43 = 71,7 A
```

6º estágio = 49,55 kVAr / 0,38 kV / 1,732 x 1,43 = 107,4 A

Cálculo do interruptor-seccionador de entrada

```
IS = potência tota dos capacitores / 0,38 kV / 1,732
```

IS = 15 x 16.5 kVAr / 0.38 kV / 1.732 = 376 A

IS = 400 A

Obs.:

3º ao

Para instalações com taxa de distorção harmônica acima de 15%, é necessário verificar o nível de harmônicos na instalação e aplicar bloqueadores de harmônicos junto aos capacitores.

Eupoõoo

24 Relés de proteção

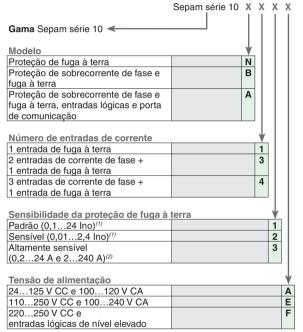
Sepam série 10

O Sepam série 10 é um relé de proteção aplicado na média e baixa tensão, de alta qualidade, que possui a solução de maior custo-benefício para as funções de proteção básicas (50/51, 50N/51N e 49RMS). Extremamente fácil de instalar e configurar.

Características Sepam série 10

O Sepam série 10 monitora correntes de fase e/ou de fuga à terra. Três modelos satisfazem uma gama ampla de necessidades:

Cád Canam sária 10


Funçoes		Cod.		m serie	10
Proteções		7		_	
Fuga à terra	padrão	50N /	п	п	п
3	sensível	51N	_	п	п
	alta sensibilidade		_	0	0
Sobrecorrente de fase					
Sobrecarga térmica				•	
Sobrecorrente de fase e	e fuga à terra			•	•
(cold load pick-up)					
Seletividade lógica	envio de bloqueio	68	•	•	
	recepção de bloqueio			•	
Trip externo					•
Medições					
Corrente de fuga à terra		•	•	•	
Corrente de fase			•	•	
Demanda máxima de o					•
Controle e supervisão					
Bloqueio		86	•	•	•
Indicação de trip				•	•
Supervisão do circuito o	de trip				
Controle remoto dos dis	sjuntores				
Registro da última falta					
Registro dos últimos 5 e	eventos				•
Comunicação					
Modbus					•
IEC 60870-5-103				•	
Entradas/saídas (núm					
Entradas de correntes d		1	1	1	
Entradas de correntes d		-	2 ou 3	3	
Saídas lógicas a relé		3	3	7	
Entradas lógicas			-	-	4
Porta de comunicação	RS 485		-	-	1

- Função disponível
- Disponibilidade da função depende do modelo de Sepam.

Relés de proteção

Sepam série 10

O número de referência do Sepam série 10 compreende diferentes elementos:

⁽¹⁾ Utilizar sensores de 1 A/5 A.

⁽²⁾ Utilizar TCs CSH.

Relés de proteção

Sepam série 10

Simplicidade

- Facilidade na compra Produto completo, sem a necessidade de compra de acessórios.
- Facilidade de operação Acesso às informações através de display multilinhas e em português.
- Rápida instalação e configuração Instalação, fiação e ajuste de parâmetros diretamente no relé, sem a necessidade de um computador.

Confiabilidade

- Segurança da instalação elétrica Produto de alta qualidade, em conformidade com as normas atuais e com funções avançadas de auto-testes.
- Segurança aos operadores Todas as peças acessíveis são fabricadas com materiais isolantes. Produto leve e compacto sem bordas cortantes.
- Não prejudicial ao meio ambiente Conformidade com a diretriz européia RoHS, baixo consumo de energia e fabricado em instalações com certificação ISO 14001.

Produtividade

- Produto simples De fácil entendimento, sem complicações desnecessárias, em português e adequadas às necessidades dos usuários.
- Maior disponibilidade da instalação Precisão na atuação, funções de seletividade lógica, informação detalhada instantaneamente disponível ao operador, após um trip.
- Manutenção reduzida Auto-testes permanentes indicam ao operador quando o produto encontra-se fora de operação.

PowerLogic® série ME

Medidor digital de energia ativa consumida (watt-hora) para sistemas elétricos monofásicos ou trifásicos, com ou sem neutro distribuído.

- Conformidade: IEC 61036
 Classe de precisão: 2%
- Freqüência: 50/60 Hz
 Consumo: 2,5 VA
- Temperatura de operação: -25°C a +55°C Disponível em 7 modelos:

Exemplo: ME4zrt, Medidor watt-hora trifásico com neutro associado e:

- (z) medição parcial
- (r) saída pulsada de energia
- (t) transformadores de correntes externos (fornecidos separadamente)

Tipo	Corrente	Tensão	Módulos	Referências
	(A)	(Vca)	de 9 mm	
Sistema me				
ME1	63	230	4	17065
ME1z	63	230	4	17066
ME1zr	63	230	4	17067
Sistema tri	fásico (3F)			
ME3	63	230/400	8	17075
ME3zr	63	230/400	8	17076
ME4zrt	406000	230/400	8	17072
Sistema tri	fásico + neut	ro (3F + N)		
ME4	63	230/400	8	17070
ME4zr	63	230/400	8	17071
ME4zrt	406000	230/400	8	17072

Observação: Uso com contatores

Recomenda-se a instalação do medidor a montante de cargas com alimentação descontínua para limitar o risco de distúrbios nos módulos de entrada do medidor.

Exemplo: Medidor ME em uma carga chaveada por um contator.

PowerLogic® série PM9

Medidor compacto para as medidas básicas necessárias no monitoramento de uma instalação elétrica, com o uso de TCs de 5A.

- Compacto, apenas 72 mm de comprimento
- Amplo display LCD, monitoramento simultâneo das três fases.
- Sistemas de baixa tensão de 2, 3 e 4 fios conectados diretamente ou com transformadores de corrente externos.
- Tensão máx. para conexão direta: 450 V (fase-fase)
- IEC 62053-21 Classe 2 para energia ativa
- Precisão 0,5% para tensão e corrente
- Medições: Corrente (total e por fase), Tensão (total e por fase), Freqüência, Potência ativa e reativa (total e por fase), Potência aparente total, Fator de potência, Energia ativa e reativa.
- Grau de proteção: IP52

Aplicações

- Instrumentação de painel
- Rateio / Alocação de custo
- Monitoração remota da instalação elétrica

Disponível em três versões:

- PM9, medições básicas
- PM9P, medições básicas com saída pulsada
- PM9C, medições básicas com porta de comunicação Modbus RS-485

Modelo	Alimentação	Referências
Power Meter PM9	220 a 240 Vca	15199
Power Meter PM9P	220 a 240 Vca	15197
Power Meter PM9C	220 a 240 Vca	15198
Power Meter PM9	28 a 48 Vcc	15274
Power Meter PM9P	28 a 48 Vcc	15275
Power Meter PM9C	28 a 48 Vcc	15276

PowerLogic® série PM200

Os Medidores da série 200 fornecem todas as medições exigidas para monitorar a instalação elétrica em uma única unidade 96 x 96 mm, com apenas 50 mm de profundidade.

Seu display LCD 73 x 69 mm com antireflexo permite a visualização de todas as 3 fases e neutro ao mesmo tempo. Seus caracteres grandes e sua luz de fundo facilitam a leitura até mesmo em condições extremas de luz e ângulos de visão. Além disto, contém telas com resumo informativo para: corrente, tensão, energia e potência.

Aplicações

- Instrumentação de painel.
- Rateio / alocação de custo.
- Monitoramento remoto de uma instalação elétrica.

Disponível em três versões:

- PM200, medição básica.
- PM200P, medição básica e mais 2 saídas de pulso de energia.
- PM210, medição básica e uma porta RS-485 para comunicação com protocolo Modbus RTU 2 fios.

Modelo	Referências
Power Meter PM200	PM200MGCA
Power Meter PM200P	PM200PMGCA
Power Meter PM210	PM210MGCA

PowerLogic® série PM200

Uso intuitivo

Medidor com interface simples e de fácil manuseio. Seus menus de navegação são contextuais com telas concisas para até 4 medições. As indicações por meio de barras permitem o diagnóstico do sistema num piscar de olhos.

Amplo display iluminado com gráfico de barras Exibe até 4 medições simultâneas para leituras rápidas.

Energia classe 1 definida pela IEC 62053-21

Apropriado para aplicações de rateio e alocação de custos.

Valores RMS instantâneos	
Corrente	Fase e neutro
Tensão	F-F e F-N
Freqüência	
Potência ativa, reativa e aparente	Total
Fator de potência	Total (absoluto)
Valores de energia	
Energia ativa, reativa e aparente	
Valores de demanda	
Corrente	Janela e demanda máxima
Potência ativa, reativa e aparente	Janela e demanda máxima
Display e Entradas/Saídas	
Display LCD iluminado	6 linhas, 4 valores simultâneos
2 saídas pulsadas digitais	PM200P
Comunicação	
Porta RS-485 c/protocolo Modbus	PM210

PowerLogic® série PM700

Os Medidores da série 700 fornecem todas as medições exigidas para monitorar a instalação elétrica em uma única unidade 96 x 96 mm, com apenas 50 mm de profundidade.

Seu display LCD 73 x 69 mm com antireflexo permite a visualização de todas as 3 fases e neutro ao mesmo tempo. Seus caracteres grandes e sua luz de fundo facilitam a leitura até mesmo em condições extremas de luz e ângulos de visão. Além disto, contém telas com resumo informativo para: corrente, tensão, energia e demanda.

Aplicações

- Instrumentação de painel.
- Rateio / alocação de custo.
- Monitoramento remoto de uma instalação elétrica
- Monitoramento de harmônicas (THD).

Disponível em três versões:

- PM700, medição básica com THD e leitura de máx./mín.
- PM700P, medição básica, THD, máx./min. e mais 2 saídas de pulso de energia.
- PM710, medição básica, THD, máx./min. e uma porta RS-485 para comunicação com protocolo Modbus.

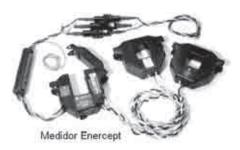
Modelo	Referências
Power Meter PM700	PM700MGCA
Power Meter PM700P	PM700PMGCA
Power Meter PM710	PM710MGCA

PowerLogic® série PM700

Uso intuitivo

Medidor com interface simples e de fácil manuseio. Seus menus de navegação são contextuais com telas concisas para até 4 medições. As indicações por meio de barras permitem o diagnóstico do sistema num piscar de olhos.

Amplo display iluminado com gráfico de barras Exibe até 4 medições simultâneas para leituras rápidas.


Demanda de potência e corrente, THD e leitura mín./máx. Uma solução de alta performance para o monitoramento de sua instalação elétrica livre de problemas.

Energia classe 1 definida pela IEC 62053-21

Apropriado para aplicações de rateio e alocação de custos.

Valores RMS instantâneos	
Corrente	Fase e neutro
Tensão	F-F e F-N
Freqüência	
Potência ativa, reativa e aparente	Total e por fase
Fator de potência	Total
Valores de energia	
Energia ativa, reativa e aparente	
Valores de demanda	
Corrente	Janela e demanda máxima
Potência ativa, reativa e aparente	Janela e demanda máxima
Ajuste do método de cálculo	Janela fixa, móvel
Medição da qualidade da energia	
Distorção harmônica	Corrente e tensão
Armazenamento de dados	
Valores instantâneos de min./máx	Tensão, Corrente, THD, Fator de potência, Potência e Freq.
Display e Entradas/Saídas	
Display LCD iluminado	6 linhas, 4 valores simultâneos
2 saídas pulsadas digitais	PM700P
Comunicação	
Porta RS-485 c/protocolo Modbus	PM710
	1/001

Transdutor Multifunção Power Logic® ENERCEPT

O medidor Enercept, parte do sistema precursor de monitoramento de energia elétrica PowerLogic®, simplifica a instalação. tornando muito mais fácil incluir medidores de energia em todo um sistema de distribuição de energia elétrica. Um fator de forma inovador elimina a necessidade de um compartimento de medidor separado. reduzindo o custo de instalação em até 70%. O medidor fica instalado no interior de TCs, não sendo requerido TPs externos, tornando-se assim uma opção com boa relação custo-benefício para medição de energia elétrica básica. Os medidores Enercept consistem de três TCs de núcleo dividido, interconectador com os circuitos eletrônicos de medicão e comunicação construídos em um dos aloiamentos do TC. Basta encaixar nos TCs. conectar as entradas de tensão e as linhas de comunicação e a instalação está completa.

Transdutor Multifunção Power Logic® ENERCEPT

Há duas versões de medidor Enercept: **Básica** e **Avançada**.

Elas diferem apenas na quantidade de informação de medição fornecida.

O medidor **Básico** informa somente medições de potência e energia. A versão **Avançada** entrega 26 parâmetros de energia, incluindo tensão, corrente, fator de potência e potência reativa. Ambas as versões podem ser conectadas a qualquer circuito trifásico ou monofásico.

As leituras são feitas através da saída serial RS485. Opcionalmente, pode ser adquirido o Display (vide foto abaixo).

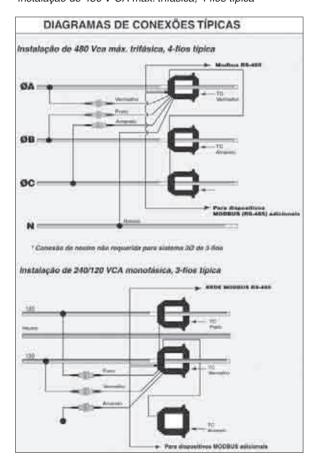
Transdutor Multifunção Power Logic® ENERCEPT

Especificações técnicas	
Tensão do primário	208 a 480 V CA rms
de entrada	
Nº de fases monitoradas	uma ou três
Freqüência	50/60 Hz
Corrente de primário	até 2400 A
	cont. por fase
Isolação interna	2000 V CA rms
Isolação da caixa	600 V CA rms
Faixa de temperatura	0 a 60°C
Faixa de umidade	0-85% não-condensado
Precisão	±1% da leitura de 10-100%
	da corrente nominal do TC
Características	RS485, 2 fios
físicas da saída	mais blindagem
Taxa de transmissão	9600 bauds, formato 8N1
Protocolo	Modbus RTU
Transformador	núcleo dividido: 100, 300,
de corrente	400, 800, 1600, 2400 A

Especificações da saída de dados (Básico)

consumo: kWh

kW


Especificações da saída de dados (Avançado)

- consumo: kWh
- potência real: kW
- demanda: kW
- potência reativa: kVAR
- fator de potência total
- kW médio
- kW mínimo
- kW máximo
- tensão, linha para linha
- tensão, linha para neutro
- corrente média: Ampères

Transdutor Multifunção Power Logic® ENERCEPT

Diagramas de fiações típicas

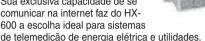
Instalação de 480 V CA máx. trifásica, 4 fios típica

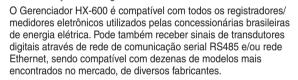
Transdutor Multifunção Power Logic® ENERCEPT

Informações e referências para pedido				
Medidores ENERCEPT® Básicos				
Referência	Classe	Tipo	Faixa	I.D.Janela TC
3020B012	3020	B01-2	100 A	31,75 x 38,35
3020B032	3020	B03-2	300 A	31,75 x 38,35
3020B043	3020	B04-3	400 A	62,23 x 73,41
3020B083	3020	B08-3	800 A	62,23 x 73,41
3020B084	3020	B08-4	800 A	62,23 x 139,70
3020B164	3020	B16-4	1600 A	62,23 x 139,70
3020B244	3020	B24-4	2400 A	62,23 x 139,70

Medidores ENERCEPT® Avançados				
Referência	Classe	Tipo	Faixa	I.D.Janela TC
3020E012	3020	E01-2	100 A	31,75 x 38,35
3020E032	3020	E03-2		31,75 x 38,35
3020E043	3020	E04-3	400 A	62,23 x 73,41
3020E083	3020	E08-3	800 A	62,23 x 73,41
3020E084	3020	E08-4	800 A	62,23 x 139,70
3020E164	3020	E16-4	1600 A	62,23 x 139,70
3020E244	3020	E24-4	2400 A	62,23 x 139,70

Dimensões em mm


Opcionais	
3020ENA485	Adaptador para rede
3020EDI32	Interface de display


26 Gerenciador de energia HX-600

Solução WEB Energy

O Gerenciador HX-600 possui tecnologia de ponta em sistemas de controle de demanda e fator de potência. Trata-se de um equipamento com design moderno e prático, que assegura um perfeito controle sobre a energia elétrica utilizada.

Sua exclusiva capacidade de se comunicar na internet faz do HX-600 a escolha ideal para sistemas

Aplicações

- Controle automático e otimização das demandas contratadas no regime horo-sazonal, com a atuação sobre cargas não prioritárias, evitando o pagamento de multas de ultrapassagem.
- Controle automático do fator de potência com o chaveamento de bancos de capacitores, evita encargos sobre energia reativa excedente.
- Controle automático de consumo com o ligamento/desligamento de cargas em horários pré-definidos, evita o desperdício, permitindo o acompanhamento contínuo de metas de consumo de energia.

Gerenciador de energia HX-600

Solução WEB Energy

Características principais

Baixo custo de instalação

Pode ser instalado em qualquer ponto da rede local padrão Ethernet.

Confiabilidade e simplicidade de operação

Pode-se utilizar o browser preferido, enquanto o HX-600 utiliza um algoritmo inteligente, preditivo e totalmente parametrizável para projeção de demanda e controle de cargas.

Atuação sobre 64 saídas independentes

Controle de cargas, capacitores e alarmes através de 8 módulos de saídas ligados em rede RS485, usando protocolo Modbus.

Comunicação com software

Programação, monitoração e gerenciamento através de porta serial RS232/RS485 (protocolo Modbus RTU) ou Ethernet (protocolo Modbus TCP).

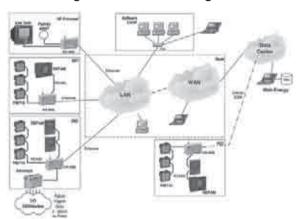
Alimentação full-range

90~240 Vca, 50~60 Hz.

Código de compra do controlador de demanda HX-600

Portas disponíveis p/medição da concessionária	Porta serial RS485	Módulo celular GPRS	Display Integrado	
1		-	-	WEB0001
2		-	-	WEB0002
1	-		-	WEB0003
1			-	WEB0004
2			-	WEB0005
1		-		WEB0006
2		-		WEB0007

Composição do kit básico de compra:


01 x WEB0001 Controlador de demanda HX-600

01 x WEBSR08 Módulo remoto SR08 01 x WEBACSIMP Acoplador ótico simples 01 x HXGER Software de gerenciamento

Gerenciador de energia HX-600

Solução WEB Energy

Sistema de gerenciamento de energia

Composto por diversos acessórios de hardware e software. O principal componente deste sistema é o Gerenciador HX-600. Ele poderá atuar de forma individual ou em conjunto com outros dispositivos para desempenhar diversas funções. Os componentes disponíveis são:

■ O controlador HX-600

instalado na cabine de entrada de energia, junto ao equipamento de medição/ registro da concessionária de energia elétrica.

■ Módulo de entrada ErRep

para leitura de medidores de concessionária via rede serial RS485 instalados em locais distantes do Controlador HX-600.

■ Módulo de saídas SR-08

para acionamento das saídas do sistema, deve ser instalado nas proximidades das cargas ou capacitores que serão controlados.

■ Módulo de entradas ER-08

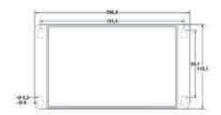
para leitura de estado de disjuntores, equipamentos diversos e contagem de pulsos.

■ Acoplador ótico

para interligação do controlador à medição da concessionária.

Gerenciador de energia HX-600

Solução WEB Energy


■ Conversores de sinais e protocolos

RS232 para RS485 e MODBUS/RTU para MODBUS/TCP.

■ Softwares

para configuração, gerenciamento, relatórios e etc.

■ Dimensões: 112 x 206 x 52 (A x L x P)

Interface remota e acessórios	
Módulo com 8 saídas digitais para o controle de demanda, fator de potência e alarmes	WEBSR08
Módulo com 8 entradas digitais para monitoramento de status, disjuntores, contador de pulsos etc	WEBER08
Módulo remoto conversor do sinal serial CODI ABNT/RS485	WEBERREP
Acoplador ótico simples	WEBACSIMP
Acoplador ótico com saída derivada	WEBACDUP
Conversor de protocolo ModBus TCP/ModBus RS 485	WEBCV0110
Software de gerenciamento energético (inclui 1 diária para start-un e treinamento, não inclui transporte e estadia)	HXGER

27 Eficiência energética

Soluções simples para gestão integrada de energia

A Schneider Flectric utiliza o conceito amplo de Eficiência Energética, que inclui todas as acões voltadas ao uso econômico e racional da energia.

Suprimento

O conceito de Eficiência Energética, no que se refere ao suprimento, é indicado para empresas que entendem o momento de transformação por que passa o setor elétrico, e

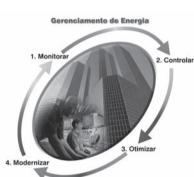
. têm interesse na gestão técnica e financeira de suas necessidades energéticas, com o objetivo de diminuir a conta de energia.

Para isso, nossa oferta inclui produtos e sistemas voltados a:

- Controle de demanda
- Correção do fator de potência
- Auditoria da medicão da concessionária
- Gerenciamento do consumo em tempo real
- Gestão do contrato de fornecimento de energia
- Otimização de demandas contratadas
- Escolha do melhor enquadramento tarifário
- Identificação de potenciais de economia com tarifas e contratos especiais
- Possibilidade de migração para o ambiente do mercado livre
- Identificação de pagamentos indevidos nas faturas de energia (incluindo impostos)
- Acionamento de grupos geradores durante horário de ponta
- Rateio de custos de energia

Consumo

A Eficiência Energética, no que se refere ao consumo, normalmente significa diminuir o consumo e/ou melhorar a qualidade da energia.


A Schneider Electric oferece uma ampla gama de produtos e soluções para:

- Diminuir o consumo de energia
- Inversores de fregüência
- Soft starters e partidas eletrônicas para motores
- Controle de iluminação e ar condicionado

Eficiência energética

Soluções simples para gestão integrada de energia

- Otimizar a energia disponível
- Bancos de capacitores
- Automação de sistemas elétricos
- Reduzir o número de paradas não-programadas
- Sistemas para qualidade de energia
- Identificação de eventos que possam comprometer o perfeito funcionamento de máquinas e equipamentos
- Filtros de harmônicas
- Modernização de painéis e instalações
- Sistemas de proteção

Ações de Eficiência Energética

Nossos produtos e servicos de gerenciamento de energia incluem funções de monitoração e controle, tais como:

- Sistemas de medição
- Quadros de medição para faturamento (QMF
- padrão CCEE)
- Medições setoriais e rateio de custos
- Medições de consumo de utilidades (água, gás, vapor...)
- Monitoramento do consumo de energia via internet
- Controle de demanda/fator de potência
- Rejeição de cargas

As ações voltadas à eficiência energética da Schneider Electric permitem a otimização de recursos e a modernização de máquinas e instalações. Nossa oferta de serviços e soluções inclui:

- Auditoria na medição da concessionária
- Acompanhamento da gualidade da energia
- Utilização de geradores
- Aplicação de inversores em chillers e motores
- Automação de sistemas de iluminação e ar condicionado
- Auditoria energética

WEB Energy

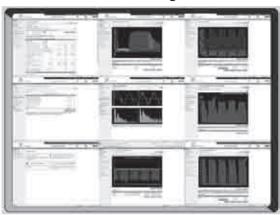
Solução de baixo custo para gestão e monitoramento de energia

Serviço de monitoramento de energia elétrica, 24 horas por dia, via internet, para gestão, controle, monitoração e principalmente, redução dos custos de energia. A Web Energy disponibiliza soluções para gerenciamento

eficiente da energia, usando controladores dedicados e software especializado para promover o armazenamento dos dados e possibilitar as consultas eletrônicas. Além disso, permite ações de consultoria energética e de eficiência energética, possibilitando a gestão eficaz da energia elétrica proveniente do mercado livre.

Toda a captação, administração e consolidação dos dados é realizada no mais moderno data center do país. Este serviço utiliza banco de dados SQL, "no-breakers", servidores e dispositivos de segurança, comunicação e "back up" de última geração, para garantir o acesso e a confiabilidade das informações.

A quem se destina


- Consumidores que estejam interessados em reduzir custos e que desejam gerenciar seus sistemas elétricos com eficiência
- Empresas que possuam plantas ou operações descentralizadas
- Grupos corporativos que utilizam a internet para consolidar informações de consumo de energia
- Empresas de consultoria que desejam prestar serviços de eficiência energética
- Comercializadoras de energia para gestão e planejamento

Principais características

- Monitoramento "online"
- Acesso, via internet, 24 horas por dia
- Compatível com qualquer sistema de controle e gerenciamento de energia do mercado
- Gestão corporativa de potenciais de economia por:
- Simulação de fatura por ponto
- Otimização de demandas contratadas
- Enquadramento tarifário
- Gerenciamento de demandas
- Correção do fator de potência
- Utilização de geradores
- Recuperação de impostos
- Mercado livre de energia

WEB Energy

Solução de baixo custo para gestão e monitoramento de energia

- Dispensa investimento na aquisição de equipamentos
- Desnecessária instalação de qualquer software dedicado
- Conferência da fatura de energia com rapidez e confiabilidade
- Relatórios semanais e mensais
- Medição setorial e rateio de custos
- Benchmarking
- Avaliação do custo unitário e do fator de carga
- Comparações por ramo de atividade
- Comparações por grupo tarifário
- Estatísticas
- Precos médios por ramo de atividade
- Qualidade de energia (depende do medidor usado):
- Oscilografia
- Distorção harmônica
- Tabelas e gráficos
 - Tensão (por fase e total)
 - Corrente (por fase e total)
 - Potência (por fase e total)
 - Harmônicas (até 31a ordem)

Opcionais

- Módulo de monitoramento e uso de água
- Módulo de monitoramento e uso de dás
- Módulo de gestão energética no mercado livre
- Módulo de monitoramento de temperatura
- Módulo de gerenciamento de alarmes via internet

Visite nosso site:

www.schneider-electric.com.br wap.schneider.com.br

Para mais informações sobre produtos:

Call Center **0800 7289 110 / (11) 3468-5791**

call.center.br@br.schneider-electric.com

Comando e Proteção de Potência

Índice

Generalidades

1	Função e composição de um	
	dispositivo de partida	2/4
2	Categorias de emprego	2/8
3	Escolha dos contatores	2/11
4	Associação dos dispositivos	2/15
5	Coordenação das proteções	2/15
6	Exemplos de associações	2/17
7	Instalação e manutenção dos dispositivos de manobra	2/20
8	A confiabilidade dos	2/22

Produtos

9	Disjuntores-motores GV	2/23
10	Minicontatores modelo K	2/37
11	Relés de proteção térmica modelo K	2/40
12	Contatores e relés térmicos modelo D	2/41
13	Contatores modelo F	2/52
14	Relés térmicos modelo F	2/53
15	Proteções eletrônicas, relés eletrônicos e inteligentes	2/54
16	Proteções eletrônicas, relés eletrônicos e instantâneos LR97-LT47	2/55
17	Partidas de motores, partida integrada TeSys U	2/57
18	Proteções eletrônicas Módulos de comunicação	2/60
19	Partidas combinadas TeSys	2/61
20	Chaves reversoras Chaves estrela-triângulo	2/66
21	Chaves magnéticas em cofre	2/67
22	Seccionadores VARIO	2/69

Função e composição de um dispositivo de partida de motores

Um dispositivo de partida de motor engloba todos os componentes necessários ao comando e a proteção de um motor elétrico. A seleção dos componentes para constituir um dispositivo condiciona o desempenho da instalação: nível de proteção, funcionamento em velocidade fixa ou variável, etc.

As funções asseguradas para uma partida de motor são:

- seccionamento
- proteção contra curtos-circuitos
- proteção contra sobrecargas
- comutação

A norma NBR IEC 60947-4-1 prevê estas funções.

Seccionamento

É a função de segurança que define os elementos para isolar eletricamente os circuitos de potência e comando da alimentação geral.

Proteção contra curtos-circuitos

Um curto-circuito se manifesta por um aumento excessivo da corrente elétrica, que alcança em poucos milissegundos valores iguais a centenas de vezes a corrente de emprego.

Para evitar que este incidente ocasione deteriorações dos componentes e pertubação na rede de alimentação o dispositivo de partida de motor tem que ter:

■ Uma proteção contra curtos-circuitos, para detectar e interromper o mais rápido possível correntes anormais superiores a 10 ln.

Utilizar preferencialmente disjuntores limitadores que interrompem a corrente de curto-circuito antes que atinja sua amplitude máxima.

Como GV2; GV7; NS (Schneider Electric).

Incidentes:

- Soldagem dos pólos do contator; fusão dos enrolamentos do relé térmico; fusão das conexões e dos cabos.
- Carbonização dos materiais isolantes A proteção contra curtos-cicuitos assegurada por:
- Aparelhos específicos: fusíveis, disjuntores, relés de proteção eletrônica, (multifunção),
- Funções de proteção integradas em aparelhos de funções múltiplas.

Proteção contra sobrecargas

Todas as cargas estão sujeitas a incidentes de origem elétrica e mecânica como:

- sobretensão, queda de tensão, desequilíbrio ou falta de fase;
- rotor bloqueado, sobrecarga momentânea ou prolongada.

Todos incidentes provocam um aumento da corrente absorvida pelo motor e um aquecimento perigoso nos enrolamentos (efeitos térmicos). Para evitar estes incidentes é obrigatório ter uma proteção contra sobrecargas, para detectar aumentos de corrente de até 10 In e interromper a partida antes que o aquecimento do motor e dos condutores provoque a deterioração dos isolantes.

A sobrecarga é o defeito mais freqüente nas máquinas.

Segundo o nível de proteção desejado e a categoria de emprego do receptor, a proteção contra sobrecarga pode ser realizada com:

Relés térmicos com bimetálicos, que são os aparelhos mais utilizados. Devem possuir funções como:

A classe de um relé térmico é dada pelo tempo máximo em segundos que pode durar uma partida de um motor sem que o relé desarme. Geralmente as classes de relés são definidas como 10, 20 ou 30.

- Insensibilidade às variações de temperatura ambiente (compensados).
- Sensibilidade à falta de fase evitando a operação monofásica do motor (diferenciais).
- Proteção de rotor bloqueado, partida longa definida pela classe de proteção térmica (classe 10, 20 ou 30).
- Relés para sondas a termistores (PTC), que controlam de forma direta a temperatura dos enrolamentos do motor.
- Relés eletrônicos multifunção com proteções complementares ou integradas considerando as curvas de aquecimento do ferro e do cobre, além de dispor de entradas para sondas PTC e funções adicionais.

Incidentes:

- Vida do motor reduzida em 50% se por exemplo, sua temperatura ultrapasse em 10°C de maneira contínua
- Queima dos enrolamentos do motor A proteção é assegurada por:
- Aparelhos específicos: relés de proteção térmica, relés de proteção eletrônica (multifunção).
- Funções de proteção integradas em aparelhos de funções múltiplas.

Comutação

A comutação consiste em estabelecer e interromper a alimentação dos receptores. No caso de variação de velocidade, regular a corrente absorvida pelo motor. Segundo a necessidade, a função está assegurada pelos produtos:

- Eletromecânicos: contatores, disjuntores-motores, partidas combinadas.
- Eletrônicos: contatores estáticos, partidas progressivas (soft starters), inversores de freqüência.

Os dispositivos eletrônicos serão tratados em particular no **capítulo 4**.

O contator eletromagnético é um dispositivo de manobra (conexão e desconexão) mecânico comandado por um eletroíma. Quando a bobina do eletroíma é alimentada, o contator fecha, estabelecendo por intermédio dos pólos, o circuito entre a rede de alimentação e a carga.

Os contatores são dispositivos robustos que podem ser submetidos a exigentes cadências de manobras com tipos distintos de cargas. A norma NBR IEC60947-1 define os diferentes tipos de categorias de emprego que fixam os valores de corrente a estabelecer ou interromper mediante contatores.

Citaremos somente as categorias para circuito de potência em corrente alternada (CA), sabendo-se que existem categorias similares para corrente contínua (CC) e circuitos de controle em CA e CC.

Categorias de emprego

As categorias de emprego normalizadas fixam valores de corrente que o contator deve estabelecer ou interromper que dependem:

- da natureza do receptor controlado: motor de gaiola, motor de anéis, resistências.
- das condições nas quais se efetuam os fechamentos e aberturas: motor em regime, ou motor bloqueado ou no decurso da partida, inversão do sentido da rotação, frenagem em contracorrente.

Categoria AC-1

Cargas não indutivas ou ligeiramente indutivas exemplo: fornos a resistência. Refere-se a todos os aparelhos de utilização em corrente alternada (receptor) onde o fator de potência é maior ou igual a 0,95 ($\cos \varphi \ge 0,95$). A interrupção torna-se fácil.

Categoria AC-2

Refere-se à partida, a motores de anéis: partida e desligamento. Refere-se à partida, à frenagem em contracorrente, e também, a partida por "impulsos" dos motores de anéis. No fechamento, o contator estabelece a corrente de partida ao redor de 2,5 vezes a corrente nominal do motor.

Na abertura, deverá interromper a corrente de partida numa tensão no mínimo igual à tensão da rede. A interrupção é mais severa.

Categoria AC-3

Motor de indução (gaiola): partida, desligamento de motores em serviço. Refere-se aos motores de gaiola, onde a interrupção se efetua com o motor em regime.

No fechamento, o contator estabelece a corrente de partida que é de 5 a 7 vezes a corrente nominal do motor.

Na abertura, deverá interromper a corrente nominal absorvida pelo motor. Neste instante, a tensão nos bornes dos seus pólos é da ordem de 20% da tensão da rede. A interrupção da corrente torna-se fácil.

Categoria AC-4

Motor de indução (gaiola): partida, inversão, intermitência.

Refere-se à partida, com frenagem em contracorrente e à partida por "impulsos" dos motores de gaiola.

O contator fecha com uma intensidade que pode atingir de 5 e até mesmo 7 vezes a corrente nominal do motor.

Na abertura, ele interrompe esta mesma corrente, sob uma tensão tanto maior quanto

menor for a velocidade do motor.

Esta tensão pode ser igual à da rede.

A interrupção é bastante severa.

Categoria AC-5a

Comando de lâmpadas de descarga elétrica.

Categoria AC-5b

Comando de lâmpadas incandescentes.

Categoria AC-6a

Comando de transformadores.

Categoria AC-6b

Comando de banco de capacitores.

Categoria AC-7a

Cargas ligeiramente indutivas em aparelhos domésticos e aplicações similares.

Categoria AC-7b

Motores para aplicações domésticas.

Categoria AC-8a

Comando de motores de compressores herméticos de refrigeração com rearme manual de atuadores de sobrecarga.

Categoria AC-8b

Comando de motores de compressores herméticos de refrigeração com rearme automático de atuadores de sobrecarga.

Categoria DC-1

Cargas indutivas ou ligeiramente indutivas, fornos a resistências.

Refere-se a todos os aparelhos de utilização em corrente contínua (receptores), onde a constante de tempo (L/R) é inferior ou igual a 1 ms.

A interrupção é fácil.

Categoria DC-3

Motores em derivação, partida, inversão, intermitência, frenagem dinâmica de motores.

Refere-se à partida, à frenagem em contracorrente como também à partida por "impulsos" dos motores shunt. Constante de tempo ≤ 2 ms.

No fechamento, o contator estabelece a corrente de partida por volta de 2,5 vezes a corrente nominal do motor.

Na abertura, deverá interromper 2,5 vezes a corrente nominal do motor a uma tensão no máximo igual a tensão da rede.

Esta tensão é tanto mais elevada quanto menor for a velocidade do motor, sendo sua força contraeletromotriz baixa. A interrupção é difícil.

Categoria DC-5

Motores em série, partida, inversão, intermitência, frenagem dinâmica de motores.

Refere-se à partida, à frenagem em contracorrente e partida a "impulsos" dos motores série (constante de tempo ≤7,5 ms). O contator fecha sob um pico de corrente que pode atingir 2,5 vezes a corrente nominal do motor. Na abertura, ele interrompe a mesma intensidade numa tensão tanto mais alta quanto menor for a velocidade do motor.

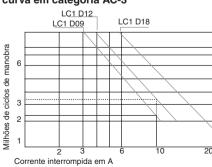
Esta tensão pode ser igual à tensão da rede. A interrupção é severa.

Categoria DC-6

Comando de lâmpadas incandescentes.

3 Escolha dos contatores

Cada carga tem suas próprias características, e na escolha de um dispositivo de comutação (contator) estas deverão ser consideradas.


É importante não confundir a corrente de emprego le com a corrente térmica lth.

- le: É a corrente com que um contator pode operar e é definida pela tensão nominal de emprego, freqüência, fator de serviço, categoria de emprego e a temperatura do ar nas proximidades do produto (AC-1, AC-2,...).
- Ith: É a corrente que o contator pode suportar na condição fechado por no mínimo 8 horas, sem que sua temperatura exceda os limites dados pelas normas.

A vida elétrica, expressa em ciclos de manobras, é uma condição adicional para a escolha de um contator e permite prever sua manutenção. Nos catálogos de contatores constam curvas de vida elétrica em função da categoria de utilização. O gráfico abaixo mostra o aumento da vida elétrica, para uma potência dada de motor, elevando o calibre de contator.

Alguns exemplos ajudarão a realizar uma escolha correta a partir do catálogo de produtos.

Exemplo de curva em categoria AC-3

Circuito de iluminação com lâmpadas incandescentes

Esta utilização é de poucos ciclos de manobra. Só a corrente térmica deve ser considerada, pois o cos ϕ é cerca de 1 (categoria de emprego AC-1).

Quando a lâmpada é ligada, produz-se um pico de corrente que pode variar de 15 a 20 ln, em função da disposição das lâmpadas sobre a linha.

Exemplo: U = 380 V trifásica (60 Hz) Lâmpadas uniformemente dispostas entre fase e neutro, portanto sob 220 V. Potência total das lâmpadas: 22 kW. Corrente de fechamento Ip = 18 In Uma vez que as lâmpadas estejam com os circuitos fechados entre fase e neutro, a corrente do circuito é:

$$I = \frac{P}{3U} = \frac{22000}{3 \times 220} = 33,3 \text{ A}.$$

A corrente de pico atinge 33,3 x 18 = 600 A Neste caso, pode-se aplicar um contator indicado, por exemplo, para 32 A na categoria AC-1. Observando-se o poder nominal de fechamento: sendo 600 A um valor de crista e a capacidade de fechamento um valor eficaz, é necessário escolher um contator que tenha o poder de estabelecimento de $\frac{600P}{\sqrt{2}}$ = 424 A.

Indica-se um contator LC1 D25 de 40 A em AC-1, para uma temperatura ambiente de 40°C (32A em AC-1 para 60°C) e uma capacidade de fechamento de 450 A.

Circuito de iluminação com lâmpadas de alta pressão

Funcionam com um reator, como partida e um capacitor de compensação. O valor do capacitor não é geralmente superior a 120 μF, mas deve-se considerá-lo para a escolha do contator. Para selecionar o contator, é preciso definir a corrente I_B absorvida pelas lâmpadas (conjunto lâmpada + reator composto).

$$I_{b} = \frac{n (P+p)}{U \cos \varphi}$$

onde:

n = número de lâmpadas P = potência de uma lâmpada p = potência do reator = 0,03P cosω = 0.9

O contator é selecionado de forma que:

$$I_{AC1}$$
, a 60°C, $\geq I_{B}$

Exemplo:

U = 380 V trifásica

Lâmpadas de descarga ligadas entre fase e neutro, potência unitária 1 kW em um total de 21 kW.

Capacitor de compensação: $100 \mu F$ Potência por fase: 21/3 = 7 kWNúmero de lâmpadas por fase: 7Ib = n (P + 0.03P) = 7 (1000 + 30) = 37 AU cos ϕ 220 x 0,9

Selecionaremos um contator com uma corrente nominal de emprego em AC-1 a 60°C, igual ou superior a 37/0,6 = 62 A, ou seja, um contator LC1D50. Este contator admite uma compensação de 120 µF por lâmpada.

Primário de um transformador

Independentemente da carga ligada ao secundário, o pico de corrente (corrente de magnetização) (valor de crista) que se produz quando o primário de um transformador é colocado sob tensão pode atingir, durante o primeiro meio-ciclo, 25 a 30 vezes o valor da corrente nominal. Ela deve ser levada em consideração na determinação dos calibres dos disjuntores de protecão e dos contatores.

Exemplo:

U = 380 V trifásica

Potência do transformador: 22 kVA Corrente absorvida pelo primário do transformador:

$$I_n = S_1 = 22000 = 34 \text{ A}$$

 $U\sqrt{3} = 380 \times 1.732$

Valor da corrente de crista da primeira meia-onda:

$$I_n \times I_{pico} = 34 \times 30 = 1020 \text{ A}$$

Ä corrente que se obtém multiplicando-se o poder nominal de fechamento do contator por $\sqrt{2}$.

É portanto, necessário um contator com um poder de fechamento > 1020 A ou seja, o contator LC1 D40, cujo nominal de fechamento é 800 A portanto 800 x $\sqrt{2}$ = 1.131 A satisfaz a condição.

Motor assíncrono de rotor em curto-circuito

Seu funcionamento corresponde à categoria de funcionamento AC-3. Esta aplicação pode requerer um contator com um elevado número de ciclos de manobra.

Não é necessário levar em conta o pico da corrente no momento da partida, uma vez que é sempre inferior ao poder de fechamento do contator.

Exemplo:

U = 380 V trifásico

P = 22 kW

 $I_{\text{emprego}} = 44 \text{ A}$ $I_{\text{Corte/Interrupcão}} = 44 \text{ A}$

O contator será um LC1D50 que poderá realizar 1,7 milhões de ciclos de monobra em AC-3.

4 Associação dos dispositivos

As quatro funções básicas que deve estabelecer uma partida de motor (seccionamento, proteção contra curtocircuito, proteção contra sobrecarga e comutação), devem ser asseguradas de tal maneira que os dispositivos a associar tenham em conta a potência do receptor a comandar, a coordenação das proteções (em caso de curto-circuito e a categoria de emprego).

5 Coordenação das proteções

As quatro funções básicas de um dispositivo de partida de motor : seccionamento. proteção contra curtos-circuitos, proteção contra sobrecargas e comutação podem ser realizadas por dispositivos monofunções descritos nas páginas anteriores. A escolha do calibre dos aparelhos a associar para constituir uma chave de partida deve levar em consideração a potência do receptor a comandar e a coordenação das proteções em caso de curtocircuito.

Definição da coordenação

A coordenação das proteções é a arte de associar um dispositivo de proteção contra curto-circuito com um contator e um dispositivo de proteção contra sobrecargas. Tem por finalidade interromper sem perigo às pessoas e instalações, uma corrente de sobrecarga (1a 10 vezes a corrente nominal do motor) ou uma corrente de curto-circuito (acima de 10 vezes a corrente nominal). Segundo a norma IEC 60947-4-1, a coordenação deve ser obrigatoriamente verificada simultaneamente para: uma corrente nominal de curto-circuito convencional "Iq" definida pelo fabricante do componente (por exemplo, 50 kA em 380 V para associação (disjuntor + contator + relé térmico), uma corrente presumida de curto-circuito impedante "Ir" que é função da corrente de emprego AC-3 do contator (por exemplo, para 63 A. Ir = 3 kA).

Coordenações tipo 1 e tipo 2

Estes dois tipos de coordenação são definidos pela norma IEC 60947-4-1. Especificam o grau de deterioração aceitável para os componentes após um curto-circuito. Coordenação tipo 1

Nenhum risco para o operador. Todos os demais componentes, exceto o contator e o

relé, não devem ser danificados. A isolação deve ser conservada após o incidente. Antes de uma nova partida, poderá ser necessário consertar o equipamento.

Coordenação tipo 2

Não são admitidos danos e desregulagens. A isolação deve ser conservada após o incidente, o dispositivo de partida do motor deve estar apto a funcionar após o curtocircuito. O risco de soldagem dos pólos do contator é admitido se estes puderem ser facilmente separados. Antes da retomada em serviço, uma inspeção rápida será suficiente. Manutenção reduzida e retorno rápido ao servico.

Coordenação total

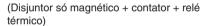
Danos ou riscos de soldagem não são aceitos no aparelho constituindo o dispositivo de partida de motor. Sem precaução especial para a retomada em serviço. Manutenção reduzida e retorno rápido ao serviço.

Exemplos de associações - (Disjuntor Contator - Relé térmico)

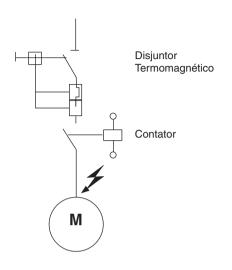
A incorporação do disjuntor só magnético ao circuito permite obter uma elevada capacidade de interrupção e também assegurar a função seccionamento. A proteção contra sobrecargas é realizada pelo relé térmico.

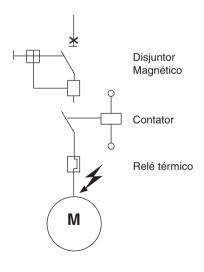
O catálogo Schneider Electric fornece em função das potências normalizadas dos motores, os calibres dos disjuntores (fusíveis), contatores e relés térmicos a associar para obter uma coordenação tipo 2, conforme definida pela norma IEC 60947-4-1.

6 Exemplos de associações


Associação de 2 produtos

(Disjuntor-motor termomagnético + contator) Um dispositivo de comando e proteção termomagnético tripolar, (disjuntor motor modelo GV2M,GV2P, GV3M ou GV7R), assegura as funções de seccionamento, (apto ao seccionamento), proteção contra curtos-circuitos e sobrecargas. A proteção térmica tem compensação de temperatura ambiente e é sensível a falta de fase. Um contator garante a função comutação, assegurando o comando de motores com máximo de 25 ciclos de manobra por hora em AC-3. Conforme a escolha da associação disjuntor-motor, + o contator pode-se obter a coordenação tipo 1 ou 2.


Associação de 3 produtos



Um dispositivo de proteção só magnético, tripolar, (disjuntor GV2-L, GV2-LE, GK3 ou NS...MA) assegura a função de seccionamento (apto ao seccionamento) e proteção contra curtos-cicuitos (abertura dos pólos ominipolares). O contator é responsável pela função comutação. A proteção contra sobrecargas e proteção contra a operação monofásica são garantidas pelo relé térmico com a devida compensação de temperatura ambiente sensível à falta de fase.

As ligações mecânicas e elétricas entre o contator e o disjuntor facilitam a fiação e permitem grande capacidade do conjunto, que pode ser montado no fundo de um armário com o comando na porta.

A associação de vários produtos para realizar uma coordenação tipo 1 e 2 ou total deve ser informada pelo fabricante, posto que as características elétricas de cada produto deve ser validada na associação mediante a ensaios.

O contator - disjuntor da linha de produtos **TeSys modelo U** reúne todas as funções em um só dispositivo, permitindo coordenação total, atendendo a norma IEC 60947-6-2.

É utilizado em indústrias de processo onde a continuidade de serviço é requerida.

Instalação e manutenção dos dispositivos de manobra

Instalação

TeSys oferece uma solução de modularidade na qual padroniza e simplifica a implementação da partida do motor com controle precabeado.

- Instalar os componentes em quadros com o grau de proteção adequado e condições de umidade e temperatura admissíveis.
- A escolha do calibre dos dispositivos, suas proteções e a associação de produtos, devem estar baseadas nas considerações mencionadas neste manual e nas recomendações dos catálogos.
- Para as conexões de potência e comando, usar os terminais de cabeamento.
- Realizar o ajuste final das proteções em condições de trabalho. Não confiar somente na placa de características dos motores ou na corrente nominal indicada no esquema elétrico.
- Apertar todos os parafusos dos bornes de conexão com o torque indicado.

Manutenção

Com TeSys se reduz o tempo de intervenção, manutenção e otimiza o espaço interno do painel.

- Ao ocorrer um curto-circuito ou sobrecarga, verificar a origem do defeito e solucionar o problema.
- Em uma partida de motor, ao ocorrer um curto-circuito, verificar o tipo de coordenação. Pode ser necessária a substituição de um ou mais componentes desta partida.
- Reestabelecer e habilitar um circuito quando estejam reestabelecidas todas as condições da carga e dos componentes que compõem a partida, ou reajustar as proteções de sobrecarga.

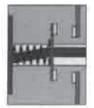
- Em todos os componentes de interrupção (disjuntor-motor, disjuntor):
- Não limar nem engraxar os pólos
- Não substituir os contatos
- Não limpar as câmaras de extinção de arco

Todos os componentes não necessitam de manutenção até o final de sua vida útil.

- Reapertar todos os parafusos das conexões antes da colocação em serviço, mensalmente e anualmente.
- Não tocar nos circuitos magnéticos (face polar) dos contatores com as mãos.
- Em caso de dúvida, antes da intervenção, consultar o catálogo específico ou o fabricante

8 A confiabilidade dos contatos auxiliares

A confiabilidade é algo de extrema importância para o automatismo. A comutação das entradas de um controlador programável é uma função do


A comutação das entradas de um controlador programável é uma função dos contatos auxiliares nos equipamentos de automatismo eletrônicos.

O risco de mau contato é tanto maior quando menor for a tensão e a corrente. As automações devem garantir uma comutação confiável em baixas correntes (mA), mesmo em ambientes poluídos com pó e/ou umidade.

Os contatos estriados e autolimpantes, técnica utilizada e patenteada pela **Schneider Electric**, asseguram a confiabilidade de operar com sinais de baixa intensidade (17 V - 5 mA).

Estes contatos têm uma corrente térmica nominal de 10 A e asseguram uma comutação confiável de correntes de 5 mA em 17 V.

GV2-ME Manobra e proteção de motores

Fixação trilho DIN - 35 mm ou parafusos

GV2-ME

Acionamento por tecla

GV2-ME

Regulagem	Icu (1)	Potência	Potência	Potência	
Disparador	(kA)	(CV)	(CV)	(CV)	
TH (A)		220 V	380 V	440 V	Referências
0,10,16	100	-	-	-	GV2ME01
0,160,25	100	-	-	-	GV2ME02
0,250,40	100	-	-	-	GV2ME03
0,400,63	100	-	0,16	0,16	GV2ME04
0,631,0	100	0,16	0,25/0,33	0,25/0,33	GV2ME05
1,01,6	100	0,25	0,5	0,5/0,75	GV2ME06
1,62,5	100	0,33/0,5	0,75/1	1/1,5	GV2ME07
2,54,0	100	0,75/1	1,5	2	GV2ME08
4,06,3	100	1,5	2/3	3	GV2ME10
6,010,0	100	2/3	4/5	4/5/6	GV2ME14
9,014,0	15	4	6/7,5	7,5	GV2ME16
13,018,0	15	5/6	10	10/12,5	GV2ME20
17,023,0	15	7,5	12,5	15	GV2ME21
20,025,0	15	-	15	-	GV2ME22
24,032,0	10	10	20	20	GV2ME32

A proteção térmica das proteções motores é sensível ao desequilíbrio e perda de uma fase.

 $^{(1) = 400 \}text{ V}$

Obs: Para os itens < 100 kA se associados ao bloco limitador GV1L3 aumenta-se sua capacidade para 100 kA

GV2-P Manobra e proteção de motores

Fixação trilho DIN - 35 mm ou parafusos

Acionamento por manopla rotativa

GV2-P

GV2-P até 32 A

Regulagem	Icu (1)	Potência	Potência	Potência	
Disparador	(kA)	(CV)	(CV)	(CV)	
TH (A)		220 V	380 V	440 V	Referências
0,10,16	130	-	-	-	GV2P01
0,160,25	130	-	-	-	GV2P02
0,250,40	130	-	-	-	GV2P03
0,400,63	130	-	0,16	0,16	GV2P04
0,631,0	130	0,16	0,25/0,33	0,25/0,33	GV2P05
1,01,6	130	0,25	0,5	0,5/0,75	GV2P06
1,62,5	130	0,33/0,5	0,75/1	1/1,5	GV2P07
2,54,0	130	0,75/1	1,5	2	GV2P08
4,06,3	130	1,5	2/3	3	GV2P10
6,010,0	130	2/3	4/5	4/5/6	GV2P14
9,014,0	130	4	6/7,5	7,5	GV2P16
13,018,0	50	5/6	10	10/12,5	GV2P20
17,023,0	50	7,5	12,5	15	GV2P21
20,025,0	50	-	15	-	GV2P22
24,032,0	50	10	20	20	GV2P32

Contatos auxiliares

Frontal	1NA+1NF	GV-AE11
Frontal	1NA+1NA	GV-AE20
Lateral esquerda	1NA+1NF	GV-AN11
Lateral esquerda	1NA+1NA	GV-AN20

A proteção térmica dos motores é sensível ao desequilíbrio e perda de uma fase.

(1) = 400 V

Obs: Para os itens de 50 kA se associados ao bloco limitador GV1L3, a capacidade passa a ser 100 kA.

GV2-MF

Manobra e proteção de motores Conexão por mola

Fixação trilho DIN - 35 mm ou parafusos

Acionamento por tecla

GV2-ME até 25 A

Regulagem	Icu ⁽¹⁾	Potência	Potência	Potência	
Disparo TH	(kA)	(CV)	(CV)	(CV)	
(A)	. ,	220 V	380 V	440 V	Referências
0,10,16	100	-	-	-	GV2ME013
0,160,25	100	-	-	-	GV2ME023
0,250,40	100	-	-	-	GV2ME033
0,400,63	100	-	0,16	0,16	GV2ME043
0,631,0	100	0,16	0,25/0,33	0,25/0,33	GV2ME053
1,01,6	100	0,25	0,5	0,5/0,75	GV2ME063
1,62,5	100	0,33/0,5	0,75/1	1/1,5	GV2ME073
2,54,0	100	0,75/1	1,5	2	GV2ME083
4,06,3	100	1,5	2/3	3	GV2ME103
6,010,0	100	2/3	4/5	4/5/6	GV2ME143
9,014,0	15	4	6/7,5	7,5	GV2ME163
13,018,0	15	5/6	10	10/12,5	GV2ME203
17,023,0	15	7,5	12,5	15	GV2ME213
20,025,0	15	-	15	-	GV2ME223

Contatos auxiliares com conexão por mola

Frontal	1NA+1NF	GV-AE113
Frontal	1NA+1NA	GV-AE203
Lateral esquerda	1NA+1NF	GV-AN113
Lateral esquerda	1NA+1NA	GV-AN203

 $^{(1) = 400 \}text{ V}$

Obs: Para os itens < 100 kA se associados ao bloco limitador GV1L3. a capacidade passa a ser 100 kA

GV3-P e GV3-ME Manobra e proteção de motores

GV3-P

Fixação trilho DIN - 35 mm ou parafusos

Acionamento por tecla

GV3-P

Regulagem	lcu (1)	Potência	Potência	Potência	
Disparador	(kA)	(CV)	(CV)	(CV)	
TH (A)		220 V	380 V	440 V	Referências
913	100	4	6/7,5	7,5	GV3P13
1218	100	5/6	10	10/12,5	GV3P18
1725	100	7,5	12,5/15	15	GV3P25
2332	100	10	20	20	GV3P32
3040	50	12,5/15	25	25/30	GV3P40
3750	50	-	30	-	GV3P50
4865	50	20	40	40/50	GV3P65

A proteção térmica das proteções motores é sensível ao desequilíbrio e à perda de uma fase.

(1) = 400 V

GV3-ME

Fixação trilho DIN - 35 mm ou parafusos

Acionamento por tecla

GV3-ME

Regulagem	Icu (1)	Potência	Potência	Potência	
Disparador	(kA)	(CV)	(CV)	(CV)	
TH (A)		220 V	380 V	440 V	Referências
5680	15	30	50	60	GV3ME80

A proteção térmica das proteções motores é sensível ao desequilíbrio e perda de uma fase.

(1) = 400 V

Obs: Para os itens < 100 kA se associados ao bloco limitador GV1L3 aumenta-se sua capacidade para 100 kA

GV7-R Manobra e proteção de motores

GV7-R

Fixação por parafusos

Acionamento por alavanca

GV7-R até 220 A

Regulagem	Icu ⁽¹⁾	Potência	Potência	Potência	
Disparador	(kA)	(CV)	(CV)	(CV)	
TH (A)		220 V	380 V	440 V	Referências
12,020,0	25	4/5/6	10/12,5	10/12,5	GV7RE20
15,025,0	25	7,5	15	15	GV7RE25
25,040,0	25	10/12,5	20/25	20/25	GV7RE40
30,050,0	25	15	30	30	GV7RE50
48,080,0	25	20/25	40/50	40/50	GV7RE80
60,0100,0	25	30	60	60/75	GV7RE100
90,0150,0	35	40/50	75/100	100	GV7RE150
132,0220,0	35	60/75	125/150	125/150/175	GV7RE220

Regulagem Disparador	Icu ⁽¹⁾ (kA)	Potência (CV)	Potência (CV)	Potência (CV)	
TH (A)		220 V	380 V	440 V	Referências
12,020,0	70	4/5/6	10/12,5	10/12,5	GV7RS20
15,025,0	70	7,5	15	15	GV7RS25
25,040,0	70	10/12,5	20/25	20/25	GV7RS40
30,050,0	70	15	30	30	GV7RS50
48,080,0	70	20/25	40/50	40/50	GV7RS80
60,0100,0	70	30	60	60/75	GV7RS100
90,0150,0	70	40/50	75/100	100	GV7RS150
132,0220,0	70	60/75	125/150	125/150/175	GV7RS220

GV2-LE Manobra e proteção de motores

Fixação trilho DIN - 35 mm ou parafusos

GV2-LE

Acionamento por alavanca

GV2-LE até 32 A

Calibre Proteção	lcu ⁽¹⁾ (kA)	Potência (CV)	Potência (CV)	Potência (CV)	
MA (A)	()	220 V	380 V	440 V	Referências
0,4	100	-	-		GV2LE03
0,63	100	-	0,16	0,16	GV2LE04
1	100	0,16	0,25/0,33	0,25/0,33	GV2LE05
1,6	100	0,25/0,33	0,5	0,5/0,75	GV2LE06
2,5	100	0,5	0,75/1	1/1,5	GV2LE07
4	100	0,75/1	1,5	2	GV2LE08
6,3	100	1,5	2/3	3	GV2LE10
10	100	2/3	4/5	4/5/6	GV2LE14
14	15	4	6/7,5	7,5	GV2LE16
18	15	5/6	10	10/12,5	GV2LE20
25	15	7,5	12,5/15	15	GV2LE22
32	10	10	20	20	GV2LE32

Obs: Para os itens < 100 kA se associados ao bloco limitador GV1L3, a capacidade passa a ser 100 kA

 $^{(1) = 400 \}text{ V}$

GV2-L Manobra e proteção de motores

Fixação trilho DIN - 35 mm ou parafusos

GV2-L

Acionamento por manopla rotativa

GV2-L até 32 A

Calibre Proteção	lcu ⁽¹⁾ (KA)	Potência (CV)	Potência (CV)	Potência (CV)	
MA (A)	()	220 V	380 V	440 V	Referências
0,4	100	-	-		GV2L03
0,63	100	-	0,16	0,16	GV2L04
1	100	0,16	0,25/0,33	0,25/0,33	GV2L05
1,6	100	0,25/0,33	0,5	0,5/0,75	GV2L06
2,5	100	0,5	0,75/1	1/1,5	GV2L07
4	100	0,75/1	1,5	2	GV2L08
6,3	100	1,5	2/3	3	GV2L10
10	100	2/3	4/5	4/5/6	GV2L14
14	50	4	6/7,5	7,5	GV2L16
18	50	5/6	10	10/12,5	GV2L20
25	15	7,5	12,5/15	15	GV2L22
32	15	10	20	20	GV2L32

Estas proteções de motores, associadas convenientemente com contatores e relés térmicos série D, constituem partidas de alta performance com coordenação tipo 2.

Ver coordenação das proteções na página 2/15.

 $^{(1) = 400 \}text{ V}$

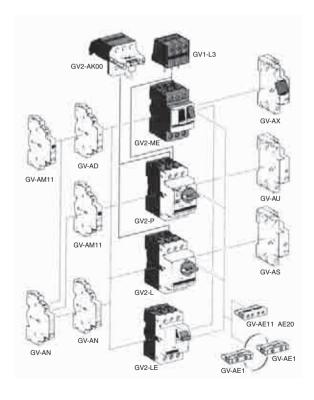
Obs: Para os itens < 100 KA se associados ao bloco limitador GV1L3 a capacidade passa a ser 100 KA

GV3-L Manobra e proteção de motores

GV3-L••

Fixação trilho DIN - 35 mm ou parafusos

Acionamento por manopla rotativa


GV3-L

Calibre	Icu (1)	Potência	Potência	Potência	
Proteção	(kA)	(CV)	(CV)	(CV)	
MA (Å)	, ,	220 V	380 V	440 V	Referências
25	100	7,5	12,5/15	15	GV3L25
32	100	10	20	20	GV3L32
40	50	12,5/15	25	25/30	GV3L40
50	50	-	30	-	GV3L50
65	50	20	40	40/50	GV3L65

(1) = 400 V

Acessórios comuns a toda série GV2

As vantagens da composição variável para obter qualquer configuração com um número mínimo variável de referências.

Acessórios

Contatos Auxiliares

Comuns

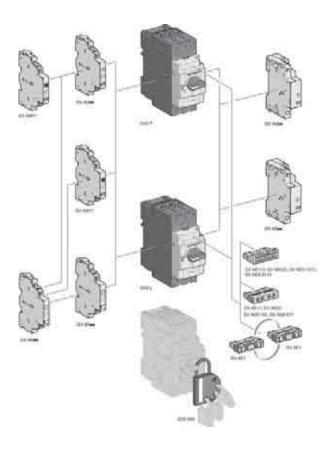
Acessórios comuns a todos os modelos GV2

Referências

Contatos / taxinares	Hererendas
- Auxiliar inst. lateral NA + NF	GV-AN11
- Auxiliar inst. lateral 2NA	GV-AN20
- Auxiliar inst. frontal NA + NF	GV-AE11
- Auxiliar inst. frontal 2NA	GV-AE20
- Auxiliar inst. frontal 1NA ou 1NF	GV-AE1
- Sinal de defeito NA + NA Aux.	GV-AD1010
- Sinal de defeito NA + NF Aux.	GV-AD1001
- Sinal de defeito NF + NA Aux.	GV-AD0110
- Sinal de defeito NF + NF Aux.	GV-AD0101
- Sinal curto-circuito NA/NF	GV-AM11
Disparadores elétricos	Referências
- Disparador a mín. tensão 220/240 V 60 Hz	GV-AU226
- Disparador a mín. tensão 380/400 V 60 Hz	GV-AU386
- Disparador a emissão de tensão 220/240 V 60 Hz	GV-AS226
- Disparador a emissão de tensão 380/400 V 60 Hz	GV-AS386
Acessórios de conexão	Referências
- Aditivo limitador p/lcu 100 KA (GV2-M/P)	GV1-L3
- Barra tripolar Ith 63 A c/2 derivados passo 45 mm	GV2-G245
- Barra tripolar Ith 63 A c/2 derivados passo 54 mm	GV2-G254
- Barra tripolar Ith 63 A c/2 derivados passo 72 mm	GV2-G272
- Barra tripolar Ith 63 A c/3 derivados passo 54 mm	GV2-G354
- Barra tripolar Ith 63 A c/4 derivados passo 45 mm	GV2-G445
- Barra tripolar Ith 63 A c/4 derivados passo 54 mm	GV2-G454
- Barra tripolar Ith 63 A c/4 derivados passo 72 mm	GV2-G472
- Barra tripolar Ith 63 A c/5 derivados passo 54 mm	GV2-G554
- Borne p/alimentação inferior barra GV2-G	GV2-G05
- Borne p/alimentação superior barra GV2-G	GV1-G09
- Bloco de associação GV2 - LC1 K/LP1 K	01/0 4 504
2.000 00 00000.0000 0.12 20 1.102. 1.10	GV2-AF01
- Bloco de associação GV2 - LC1 D 0938	GV2-AF01 GV2-AF3

Acessórios

GV2-MC01


Características	Referências
Cofre saliente c/ dupla isol. IP 41	GV2-MC01
Cofre para embutir IP 41	GV2-MP01
Disp. estanqueidade IP 55	GV2-E01
Botão parada - Tipo soco	
	01/01/00/

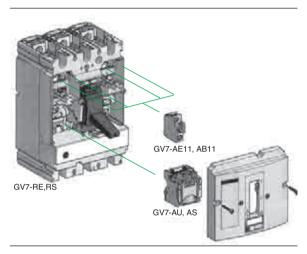
Botão parada - Tipo soco
Girar para destravar
Botão parada - Tipo soco
destravar com chave
Disparador - Tipo soco
impulsão
GV2-K021
GV2-K021
GV2-K021

Específicos para GV3-ME

Específicos para GV2-ME

Contato	Referências
Auxiliar instantâneo NA + NF	GV3-A01
Auxiliar instantâneo 2NA	GV3-A02
Auxiliar instantâneo 2NA + NF	GV3-A03
Sinal de defeito NF	GV3-A08
Sinal de defeito NA	GV3-A09
Disparador a mín. tensão 220 V	GV3-B22
Disparador a mín. tensão 380 V	GV3-B38
Disparador a emissor de	
tensão 220 V	GV3-D22
Disparador a emissor de	
tensão 380 V	GV3-D38

Acessórios



GV3-G66

Acessórios para GV3-P e GV3-L

Contatos Auxiliares	Referências
Auxiliar inst. lateral NA + NF	GV-AN11
Auxiliar inst. lateral 2NA	GV-AN20
Auxiliar inst. frontal NA + NF	GV-AE11
Auxiliar inst. frontal 2NA	GV-AE20
Auxiliar inst. frontal 1NA ou 1NF	GV-AE1
Sinal de defeito frontal NA + NA Aux.	GV AED101
Sinal de defeito frontal NA + NF Aux.	GV AED011
Sinal de defeito lateral NA + NA Aux.	GV-AD1010
Sinal de defeito lateral NA + NF Aux.	GV-AD1001
Sinal de defeito lateral NF + NA Aux.	GV-AD0110
Sinal de defeito lateral NF + NF Aux.	GV-AD0101
Sinal curto-circuito NA/NF	GV-AM11
Bobinas de disparo	Referências
Disparador a mín. tensão 220/240 V 60 Hz	GV-AU226
Disparador a mín. tensão 380/400 V 60 Hz	GV-AU386
Disparador a emissão de tensão 220/240 V 60 Hz	GV-AS226
Disparador a emissão de tensão 380/400 V 60 Hz	GV-AS386
Acessórios de conexão	Referências
Barra tripolar Ith 115 A c/3 derivados passo 64 mm	GV2-G364
Tampa UL 508 tipo E	GV3-G66
Dispositivo de travamento por cadeado (p/4 cadeados)	
Manopla rotativa prolongada azul e preta	GV3-AP01
Manopla rotativa prolongada amarela e vermelha	GV3-AP02

Acessórios

Acessórios comuns a todos os modelos GV7

Características	Referências
- Comando rotativo prolongado preto	GV7-AP01
- Comando rotativo prolongado vermelho	GV7-AP02
- Comando rotativo direto preto	GV7-AP03
- Comando rotativo direto vermelho	GV7-AP04
- Rotativo direto na porta	GV7-AP05
- Disparador a emissão de tensão (380/440 Vca	GV7-AS387
- Disparador a emissão de tensão (200/240 Vca	GV7-AS207
- Disparador a mín. tensão (380/440 Vca)	GV7-AU387
- Disparador a mín. tensão (200/240 Vca)	GV7-AU207
- Bloco de contator de sinal de defeitos magnético	OS
(24/48 Vca - 24/72 Vcc)	GV7-AD111
- Bloco de contator de sinal de defeitos magnético	OS
(110/240 Vca/cc)	GV7-AD112
 Kit associação GV7 + LC1F115/F185 	GV7-AC06
 Kit associação GV7 + LC1F225/F265 	GV7-AC07
- Contato auxiliar para GV7-R	GV7-AE11
- Protetor de bornes IP 405	GV7-AC01

Minicontatores modelo K

Controle de motores e circuitos de distribuição

Fixação perfil DIN - 35 mm ou parafusos

LC1-K0910..

Minicontatores tripolares comando em CA

Controle dos motores trifásicos 4 pólos 50/60 Hz						
em categoria	a AC3					
Corrente de		Potênc	ia	Cont	atos	
emprego	(CV)	(CV)	(CV)	Auxil	iares	
até 440 V	220 V	380 V	440 V	NA	NF	Referências
6 A	1,5	2/3	3	1	-	LC1-K0610
				-	1	LC1-K0601
9 A	2/3	4/5	4/5/6	1	-	LC1-K0910
				-	1	LC1-K0901
12 A	4	6/7,5	7,5	1	-	LC1-K1210
_				-	1	LC1-K1201
16 A	5	10	10	1	-	LC1-K1610
				-	1	LC1-K1601

Chaves reversoras tripolares em CA

Chaves r	evers	oras irij	ooiares	em	CA	
6 A	1,5 2/3 3 1 -	-	LC2-K0610			
				-	1	LC2-K0601
9 A	2/3	4/5	4/5/6	1	-	LC2-K0910
				-	1	LC2-K0901
12 A	4	6/7,5	7,5	1	-	LC2-K1210
				-	1	LC2-K1201
16 A 5 1	10 10	10	1	-	LC2-K1610	
				-	1	LC2-K1601

Nota: Substituir os pontos (..) pela letra e o nº da tensão de bobina correspondente.

Minicontator LC1-K (0,85...1,1 Uc)

Volts	12	24	48	110	220/230	380/400
50/60Hz	J7	B7	E7	F7	M7	Q7

Minicontatores modelo K

Contatores auxiliares

Fixação perfil DIN - 35 mm ou parafusos Contatos autolimpantes (*)

CA2-KN40...

Minicontatores auxiliares comando CA

Características	Ith	Referências
4NA	10 A	CA2-KN40
3NA + 1NF	10 A	CA2-KN31
2NA + 2NF	10 A	CA2-KN22

Minicontatores auxiliares comando CC (1)

Características	Ith	Referências
4NA	10 A	CA3-KN40
3NA + 1NF	10 A	CA3-KN31
2NA + 2NF	10 A	CA3-KN22

(1) Consumo de bobina: 2,4 W

(*) A característica dos contatos auxiliares autolimpantes permite operar confiavelmente em sinais de baixa intensidade (17V - 5 mA).

Nota: Substituir os pontos (..) pela letra e o nº da tensão da bobina correspondente em CA e pelas 2 letras em CC. Comando CA:

Volts

24 110 220/230 380/400 50/60Hz B7 F7 M7 Q7

Exemplo: Minicontator auxiliar 4NA bobina 220 Vca 50/60 Hz: CA2-KN40M7.

Comando CC:

Volts 12 24 48 110 220 JD BD ED FD MD Referenciado

Exemplo: Minicontator auxiliar 4NA bobina 24 Vcc: CA3-KN40BD

Minicontatores modelo K

Bloco de contatos aditivos

Blocos de contatos auxiliares autolimpantes - Ith= 10 A

LA1-KN20

Composição	Referências
1NA + 1NF	LA1-KN11
2NA	LA1-KN20
2NA + 2NF	LA1-KN22
4NA	LA1-KN40
3NA + 1NF	LA1-KN31

Módulos antiparasitas com LED de visualização incorporada

Montagem e conexão	Tipo	Tensões	
Montageni e conexac			
	Varistância (1)	CA e CC	Referências
Conexão		1224 V	LA4-KE1B
por mola		3248 V	LA4-KE1E
		50129 V	LA4-KE1F
		130250 V	LA4-KE1UG
Conexão sem	diodo zener CC		
ferramenta	(2)	1224 V	LA4-KC1B
		3248 V	LA4-KC1E
	RC(3)	CA	
		110250 V	LA4-KA1U

⁽¹⁾ Proteção mediante limitação do valor da tensão transitória a 2Uc máx. Redução máxima dos picos de tensões transitórias. Rápida temporização a desativação (1,1 a 1,5 vezes o tempo normal).

⁽²⁾ Sem sobretensão nem freqüência oscilatória - componente polarizado, rápida temporização a desativação (1,1 a 1,5 vezes o tempo normal).

⁽³⁾ Proteção mediante limitação do valor da tensão transitória a 3Uc máxima e limitação da freqüência oscilatória rápida (1,2 a 2 vezes o tempo normal).

11

Relés de proteção térmica modelo K

Para proteção de motores com rearme manual ou automático

Relés térmicos tripolares

LR2-K

Relé tripolar de conexão por parafusos-classe 10

Faixa de ajuste do relé (A)

Mín.	Máx.	Referências
0,11	0,16	LR2-K0301
0,16	0,23	LR2-K0302
0,23	0,36	LR2-K0303
0,36	0,54	LR2-K0304
0,54	0,8	LR2-K0305
0,8	1,2	LR2-K0306
1,2	1,8	LR2-K0307
1,8	2,6	LR2-K0308
2,6	3,7	LR2-K0310
3,7	5,5	LR2-K0312
5,5	8	LR2-K0314
8	11,5	LR2-K0316
10	14	LR2-K0321
12	16	LR2-K0322

Acessório para relé de proteção

Borneira para montagem separada do relé por encaixe sobre perfil DIN LA7-K0064

Notas:

- Deve associar-se o disjuntor GV2 L/LE para proteção magnética do motor.
- O relé é montado diretamente no contator K, assegurando a continuidade do circuito de potência e o disparo por sobrecarga. O circuito da bobina do contator se abre automaticamente sem a necessidade de cabeamento externo.

Para controle de motores e circuitos de distribuição

LC1-D.....

Fixação perfil DIN - 35 mm ou parafusos. Contatos auxiliares autolimpantes, 1 NA + 1 NF. Tampa de segurança. Circuito de controle: corrente alternada, corrente contínua e corrente contínua de baixo consumo.

Contatores tripolares

Corre	nte	Potência (CV)			Contatos		
AC3	AC1	220 V	380 V	440 V	Auxiliares	Referências	
09	25	3	5	6	1NA + 1NF	LC1D09**	
12	25	4	6/7,5	7,5	1NA + 1NF	LC1D12**	
18	32	5/6	10	10/12,5	1NA + 1NF	LC1D18**	
25	40	7,5	12,5/15	15	1NA + 1NF	LC1D25**	
32	50	10	20	20	1NA + 1NF	LC1D32**	
38	50	12,5	25	25	1NA + 1NF	LC1D38**	
40	60	15	-	30	1NA + 1NF	LC1D40A**	
50	80	20	30	40	1NA + 1NF	LC1D50A**	
65	80	25	40	50	1NA + 1NF	LC1D65A**	
80	125	30	50	60	1NA + 1NF	LC1D80**	
95	125	-	60	75	1NA + 1NF	LC1D95**	
115	200	40	75	-	1NA + 1NF	LC1D1156**	
150	200	50/60	100	100	1NA + 1NF	LC1D1506**	

Nota: Substituir os asteriscos pela bobina desejada.									
LC1-D09D95 (bobina D0938 com antiparasita de fábrica) Vcc									
Vcc	12	24	48	72	110	125	220	250	440
	JD	BD	ED	SD	FD	GD	MD	UD	RD
LC1-D115 e D150 (bobinas com antiparasitas de fábrica, 0,751,2 Uc)									
Vcc		24	48	72	110	125	220	250	440
							220 MD		440 RD

		BD	ED	SD	FD	GD	MD	UD	RD
LC1-D09D38 (hobinas	com	antinaras	itas	de fábrica	. 0.7	1.25 l	lc)	
Vcc	5	24	48	72	40 1421100	., 0,	,=0	,	
haiyo consumo	ΔΙ	RI	FI	SI					

Para outras freqüências, consultar nosso Call Center.

Contatores auxiliares de composição variável

Fixação perfil DIN - 35 mm ou parafusos. Contatos autolimpantes (*) Circuito de controle em CA, CC e CC de baixo consumo.

CAD..

Contatores auxiliares comando CA

Contato	Ith	Referências
5NA	10 A	CAD-50
3NA+2NF	10 A	CAD-32

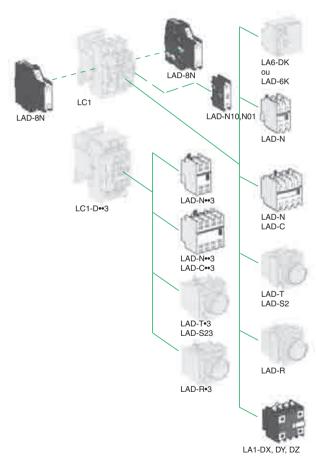
Contatores auxiliares de fixação por molas

5NA	10 A	CAD-503
3NA+2NF	10 A	CAD-323

Nota: Substituir os pontos (...) pela tensão da bobina deseiada.

Corrente Alte	ernada						
Vac,	24	48	110	220	240	380	440
50/60 Hz	B7	E7	F7	M7	U7	Q7	R7

Corrente Contínua (bobinas antiparasitas de fábrica, 0.7...1.25 Uc)


Vcc	12	24	48	72	110	125	220	250	440
	JE) BD	ED	SD	FD	GD	MD	UD	RD

Baixo Consumo (bobinas antiparasitas de fábrica, 0,7...1,25 Uc)

Vcc	5	24	48	72
baixo consumo	AL	BL	EL	SL

Para outras fregüências, consultar nosso Call Center.

A flexibilidade da composição variável

Nota: os blocos LADN10/01 só podem ser utilizados nos contatores maiores que 40 A.

A flexibilidade da composição variável

21 calibres de contatores de 9 a 800 A que permitem os mesmos acessórios e blocos aditivos, podendo realizar qualquer configuração com poucas referências de produtos. Blocos de contatos auxiliares frontais e laterais. Módulos de interface, amplificadores e filtros, de montagem direta sobre os terminais de bobina.

Aditivos

Contatos autolimpantes

LAD-N22

Contatos auxiliares instantâneos frontais

Características	Ith	Referências
Bloco c/ 1NA	10 A	LAD-N10*
Bloco c/ 1NF	10 A	LAD-N01*
Bloco c/ 1NA + 1NF	10 A	LAD-N11
Bloco c/ 2NA	10 A	LAD-N20
Bloco c/ 2NF	10 A	LAD-N02
Bloco c/ 2NA + 2NF	10 A	LAD-N22
Bloco c/ 1NA + 3NF	10 A	LAD-N13
Bloco c/ 4NA	10 A	LAD-N40
Bloco c/ 4NF	10 A	LAD-N04
Bloco c/ 3NA + 1NF	10 A	LAD-N31

Contatos auxiliares instantâneos laterais

Bloco c/ 1NA + 1NF	10 A	LAD-8N11
Bloco c/ 2NA	10 A	LAD-8N20
Bloco c/ 2NF	10 A	LAD-8N02

^{*} utilização somente em contatores acima de 40A

Aditivos

LA4-DR4U

LAD-T

LA4-DT

Blocos temporizados pneumáticos frontais

	•		
Característica	as		Referências
Ao trabalho	NA + NF	0,1 a 3 s	LAD-T0
Ao trabalho	NA + NF	0,1 a 30 s	LAD-T2
Ao trabalho	NA + NF	10 a 180 s	LAD-T4
Estrela-triân.	NA + NF	1 a 30 s	LAD-S2
Ao repouso	NA + NF	0,1 a 3 s	LAD-R0
Ao repouso	NA + NF	0,1 a 30 s	LAD-R2
Ao repouso	NA + NF	10 a 180 s	LAD-R4

Blocos de retenção mecânica frontais

Características	Referências
Man/Aut para LC1-D09 a D38	LAD-6K10.
Man/Aut para LC1-D40 a D65	LAD-6K10.
Man/Aut para LC1-D80 a D150	LA6-DK20.

Many Aut para LOT-DOO a D130	LAU-DIZZU.
Módulos temporizados eletrônicos LA	4
Montagem superior direta	
24/250 Vca/Vcc p/LC1-D09 a D65A (3P) (1) (2)	
24/250 Vca/Vcc p/LC1-DT20 a LC1-DT80A (4P)	
100/250 Vca p/LC1-D80 a D150 (4P)	
Ao trabalho 0,1 a 2 s tensão de saída	LA4-DT0U
Ao trabalho 1,5 a 30 s idem anterior	LA4-DT2U
Ao trabalho 25 a 500 s idem anterior	LA4-DT4U
24/250 Vca/Vcc p/LC1-D09 a D38 (1) e	
100/250 Vca p/LC1-D40 a D150	
Ao repouso 0,1 a 2 s tensão de saída	LA4-DR0U
Ao repouso 1.5 a 30 s idem anterior	LA4-DR2U

Nota: Substituir o ponto (.) pela letra da tensão da bobina correspondente. (1) Para o LC1D09 a D38 montagem com adaptador LAD-4BB (2) Para o LC1D40A a D65A montagem com adaptador LAD-4BB3

Volts CA/CC 24 42/48 100/127 220/240 380/415 Referenciado B E F M Q

Ao repouso 25 a 500 s idem anterior

Blocos Aditivos

LA4-DFB

LA4-DLE

Módulos de interface

Características	Referências
Relé de entrada 24 Vcc	
saída 24 V/250 Vca para LC1-D09/150	LA4-DFB
Estático entrada 24 Vcc (1)	
saída 24/250 Vca para LC1-D09 a D38	
e 100/250 Vca para LC1-D40 a D115	LA4-DWB

Módulos antiparasitas circuito RC

LAD-4RCE
LAD-4RCU
LAD-4RC3E
LAD-4RC3U
LA4-DA2E
LA4-DA2U

Antiparasitas varistores limitadores de crista

24/48 Vca para LC1-D09 a D38 (2)	LAD-4VE
110/250 Vca para LC1-D09 a D38 (2)	LAD-4VU
24/48 Vca para LC1-D40A a D65A	LAD-4V3E
110/240 Vca para LC1-D40A a D65A	LAD-4V3U
24/48 Vca para LC1-D80 a D115 (3)	LA4-DE2E
110/250 Vca para LC1-D80 a D115 (3)	LA4-DE2U

- (1) Para 24 V, o contator deve igualar-se com a bobina de tensão 21 V (Letra de referência "Z")
- (2) Encaixe na lateral do contator
- (3) Conexão por parafuso na parte superior do contator

Blocos aditivos/contatores/bobinas

LXD-1..

Bloco de intertravamento mecânico

Características	Referências
Sem intertravamento elétrico	
para LC1-D09 a D38	LAD-9R1
Ídem para LC1-D40 a D95	LA9-D50978
Com intertravamento elétrico	
para LC1-D09 a D38	LAD-9R1V
Ídem para LC1-D40 a D95	LA9-D4002

Bobinas para o comando em corrente alternada

Para contatores LC1-D09/12/18/25/32/38	LXD-1
Para contatores LC1-D40A/50A/65A	LXD-3
Para contatores LC1-D80/95	LX1-DB6
Para contatores LC1-D115/150	LX1-D8

Nota: Substituir os dois pontos (..) pela letra e o nº da tensão de bobina correspondente.

Exemplo: para LC1-D09 a D38 corresponde a bobina LXD-1M7 220 VCA 50/60 Hz.

Volts 24 42 48 110 115 220 230 240 380 400 415 440 50/60 Hz B7 D7 E7 F7 FE7 M7 P7 U7 Q7 V7 N7 R7

Relés térmicos TeSys modelo D

LRD Proteção de motores

Para proteção de motores com rearme manual ou automático e visualização de disparo. Tampa de proteção para impedir a alteração das regulagens.

Contato NA + NF. Classe 10

Regulagem	Associação	Para uso com	
Disparador TH (A	A) Prot. Magnética	contator LC1	Referências
0,100,16	GV2L / GV3L	D09D38	LRD01
0,160,25	GV2L / GV3L	D09D38	LRD02
0,250,40	GV2L / GV3L	D09D38	LRD03
0,400,63	GV2L / GV3L	D09D38	LRD04
0,631,0	GV2L / GV3L	D09D38	LRD05
1,01,6	GV2L / GV3L	D09D38	LRD06
1,62,5	GV2L / GV3L	D09D38	LRD07
2,54,0	GV2L / GV3L	D09D38	LRD08
4,06,0	GV2L / GV3L	D09D38	LRD10
5,58,0	GV2L / GV3L	D09D38	LRD12
7,010	GV2L / GV3L	D09D38	LRD14
9,013,0	GV2L / GV3L	D12D38	LRD16
12,018,0	GV2L / GV3L	D18D38	LRD21
16,024,0	GV2L / GV3L	D25D38	LRD22
23,032,0	GV2L / GV3L	D25D38	LRD32
30,038,0	GV2L / GV3L	D32 e D38	LRD35
9,013,0	GV2L / GV3L	D40AD65A	LRD313
12,018,0	GV2L / GV3L	D40AD65A	LRD318
17,025,0	GV2L / GV3L	D40AD65A	LRD325
23,032,0	GV2L / GV3L	D40AD65A	LRD332
30,040,0	GV2L / GV3L	DD40AD65A	LRD340
37,050,0	GV2L / GV3L	D40AD65A	LRD350
48,065,0	GV2L / GV3L	D50AD65A	LRD365
55,070,0	GV2L / GV3L	D50D95	LRD3361
63,080,0	GV2L / GV3L	D65D95	LRD3363
80,0104,0	GV2L / GV3L	D80 e D95	LRD3365
80,0104,0	GV2L / GV3L	D115 e D150	LRD4365
95,0120,0	GV2L / GV3L	D115 e D150	LRD4367
110,0140,0	GV2L / GV3L	D150	LRD4369
80,0104,0	GV2L / GV3L	(2)	LRD33656
95,0120,0	GV2L / GV3L	(2)	LRD33676
110,0140,0	GV2L / GV3L	(2)	LRD33696

Acessórios LAD-7

Suporte para	a montagem	do	LRD	01	а	35	LAD-7B106
Suporte para	a montagem	do	LRD	3			LAD-96560
Suporte para	a montagem	do	LRD	33			LA7-3064

Relés térmicos classe 20: favor consultar catálogo específico.

Relés inteligentes Te Sys modelo T

Relés de proteção multifunção

O Tesys T é um sistema de gestão de motores que oferece funções de proteção, medição e monitoramento de motores de corrente alternada monofásicos e trifásicos, com velocidade constante, até 810 A.

Relé inteligente Tesys T (controle de corrente)

Entradas / saídas	Regulagem	Referências
6ED / 4 S (relé)	0,48	LTMR08 ≡●●
6ED / 4 S (relé)	1,3527	LTMR27 ≡●●
6ED / 4 S (relé)	5100	LTMR100mee

Módulo de expansão (controle de tensão e potência)

Entradas / saídas	Alimentação	Referências
4E (independente)	via relé	LTMEV40●●

Substituir o "■" pelo código da rede de comunicação.

M	Modbus
D	DeviceNet
Р	Profibus DP
С	CANopen
E	Ethernet TCP/IP

Substituir o "●●" pelo código da tensão de comando do relé.

BD	24 V CC
FM	∼100240V

Relés inteligentes TeSys modelo T

Relés de proteção multifunção

Acessórios

Transformador de corrente		
Descrição	Alimentação	Referências
Unidade de operação remota	Via relé	LTMCU
IHM Compacta Magelis	24 Vcc	XBTN410

Transformador de corrente				
Corrente de emprego				
Primário	Secundário	Referências		
100 A	1 A ⁽³⁾	LT6CT1001		
200 A	1 A ⁽³⁾	LT6CT2001		
400 A	1 A ⁽³⁾	LT6CT4001		
800 A	1 A ⁽³⁾	LT6CT8001		

⁽³⁾ Para utiliza com os relés LTM08.

TCs toroidais fechados tipo A					
Corrente nom. de emprego (le)		Designação	Referências		
65	30	TA30	50437		
85	50	PA50	50438		
160	80	IA80	50439		
250	120	MA120	50440		
400	200	SA200	50441		
650	300	GA300	50442		

TCs toroidais fechados tipo OA					
Corrente nom. de emprego (le)		Designação	Referências		
85	46	POA	50485		
250	110	GOA	50486		

I Contatores modelo F

Para o controle de motores e circuitos de distribuição

Os contatores da série F utilizam os mesmos blocos aditivos LAD da série D.

Circuito de controle: Corrente alternada ou corrente contínua.

LC1-F

		Potência	Potência	Potência	
Con	rente	(CV)	(CV)	(CV)	
AC3	AC1	220 V	380 V	440 V	Referências
115	200	40	75	-	LC1F115**
150	250	50/60	100	100	LC1F150**
185	275	75	125	125/150	LC1F185**
225	315	-	150	175	LC1F225**
265	350	100	175	200	LC1F265**
330	400	125	200	250/270	LC1F330**
400	500	150	250	300	LC1F400**
500	700	175/200	300/350	350/400	LC1F500**
630	1000	250	400/450	450/500	LC1F630**
780	1600	270/300	500	-	LC1F780**
800	1000	270/300	500	-	LC1F800 (1)

Estes contatores admitem a troca do jogo de contatos e partes móveis e da câmara de extinção.

Para aplicações especiais, em circuitos de potência CC, eletrotérmica indutiva, utilizar contator sobre barras. Para estes casos, consultar o nosso Call Center.

(1) Para o LC1F800 consultar nosso Call Center.

Nota: Substituir os asteriscos (**) pela letra e o nº da tensão correspondente.

Comando em CA Volts 110 220 380 50/60 Hz F7 M7 Q7 Comando em CC Volts 24 48 110 220 FD Código tensão BD ED MD

2/52 Schneider

14 Relés térmicos modelo F

LR9-F

O relé de proteção LR9-F é adaptado às condições de funcionamento dos motores elétricos trifásicos. O relé protege contra sobrecargas térmicas, falta de fases, partidas muito longas, travamento prolongado do motor. Abrange uma faixa de 30 a 630 A em classe de desligamento 10/10 A.

Regulagem	Associação	Associação	
Disparador	Proteção	Contator	
TH (A)	Magnética (2)		Referências
30,050,0	NS80HMA	F115F185	LR9F5357
40,080,0	NS80HMA	F115F185	LR9F5363
60,0100,0	NS100•MA	F115F185	LR9F5367
90,0150,0	NS160•MA	F115F185	LR9F5369
132,0220,0	NS250•MA	F225F400	LR9F5371
200,0330,0	NS400•MA	F225F500	LR9F7375
300,0500,0	NS630•MA	F225F500	LR9F7379
380,0630,0	NS630•MA	F400F630 e F800	LR9F7381

Bobinas para contatores (1) comando em CA

Características	Referências	Referências
Bobina para contator	LC1-F115/150	LX9-FF
Bobina para contator	LC1-F185/225	LX9-FG
Bobina para contator	LC1-F265/330	LX1-FH2
Bobina para contator	LC1-F400	LX1-FJ
Bobina para contator	LC1-F500	LX1-FK
Bobina para contator	LC1-F630	LX1-FL
Bobina para contator	LC1-F780	LX1-FX

Relés de proteção classe 10 ou 20 com alarme

1 1010	,	c pic	regae diasse to da 20	oom alame
Faixa	de		Contatores	
ajuste	do i	relé	a associar	
Α			Referências	Referências
30	а	50	F115-F185	LR9-F57
48	а	80	F115-F185	LR9-F63
60	а	100	F115-F185	LR9-F67
90	а	150	F115-F185	LR9-F69
132	а	220	F185-F400	LR9-F71
200	а	330	F225-F500	LR9-F75
300	а	500	F225-F500	LR9-F79
380	а	630	F400-F630 e F800	LR9-F81

Nota: Relés térmicos para classes de disparo 20, consultar o catálogo específico.
(1) Substituir os 3 pontos (...) pela tensão de bobina. Exemplo: 110V= LX9-FF110
(2) Para maiores informações sobre os disjuntores NS, consule o cap. 1 deste manual.

Relés eletrônicos e inteligentes Multifunção

LT3-SM

Proteção térmica por sondas PTC-LT3

Reset aut. s/memória de defeito 24 Vcc 1NF	LT3-SE00BD
Reset aut. s/memória de defeito 115 V 1NF	LT3-SE00F
Reset aut. s/memória de defeito 230 V 1NF	LT3-SE00M
Reset aut. s/memória de defeito com disp.	
detector de cc em sondas, LED indicador.	
Multitensão 24/230 Vca/cc 2NA/NF.	LT3-SA00MW
Reset manual c/memória de defeito com disp.	L13-SA00MW
	LI3-SA00MW
Reset manual c/memória de defeito com disp.	L13-SA00MW
Reset manual c/memória de defeito com disp. detector de cc em sondas, LED indicador-	LT3-SM00MW

Relés eletrônicos e instantâneos LR97 e LT47

LR97 E

I T/17

Os relés de sobrecorrente eletrônicos instantâneos LR97 D e LT47 foram desenvolvidos para atender às necessidades de proteção de máquinas com elevado conjugado resistente, com forte inércia e grande probabilidade de bloqueio em regime estabelecido.

Estes relés possuem uma característica de funcionamento com

Estes relés possuem uma característica de funcionamento com tempo definido: nível de corrente e temporização.

Podem ser utilizados como proteção para o motor nos casos de partidas longas ou freqüentes.

O relé LR97 D integra também duas proteções com tempo fixo, uma de 0,5 s contra rotor bloqueado e uma de 3 s contra falta de fase. Os relés LR97 D e LT47 podem ser utilizados como relés de proteção contra os impactos mecânicos. A regulagem do botão O-time no mínimo garante, neste caso, um desligamento depois de 0,3 s.

Relés eletrônicos LR97 D

Faixa de regulagem do relé	Faixa útil (1)	Para associação com contator	Tensão de alimentação do relé	Referências
Α	Α			
0,31,5	0,31,3	LC1 D09D38	\sim 220 V	LR97 D015M7
			\sim 110 V	LR97 D015F7
			<u></u> /∼ 24 V	LR97 D015B
			<u></u> /∼ 48 V	LR97 D015E
1,27	1,26	LC1 D09D38	\sim 220 V	LR97 D07M7
			\sim 110 V	LR97 D07F7
			<u></u> /∼ 24 V	LR97 D07B
			<u></u> -/∼ 48 V	LR97 D07E
525	521	LC1 D09D38	\sim 220 V	LR97 D25M7
			\sim 110 V	LR97 D25F7
			<u></u> /∼ 24 V	LR97 D25B
			<u></u> /∼ 48 V	LR97 D25E
2038	2034	LC1 D25D38	\sim 220 V	LR97 D38M7
			\sim 110 V	LR97 D38F7
			<u></u> /∼ 24 V	LR97 D38B
			/∼ 48 V	LR97 D38E

Para permitir o ajuste de sensibilidade no desligamento.

Relés eletrônicos LT47

Relés eletrônicos e instantâneos LT47

Faixa de regulagem	Faixa útil (1)	Tensão de alimentação	Referências
do relé	()	do relé	
A	Α		
Relé LT47 con	n rearme manı	ıal/elétrico	
0,56	0,55	\sim 220 V	LT47 06M7S
		\sim 110 V	LT47 06F7S
		<u></u> /∼ 24 V	LT47 06BS
		/∼ 48 V	LT47 06ES
330	325	\sim 220 V	LT47 30M7S
		\sim 110 V	LT47 30F7S
		<u></u> /∼ 24 V	LT47 30BS
		<u></u> /∼ 48 V	LT47 30ES
560	550	\sim 220 V	LT47 60M7S
		\sim 110 V	LT47 60F7S
		<u></u> /∼ 24 V	LT47 60BS
		/∼ 48 V	LT47 60ES
Relé LT47 con	n rearme autor	mático	
0,56	0,55	\sim 220 V	LT47 06M7A
		\sim 110 V	LT47 06F7A
		<u></u> /∼ 24 V	LT47 06BA
		/∼ 48 V	LT47 06EA
330	325	\sim 220 V	LT47 30M7A
		\sim 110 V	LT47 30F7A
		<u></u> /∼ 24 V	LT47 30BA
		/∼ 48 V	LT47 30EA
560	550	\sim 220 V	LT47 60M7A

 \sim 110 V

---/∼ 48 V

-/∼ 24 V

LT47 60F7A

LT47 60BA

LT47 60EA

⁽¹⁾ Para permitir o ajuste de sensibilidade no desligamento.

Partidas de motores

Partida integrada de motores TeSys U

A partida integrada TeSys U é uma partida de motor direta que assegura as funções de Proteção e Comando de motores trifásicos e monofásicos. Em sua montagem mais simples temos:

- 1 uma base de potência
- 2 uma unidade de controle

Base de Potência

Especificada independentemente da tensão de comando.

A base de potência integra a função disjuntor com um poder de interrupção (curto-circuito) de 50 kA/440 V.

Coordenação total e a função comutação.
Partida direta LUB (2 calibres: 12 e 32 A)
Partida reversora LU2B (2 calibres: 12 e 32 A)

Unidade de controle

A escolha deve ser em função da tensão de comando, da potência do motor a proteger e do tipo de proteção desejada.

- Unidade de controle Standard (LUCA): atende às necessidades elementares de proteção de partidas de motores (sobrecarga), além de falta de fase, desequilíbrio de fase, fuga à terra para equipamento.
- Unidade de controle Avançada (LUCB / CC / CD): atende às necessidades elementares de proteção de partidas de motores (sobrecarga), além da falta de fase, desequilíbrio de fase, fuga à terra para equipamento. Permite funções adicionais como alarme, diferenciação das falhas, indicação de carga do motor, etc.
- Unidade de controle Multifunção (LUCM): atende às necessidades elementares de proteção de partidas de motores (sobrecarga), além de falta de fase, desequilibrio de fase, fuga à terra para equipamento, subcarga, rotor bloqueado. Permite funções adicionais como alarme, diferenciação das falhas, indicação de carga do motor, supervisão, histórico de operação e falhas, etc.

As unidades de controle são intercambiáveis sem utilização de ferramentas e fios.

Coordenação Total (continuidade de serviço assegurada => menor tempo de máquina parada = maior produtividade) e modularidade/ flexibilidade.

Mesmo em situações adversas, como um curto-circuito, não há necessidade de substituir os componentes para recolocação em servico após a correção do problema.

Redução considerável da manutenção que é necessária em uma partida convencional (substituição de bobina, queima da bobina ou destruição dos contatos/soldagem devido a variações na rede de alimentação elétrica).

Produto multitensão (220 V/110 V, 24/48 V)

Redução dos estoques de peças de substituição e simplicidade na especificação do produto.

Partidas de motores

Partida integrada de motores TeSys U

BASES DE POTÊNCIA									
	Corrente	Conexão							
	(A) AC3								
PARA PARTID	A DIRETA								
LUB-12	12 A	com terminais							
LUB-32	32 A	com terminais							
LUB-120	12 A	sem terminais							
LUB-320	32 A	sem terminais							
PARA PARTID	A REVERSO	RA							
LU2B-12●●	12 A	com terminais							
LU2B-32●●	32 A	com terminais							
LU2B-A0●●	12 A	sem terminais							
LU2B-B0●●	32 A	sem terminais							

UNIDADES DE CONTROLE							
	Faixa de	Utilização em					
	regulagem (A)	base					
STANDARD -	CLASSE 10						
LUCA-X6●●	0,15 0,6	Base de 12 e 32 A					
LUCA-1X●●	0,35 1,4	Base de 12 e 32 A					
LUCA-05●●	1,25 5	Base de 12 e 32 A					
LUCA-12	3 12	Base de 12 e 32 A					
LUCA-18●●	4,5 18	Base de 32 A					
LUCA-32●●	8 32	Base de 32 A					
AVANÇADO -	CLASSE 10 TRIF	FÁSICO					
LUCB-X6●●	0,15 0,6	Base de 12 e 32 A					
LUCB-1X●●	0,35 1,4	Base de 12 e 32 A					
LUCB-05●●	1,25 5	Base de 12 e 32 A					
LUCB-12	3 12	Base de 12 e 32 A					
LUCB-18●●	4,5 18	Base de 32 A					
LUCB-32●●	8 32	Base de 32A					
AVANÇADO -	CLASSE 10 MOI	NOFÁSICO					
LUCC-X6●●	0,15 0,6	Base de 12 e 32 A					
LUCC-1X●●	0,35 1,4	Base de 12 e 32 A					
LUCC-05●●	1,25 5	Base de 12 e 32 A					
LUCC-12	3 12	Base de 12 e 32 A					
LUCC-18●●	4,5 18	Base de 32 A					
LUCC-32●●	8 32	Base de 32 A					

Tensão de alin	nentação		
Volts	24	4872	110240
CC	BL		-
CA	В		-
CC ou CA	-	ES	FU
Maker Culentitus	:- () - f:		

Nota: Substituir (••) da referência por dígitos correspondentes à tensão do circuito de comando.

Partidas de motores

Partida Integrada de motores TeSys U

AVANÇADO - CI	LASSE 20 TRIF	ASICO
LUCD-X6●●	0,15 0,6	Base de 12 e 32 A
LUCD-1X●●	0,35 1,4	Base de 12 e 32 A
LUCD-05	1,25 5	Base de 12 e 32 A
LUCD-12	3 12	Base de 12 e 32 A
LUCD-18	4,5 18	Base de 32 A
LUCD-32	8 32	Base de 32 A
MULTIFUNÇÃO	CLASSEFA2	N TDIEÁCICO
MOLTIFONÇAO	CLASSE S A S	UTHIFASICO
LUCM-X6BL	0,15 0,6	Base de 12 e 32 A
•		
LUCM-X6BL	0,15 0,6	Base de 12 e 32 A
LUCM-X6BL LUCM-1XBL	0,15 0,6 0,35 1,4	Base de 12 e 32 A Base de 12 e 32 A
LUCM-X6BL LUCM-1XBL LUCM-05BL	0,15 0,6 0,35 1,4 1,25 5	Base de 12 e 32 A Base de 12 e 32 A Base de 12 e 32 A
LUCM-X6BL LUCM-1XBL LUCM-05BL LUCM-12BL	0,15 0,6 0,35 1,4 1,25 5 3 12	Base de 12 e 32 A Base de 12 e 32 A Base de 12 e 32 A Base de 12 e 32 A

rensao de allini	emação			
Volts	24	4872	110240	
CC	BL	-	-	
CA	В	-	-	
CC ou CA	-	ES	FU	
Nota: Substituir	(a ref	erência por dígitos corresi	pondentes à ten	sã

Nota: Substituir (••) da referência por dígitos correspondentes à tensã do circuito de comando.

BLOCOS ADITIVOS CONTATOS DE SINALIZAÇÃO

CONTAIOS	DE SINALIZAÇAU
LUA1-D11	est. partida e defeito c/ terminais
LUA1-D110	est. partida e defeito s/ terminais
LUA1-C11	pos. manopla e defeito c/ terminais
LUA1-C110	pos. manopla e defeito s/ terminais
LUA1-C20	pos. manopla e defeito c/ terminais
LUA1-C200	pos. manopla e defeito s/ terminais

MODULOS	DE FUNÇÃO
LUF-DH20	diferenciação defeito e reset manual
LUF-DA10	diferenciação defeito e reset autom.
LUF-W10	alarme de sobrecarga térmica
LUF-V2	indic. carga do motor 4 a 20 mA
LUF-C00	módulo de ligação paralela

CONTATOS	SAUXILIARES	
LUF-N20	2 NA	
LUF-N11	1 NA + 1 NF	•
LUF-N02	2 NF	

Módulos de comunicação

MÓDULOS I	DE COMUNICAÇÃO
LUL-C07	protocolo PROFIBUS DP (1)
LUL-C08	protocolo CANOPEN
LUL-C09	protocolo DeviceNet (1)
LUL-C15	mód. p/Advantys STB protocolo CANopen
LUL-C033	protocolo MODBUS
ASI-LUFC5	protocolo As-i V1
ASI-LUFC51	protocolo As-i V2
(4) D 1 :	

⁽¹⁾ Produto em lançamento, para disponibilidade consulte nosso Call Center.

Associação 2 produtos

Disjuntor Termomagnético + Contator

Coordenação tipo 1

	Regulagem	Icu ⁽¹⁾	Assoc.	Assoc.	Po	tência	
	Disparador	(kA)	Contator	Contator	(CV)	(CV)	(CV)
Referências	TH (A)		TeSys D	TeSys K	220 V	380 V	440 V
GV2ME01	0,10,16	100	LC1D09	LC1K06	-	-	-
GV2ME02	0,160,25	100	LC1D09	LC1K06	-	-	-
GV2ME03	0,250,40	100	LC1D09	LC1K06	-	-	-
GV2ME04	0,400,63	100	LC1D09	LC1K06	-	0,16	0,16
GV2ME05	0,631,0	100	LC1D09	LC1K06	0,16	0,25/0,33	0,25/0,33
GV2ME06	1,01,6	100	LC1D09	LC1K06	0,25	0,5	0,5/0,75
GV2ME07	1,62,5	100	LC1D09	LC1K06	0,33/0,5	0,75/1	1/1,5
GV2ME08	2,54,0	100	LC1D09	LC1K06	0,75/1	1,5	2
GV2ME10	4,06,3	100	LC1D09	LC1K06	1,5	2/3	3
GV2ME14	6,010,0	100	LC1D09	LC1K09	2/3	4/5/6	4/5/6
GV2ME16	9,014,0	15	LC1D12	LC1K12	4	7,5	7,5
GV2ME20	13,018,0	15	LC1D18	LC1K16	5/6	10	10/12,5
GV2ME21	17,023,0	15	LC1D25	-	7,5	12,5	15
GV2ME22	20,025,0	15	LC1D25	-	-	15	
GV2ME32	24,032,0	10	LC1D32	-	10	20	20
GV3P40	3040	50	LC1D38/D40A	-	12,5/15	25	25/30
GV3P65	4865	50	LC1D65A	-	20/25	30/40	40/50
GV3ME80	5680	15	LC1D80	-	30	50	60
GV7RE100	60,0100,0	25	LC1D1156	-	30	60	60/75
GV7RE150	90,0150,0	35	LC1D1506	-	40/50	75/100	100
GV7RE220	132,0220,0	35	LC1F225	-	60/75	125/150	125/150/175

^{(1) = 400}V

Obs: Para os itens < 100 kA se associados ao bloco limitador GV1L3, a capacidade passa a ser 100 kA

Com o acessório de conexão **GV2AF01** é possível montar um contator K debaixo de uma proteção motor GV2, sem a necessidade de realizar cabeamento e utilizando um só trilho DIN.Com o **GV2AF3** é possível montar um contator D debaixo de uma proteção motor GV2.

Para outras potências de motores e/ou tensões de referências de comando, consultar a documentação específica **Schneider Electric.**

Associação 2 produtos

Disjuntor Termomagnético + Contator

Coordenação tipo 2

	Regulagem	Icu ⁽¹⁾	Associação		Potência	
	Disparador	(kA)	Contator	(CV)	(CV)	(CV)
Referências	TH (A)		TeSys D	220 V	380 V	440 V
GV2P01	0,10,16	130	LC1D09	-	-	-
GV2P02	0,160,25	130	LC1D09	-	-	-
GV2P03	0,250,40	130	LC1D09	-	-	-
GV2P04	0,400,63	130	LC1D09	-	-	-
GV2P05	0,631,0	130	LC1D09	0,16	0,25/0,33	0,25/0,33
GV2P06	1,01,6	130	LC1D09	0,25	0,5	0,5/0,75
GV2P07	1,62,5	130	LC1D09	0,33/0,5	0,75/1	1/1,5
GV2P08	2,54,0	130	LC1D09	0,75/1	1,5	2
GV2P10	4,06,3	130	LC1D09	1,5	2/3	3
GV2P14	6,010,0	130	LC1D12	2/3	4/5/6	4/5/6
GV2P16	9,014,0	130	LC1D25	4	7,5	7,5
GV2P20	13,018,0	50	LC1D25	5/6	10	10/12,5
GV2P21	17,023,0	50	LC1D25	7,5	12,5/15	15
GV2P22	20,025,0	50	LC1D25	-	-	20
GV2P32	24,032,0	50	LC1D32	10	20	20
GV7RS40	25,040,0	70	LC1D40A	12,5	25	25
GV7RS50	30,050,0	70	LC1D80	15	30	30
GV7RS80	48,080,0	70	LC1D80	20/25	40/50	40/50
GV7RS100	60,0100,0	70	LC1D1156	30	60	60/75
GV7RS150	90,0150,0	70	LC1D1506	40/50	75/100	100
GV7RS220	132,0220,0	70	LC1F225	60/75	125/150	125/150/175

(1) = 400 V

Para outras potências de motores e/ou tensões de referências de comando, consultar a documentação específica **Schneider Electric.**As outras proteções de motores GV7 possuem diferentes capacidades de

interrupção, conforme suas versões RE ou RS (35 ou 70 kA).

Associação 3 produtos

Disjuntor magnético

- + Contator
- + Relé térmico

Coordenação tipo 1

	Calibre	Icu ⁽¹⁾	Assoc.	Assoc.		Potência	
	Proteção	(kA)	Contator	Relé	(CV)	(CV)	(CV)
Referências	MA (A)			Térmico	220 V	380 V	440 V
GV2LE03	0,4	100	LC1K06	LR2K0304	-	-	-
GV2LE04	0,63	100	LC1K06	LR2K0305	-	0,16	0,16/0,25
GV2LE05	1	100	LC1K06	LR2K0306	0,16	0,25/0,33	0,33
GV2LE06	1,6	100	LC1K06	LR2K0307	0,25/0,33	0,5	0,5/0,75
GV2LE07	2,5	100	LC1K06	LR2K0308	0,5	0,75/1	1/1,5
GV2LE08	4	100	LC1K06	LR2K0310	0,75/1	1,5	2
GV2LE10	6,3	100	LC1K06	LR2K0312	1,5	2/3	3
GV2LE14	10	100	LC1K09	LR2K0314	2	4/5	4/5
GV2LE14	10	100	LC1K12	LR2K0316	3	6	6
GV2LE16	14	15	LC1K16	LR2K0321	4	7,5	7,5
GV2LE20	18	15	LC1D18	LRD21	5/6	10	10/12,5
GV2LE22	25	15	LC1D25	LRD22	7,5	12,5/15	15
GV2LE32	32	10	LC1D32	LRD32	10	20	20
GV3L40	40	50	LC1D38	LRD35	12,5/15	25	25/30
GV3L50	65	35	LC1D50A	LRD350	-	30	-
GV3L65	65	35	LC1D50A	LRD365	20	-	40
GV3L65	65		LC1D65A	LRD365	25	40	50
GK3EF80	80	35	LC1D80	LRD3363	30	50	60
NS100*MA	81	*	LC1D95	LRD3365	-	60	75
NS160*MA	100/135	*	LC1D1156	LRD4367	40	75	-
NS160*MA			LC1D1506	LRD4369	50/60	100	100
NS250*MA	165/200	*	LC1F185	LR9F5371	75	125	125/150

 $^{(1) = 400 \}text{ V}$

^{*} Os disjuntores Compact NS possuem diferentes capacidades de interrupção, de acordo com suas versões N, H ou L. Consultar a documentação Schneider Electric para correta escolha ou especificação.

Associação 3 produtos

Disjuntor magnético

- + Contator
- + Relé térmico

Coordenação tipo 2

	Calibre	Icu ⁽¹⁾	Associação	Associação	Potência		
	Proteção	(kA)	Contator	Relé	(CV)	(CV)	(CV)
Referências	MA (A)			Térmico	220 V	380 V	440 V
GV2L03	0,4	100	LC1D09	LRD03	-	-	-
GV2L04	0,63	100	LC1D09	LRD04	-	0,16	0,16
GV2L05	1	100	LC1D09	LRD05	0,16	0,25/0,33	0,25/0,33
GV2L06	1,6	100	LC1D09	LRD06	0,25	0,5	0,5/0,75
GV2L07	2,5	100	LC1D09	LRD07	0,33/0,5	0,75/1	1/1,5
GV2L08	4	100	LC1D09	LRD08	0,75/1	1,5	2
GV2L10	6,3	100	LC1D09	LRD10	1,5	2/3	3
GV2L14	10	100	LC1D09	LRD12	2	4/5	4/5
GV2L14	10	100	LC1D09	LRD14	3	6	6
GV2L16	14	50	LC1D25	LRD16	4	7,5	7,5
GV2L20	18	50	LC1D25	LRD21	5/6	10	10/12,5
GV2L22	25	15	LC1D32	LRD22	7,5	12,5/15	15
GV2L32	32	50	LC1D40A	LRD332	10	20	20
NS80H MA	50	35	LC1D40A	LRD340	12,5/15	25	25/30
NS80H MA	50		LC1D50A	LRD350	-	30	-
NS80H/100*MA	80/100	*	LC1D65A/80	LRD365	20	-	40
NS100* MA	100	*	LC1D80	LRD3361	25	40	50
NS100* MA	100	*	LC1D80	LRD3363	30	50	60
NS100H MA	100	*	LCD115	LR9D5367	40	60	-
NS160* MA	150	*	LC1D115/	LR9D5369	50/60	75/100	100
			D150				
NS250* MA	220	*	LCF185/	LR9F5371	75	125/150	125/150/
			F265				175
NS400* MA	320	*	LC1F265/	LR9F7375	100/125	175/200	200/250
			F330				
NS400*/630*MA	320/500	*	LC1F400/	LR9F7379	150/175/	250/300/	300/350/
			F500		200	350	400
NS630* MA	500	*	LC1F630	LR9F7381	250	400/450	450/500

Obs.: (*) referência a ser completada de acordo com a necessidade de poder de desligamento

^{*} Os disjuntores Compact NS possuem diferentes poderes de interrupção, de acordo com suas versões N, H ou L. Consultar o catálogo de produtos para correta escolha ou especificação.

Partidas e equipamentos TeSys

Partidas combinadas

A associação montada de fábrica compreende (coordenação tipo 1):

- 1 disjuntor-motor tipo GV2-ME
- 1 minicontator tripolar modelo K
- 1 bloco de associação GV2-AF01

A associação montada de fábrica compreende (coordenação tipo 2):

- 1 disjuntor-motor tipo GV2-P
 - 1 contator tripolar modelo D
 - 1 bloco de associação GV2-AF3

Coordenação tipo 1

Regulagem Disparador	Potência (CV)	Potência (CV)	Potência (CV)	
TH (A)	220 V	380 V	440 V	Referências
IП (A)	220 V	30U V	440 V	neierencias
1,01,6	0,25	0,5	0,5/0,75	GV2ME06K1**
1,62,5	0,33/0,5	0,75/1	1/1,5	GV2ME07K1**
2,54,0	0,75/1	1,5	2	GV2ME08K1**
4,06,3	1,5	2/3	3	GV2ME10K1**
6,010,0	2/3	4/5	4/5/6	GV2ME14K1**
9,014,0	4	6/7,5	7,5	GV2ME16K1**

Coordenação tipo 2

Coordenação tipo 2							
Regulagem Disparador	Potência (CV)	Potência (CV)	Potência (CV)				
TH (A)	220 V	380 V	440 V	Referências			
0,160,25	-	-	-	GV2DP102**			
0,250,40	-	-	-	GV2DP103**			
0,400,63	-	0,16	0,16	GV2DP104**			
0,631,0	0,16	0,25/0,33	0,25/0,33	GV2DP105**			
1,01,6	0,25	0,5	0,5/0,75	GV2DP106**			
1,62,5	0,33/0,5	0,75/1	1/1,5	GV2DP107**			
2,54,0	0,75/1	1,5	2	GV2DP108**			
4,06,3	1,5	2/3	3	GV2DP110**			
6,010,0	2/3	4/5	4/5/6	GV2DP114**			
9,014,0	4	6/7,5	7,5	GV2DP116**			
13,018,0	5/6	10	10/12,5	GV2DP120**			
17,023,0	7,5	12,5	15	GV2DP121**			
20,025,0	-	15	-	GV2DP122**			
24,032,0	10	20	20	GV2DP132**			

Nota: Substituir (**) da referência por dígitos correspondentes à tensão do circuito de comando.

Volts 24 110 220 380

S0/60 Hz B7 F7 M7 Q7

20 Chaves reversoras/estrela-triângulo

Chaves Reversoras

Chaves reversoras sem relé térmico, com intertravamento mecânico

Corrente AC3	Corrente AC1	(CV)	Potência (CV)	(CV)	Contatos Auxiliares	
ACS	ACT	220 V	380 V	440 V	Auxiliales	Referências
9	25	3	5	6	2NA + 2NF	LC2D09ee
12	25	4	6/7,5	7,5	2NA + 2NF	LC2D12••
18	32	5/6	10	10/12,5	2NA + 2NF	LC2D18
25	40	7,5	12,5/15	15	2NA + 2NF	LC2D25ee
32	50	10	20	20	2NA + 2NF	LC2D32ee
38	50	12,5	25	25	2NA + 2NF	LC2D38ee
40	60	15	-	30	2NA + 2NF	LC2D40A●●
50	80	20	30	40	2NA + 2NF	LC2D50A●●
65	80	25	40	50	2NA + 2NF	LC2D65A●●
80	125	30	50	60	2NA + 2NF	LC2D80ee
95	125	-	60	75	2NA + 2NF	LC2D95
115	200	40	75	-	2NA + 2NF	LC2D1156
150	200	50/60	100	100	2NA + 2NF	LC2D1506●●

Estrela-triângulo

Chaves estrela-triângulo sem relé térmico

Corrente	Corrente	Potência			
AC3	AC1	(CV)	(CV)	(CV)	
		220 V	380 V	440 V	Referências
9	25	4	7,5	7,5	LC3D09A••
12	25	5/6/7,5	10/12,5	10/12,5/15	LC3D12Aee
18	32	10	15/20	20	LC3D18Aee
25	40	12,5/15	25	25/30	LC3D25A●●
32	50	20	30	40	LC3D32A • •
40	60	25	40	50	LC3D40●A64
50	80	30	50/60	60	LC3D50●●A64
80	125	40/50	75	75/100	LC3D80 •• A64
115	200	60/75	100/125	150	LC3D115 •• A64
150	200	100	150	175/200	LC3D150●●A64

Nota: Substituir o ponto (•) pela letra e o nº da tensão correspondente.

Volts 24 110 220 380 50/60 Hz B7 F7 М7 Ω7

21 Chaves magnéticas em cofre

LE1-E - sem fusíveis, para partida de motores de indução

■ Grau de proteção IP65

Características

- Temperatura ambiente (próxima ao contator: -5°C a + 60°C)
- Corrente de partida: até 7 x In
- Tempo de aceleração: 5 s
- Número de manobras/hora: 30 (limitadas pelo relé térmico)
- Fornecida com contator, relé térmico e botões "liga" e "desliga/rearme"

Chaves magnéticas em cofre

Potências de emprego 50-60 Hz/AC-3

																_	
Retardado D ou NH			0	4	9	9	10	16	20	20	25	35	20	63	80		
ecarga	Mávimo	O NO	0,63	-	1,6	2,5	4	9	80	10	13	18	24	32	38		
do refé de sobrecarg Mínimo Máxim		0,4	0,63	-	1,6	2,5	4	5,5	7	6	12	16	23	30			
Nominal Máxima	<u>)</u>		0,63	-	1,6	2,5	4	9	8	6	12	18	23	32	38		
440V	Poforôncia da Chaus	2000	LE1E0.16CV44000	LE1E0.33CV44000	LE1E0.75CV44000	LE1E1.5CV44000	LE1E2CV44000	LE1E3CV44000	LE1E5CV44000	LE1E6CV44000	LE1E7.5CV44000	LE1E12.5CV44000	LE1E15CV44000	LE1E20CV440••	LE1E30CV44000	9	
	į	3	0,16	0,25	0,5	1,5	2	8	5 4	9	7,5	10 12,5	12	20	30 52		
			0,12	0,18	0,37	0,75	1,5	2,2	3,7	4,4	5,5	7,5	Ξ	15	18,5 22		
220 V 380V	Boforância da Chaus	Deletered da Ciave	LE1E0.16CV38000	LE1E0.33CV38000	LE1E0.5CV380	LE1E1CV38000	LE1E1.5CV380	LE1E3CV38000	LE1E4CV380**	LE1E6CV380••	LE1E7.5CV38000	LE1E10CV38000	LE1E15CV3800	LE1E20CV3800	LE1E25CV3800		
	į	3	0,16	0,25	9,0	0,75	1,5	0.0	4	9	7,5	10	12,5 15	20	25		
		75.		0,12	0,18	0,37	0,55	1,	1,5	6	3,7	5,5	7,5	9,5	15	18,5	
	220 V	Boforância da Chaus			LE1E0.16CV22000	LE1E0.33CV22000	LE1E0.5CV22000	LE1E1CV22000	LE1E1.5CV22000	LE1E2CV22000	LE1E3CV22000	LE1E4CV22000	LE1E6CV22000	LE1E7.5CV22000	LE1E10CV22000	LE1E15CV22000	
	į	3			l .	9,0	2 2 2 2	3	4	5	7,5	10	12,5 15				
	7			0,12	0,25	0,37	0,55	1,1	1,5	2,2	ო	3,7	5,5	7,5	9,2		
aça	254 V	ટ					-1/2	2	က		4 ග	71/2	9	121/2			
tor Carc	220 V	ટ							1/2		2	က	4 0		71/2		
Mo	110 V	ડ										11/2					
aça	254 V	ડ					1/3	3/4	-								
tor Carc NEMA	220 V	ડ			1/8	1/6	1/3	1/2	3/4		11/2	3 (*)					
Mo	110 V	ઠ					1/8	1/4	1/3	1/2	3/4	-	11/2	3(*)			
	380V 440V Nominal de sobrecarga la factoria	Motor Carcese	OF Classics Moder Classics Moder Classics 220 V 240 V 440 V Name Name	March Classical Motor Classical State March March	March Marc	Mary Control Mary	Minimal Mini	March Control March Contro	March Courses Motor Courses March Course	March Marc	March Marc	March Marc	March Marc	Note Column Market Mar	Note Column Col	No. Control Most Control Mos	

(*) Para motores de 2 pólos

Nota: substituir os dois pontos (• •) pelo código da tensão de comando

Tensões usuais do circuito de comando Volts 24 48 110 220 380 440 50/60 Hz B7 E7 F7 M7 Q7 R7

Seccionadores VARIO

Seccionadores tripolares VARIO

Interruptor principal e parada de emergência - fixação 4 parafusos

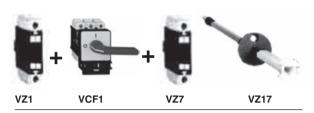
VCF1

3		
Corrente té	érmica	
Ith (A)	Dimensões (mm)	Referências
12	60 x 60	VCF02
20	60 x 60	VCF01
25	60 x 60	VCF0
32	60 x 60	VCF1
40	60 x 60	VCF2
63	60 x 60	VCF3
80	60 x 60	VCF4
125	90 x 90	VCF5
175	90 x 90	VCF6

Interruptor principal e parada de emergência - furação diâmetro 20 mm

3		
Corrente térn	nica	
Ith (A)	Dimensões (mm)	Referências
12	60 x 60	VCD02
20	60 x 60	VCD01
25	60 x 60	VCD0
32	60 x 60	VCD1
40	60 x 60	VCD2

Interruptor principal e parada de emergência - em cofre IP 65


VCF1 GE

Corrente térmica	
Ith (A)	Referências
10	VCF02 GE
16	VCF01 GE
20	VCF0 GE
25	VCF1 GE
32	VCF2 GE
50	VCF3 GE
63	VCF4 GE
100	VCF5 GE
140	VCF6 GE

Permite o comando direto do motor ou circuitos de distribuição. Vários acessórios disponíveis.

Seccionadores VARIO

Interruptores tripolares VARIO Acessórios

Pólo de potência principal para Vario VZ

Pólo	Referências
12	VZ02
20	VZ01
25	VZ0
32	VZ1
40	VZ2
63	VZ3
80	VZ4

Bloco de contatos auxiliares para VARIO

Tipo	Referências
Bloco aditivo de 1NA+1NF	VZ7
Bloco aditivo de 2NA	VZ20

Extensões de comando para VARIO

Tipo	Referências
300/330 mm para Vario V02 a V2	VZ17
300/330 mm para Vario V3 a V6	VZ18
400/430 mm para Vario V02 a V2	VZ30
400/450 mm para Vario V3 a V6	VZ31

Visite nosso site:

www.schneider-electric.com.br wap.schneider.com.br

Para mais informações sobre produtos:

Call Center 0800 7289 110 / (11) 3468-5791

call.center.br@br.schneider-electric.com

Diálogo Homem-Máquina

Índice

General	hil	ad	20
Genera	пu	au	ıcə

1	Concepção do diálogo Homem-Máquina	3/4
2	Elementos de diálogo	3/4

Produtos

3	Unidades de comando e sinalização XB3 XB4 XB5 XB6 XB7	3/8
4	Unidades de sinalização XV XVB	3/19
5	Botoeiras murais XAL e XB2TB	3/21
6	Botoeiras murais plásticas XAL E Optimum	3/26
7	Botoeiras pendentes	3/28
8	Comutadores rotativos montados K1/K2 e K30/150	3/30

1 Diálogo Homem-máquina

O diálogo homem-máquina coloca em evidência dois tipos de informações circulando em ambos sentidos: máquina-homem, homem-máquina.

Concepção da qualidade do diálogo Avaliada pela facilidade com que o operador pode perceber, compreender e reagir em uma ocorrência

Os três conceitos acima referidos são fundamentais à clareza conceitual utilizada pelo projetista para facilitar a tarefa do operador, e pela confiabilidade dos componentes do diálogo utilizado, no qual não devem deixar nenhuma dúvida ao operador quando receber uma informação e enviar uma ordem.

Elementos de diálogo

Desde um simples botão à impulsão até um supervisor, a função "diálogo homem-máquina" dispõe de uma vasta gama de interfaces. Oferece assim soluções perfeitamente adequadas, seja qual for o nível de diálogo necessário para a condução e supervisão de equipamentos de todos os tipos.

Botões e Sinalizadores

XB4 Metálica

XB5 Plástica

XB7 Plástica

São as interfaces de diálogo que melhor se adaptam na hora de trocar informações, mesmo sendo um tanto limitadas aos sinais de saída (ordens de partida, parada, sinalizações de estados...)

Estes equinamentos são simples de instala

Estes equipamentos são simples de instalar, robustos, confiáveis e ergonômicos,

disponíveis para todas as condições ambientais e funcionalidades de comando (inclusive cabeçotes especiais). Facilidade de se identificar graças a um código de cores normalizado (ver pag. 3/7). Os componentes de Ø22 mm são empregados na maioria das aplicações.

Colunas luminosas e sirenes

As colunas luminosas são elementos de sinalização visual ou sonora, utilizados para visualizar (360°) ou escutar a grande distância os estados de máquinas e alarmes mais importantes (partida, parada e emergência).

Manipuladores

Os manipuladores são destinados a comandar, por intermédio de contatos NANF, os deslocamentos sobre um ou dois eixos, como exemplo, os movimentos de translação/direcionamento ou subir/descer em pequenos sistemas de transportes. Os manipuladores contêm em geral de 2 a 8 direções com 1 ou 2 contatos por direção, com o seu retorno a zero e em alguns casos com um contato "homem morto" na extremidade da alavanca.

Comutadores

Os comutadores podem ter até 16 posições e 20 jogos de contatos. Os esquemas de atuação dos contatos, nas distintas posições, podem ser predeterminados ou realizados de acordo com uma aplicação especial requerida.

São empregados em circuitos de comando como comutadores voltimétricos ou amperimétricos, tipos de partidas de motores etc.

Também são utilizados em circuitos de potência para o comando de motores monofásicos e trifásicos (sentidos de marcha, estrela-triângulo etc).

Botoeiras murais plásticas XAL E Optimum

- em edifícios, controlam as portas de garagem, cancelas de estacionamento ou ventilação
- no setor terciário, equipam máquinas simples e os pequenos sistemas de elevação
- no setor industrial, equipam pequenas máquinas com 2 ou 3 atuadores ou máquinas para movimentação de materiais, embalagem, máquinas-ferramentas etc.

Estão disponíveis montadas ou vazias:

- botoeiras montadas com 1 a 3 botões
- botoeiras vazias com 1 a 3 furos

Botoeiras murais XAL e XB2TB

São destinadas para comandar ou sinalizar partidas e paradas de motores, movimentos de pequenas máquinas, nas aplicações industriais ou no setor terciário (amoladores, perfuradores, tornos, esteiras, bombas etc). Possuem até 5 elementos de comando ou sinalização.

0

Botoeiras pendentes XAC

São destinadas principalmente para o comando de componentes e dispositivos móveis, tal como sistemas de elevação (gruas, pontes rolantes etc). Possuem até 12 elementos de comando ou sinalização. É possível também aplicá-las ao comando direto de motores de pequenas potências (até 3 kW).

Código de cores para linha Harmony

Linha XB - Botões,	Colunas Luminosas e Faróis		
Comutadores e Sinalizadores	com espelho rotativo		
1 - Branco	3 - Verde		
2 - Preto	4 - Vermelho		
3 - Verde	5 - Laranja		
4 - Vermelho	6 - Azul		
5 - Amarelo	7 - Branco		
6 - Azul	8 - Amarelo		
7 - Incolor			

Unidades de comando e sinalização Corpo plástico Ø 16 mm

	Descrição	Referências				
	Botões normais					
	Normal à impulsão NA+NF	XB6-▲A●5B(1)(2)				
	Botões tipo "soco" desliga e	Botões tipo "soco" desliga emergência				
	Girar p/ destravar vermelho	XB6-AS8349B				
	Destravamento por chave ver.	XB6-AS9349B				
	Botões luminosos					
	Normal à impulsão NA+NF	XB6-▲W●B5B(1)(2)				
	Com retenção NA+NF	XB6- ▲ F ● B5B (1)(2)				
40.	Saliente à impulsão NA+NF	XB6-▲E●B5B(1)(2)				
	Comutadora					
A D	2 posições fixas, 1NA+1NF	XB6-▲D225B(1)				
The state of	3 posições fixas, 1NA+1NF	XB6-▲D235B(1)				
	Comutadora com chave					
	2 posições fixas, 1NA+1NF	XB6-▲GC5B(1)				
	3 posições fixas, 1NA+1NF	XB6-▲GH5B(1)				
	Sinalizadores com LED					
	1224 Vca/Vcc	XB6-▲V●BB(1)(2)				

formato: A-redondo; C-quadrado; D-retangular

⁽¹⁾ Completar o código, substituindo ▲ pelo número que representa seu

⁽²⁾ Completar o código, substituindo ● pelo número que representa a cor: 1-branco: 2-preto: 3-verde: 4-vermelho: 5-amarelo

Unidades de comando e sinalização Corpo metálico Ø 22 mm

Descrição	Referências		
Botões à impulsão			
	XB4-BA●▲(1)(2)		
Botões salientes à impulsão			
	XB4-BL●▲(1)(2)		
Botões à impulsão com re			
-	XB4-BP●▲(1)(2)		
Botões com duplo comand			
verde/vermelho 1NA+1NF	XB4-BA815		
verde/verm. c/grav. 1NA+1NF	XB4-BL845		
Botões tipo "soco" desliga emergência			
Empurrar-puxar 1NA+1NF	XB4-BT845		
Girar para destravar 1NF	XB4-BS542		
Destrav. por chave 1NF	XB4-BS142		
Comutadora com manopla curta			
2 posições fixas NA	XB4-BD21		
3 posições fixas 2NA	XB4-BD33		
3 posições com retorno 2NA			
Comutadores com manopla			
2 posições fixas NA	XB4-BJ21		
3 posições fixas 2NA	XB4-BJ33		
3 posições com retorno 2NA	XB4-BJ53		
Comutadores com chave	V2.1 2001		
2 posições fixas NA	XB4-BG21		
3 posições fixas 2NA	XB4-BG33		

XB4-BG73

3 posições fixas c/retorno 2NA

⁽¹⁾ Completar o código, substituindo ● pelo número que representa a cor: 2-preto; 3-verde; 4-vermelho; 5-amarelo; 6-azul

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa os contatos: 1: 1NA; 2: 1NF; 3: 2NA; 4: 2NF; 5: 1NA+1NF

Unidades de comando e sinalização Corpo metálico Ø 22 mm

Descrição	Referências
0: !: !	
Sinalizadores com LED integ	
24 Vca/Vcc	XB4-BVB● (1)
110 Vca	XB4-BVG● (1)
220 Vca	XB4-BVM● (1)
Sinalizadores para lâmpada	BA 9s (não
inclusa)	
Alimentação direta ≤ 250 V	XB4-BV6● (1)
c/ transformador 110 Vca	XB4-BV3● (1)
c/ transformador 220 Vca	XB4-BV4● (1)
Botões luminosos à impulsã	o com LED
24 Vca/Vcc NA+NF	XB4-BW3●B5 (1)
110 Vca NA+NF	XB4-BW3●G5 (1)
220 Vca NA+NF	XB4-BW3●M5 (1)
Botões luminosos para lâmp	ada BA 9s (não
inclusa)	
aliment. dir. ≤ 250 V NA+NF	XB4-BW3●65 (1)
c/transformador 110 Vca NA+NF	XB4-BW3●35 (1)
c/transformador 220 Vca NA+NF	XB4-BW3●45 (1)
Botões com duplo comando	com LED
verde/vermelho 24 Vca/Vcc	XB4-BW81B5
verde/vermelho 110 Vca	XB4-BW81G5
verde/vermelho 220 Vca	XB4-BW81M5
verde/verm. c/grav. 24 Vca/Vcc	
verde/verm. c/grav. 110 Vca	XB4-BW84G5
verde/verm. c/grav. 220 Vca	XB4-BW84M5
Comutadores luminosos con	
24 Vca/Vcc 2 posições fixas	XB4-BK12▲B5 (2)
40 100 Vac 0 pocições fivos	
48120 Vca 2 posições fixas	XB4-BK12▲G5 (2)

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa a cor: 3-verde; 4-vermelho; 5-amarelo

⁽¹⁾ Completar o código, substituindo

pelo número que representa a cor:
1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul

Unidades de comando e sinalização Corpo metálico Ø 22 mm - Acessórios

	Descrição	Referências (1)	
	Cabeçotes para botões		
	à impulsão	ZB4-BA● (1)	
	salientes à impulsão	ZB4-BL● (1)	
	à impulsão com revestimento	ZB4-BP● (1)	
	Cabeçotes para botões duplo		
	verde/vermelho	ZB4-BA8134	
	verde/vermelho c/gravação	ZB4-BA8434	
	3 1 1	"soco"	
	Empurrar-puxar	ZB4-BT84	
ö	Girar para destravar	ZB4-BS844	
k	Destravamento por chave	ZB4-BS944	
,	Cabeçotes para comutadores		
,	2 posições fixas	ZB4-BD2	
	3 posições fixas	ZB4-BD3	
	3 posições fixas com retorno	ZB4-BD5	
	Manopla longa		
	2 posições fixas	ZB4-BJ2	
	3 posições fixas	ZB4-BJ3	
	3 posições fixas com retorno	ZB4-BJ5	
	Com chave		
	2 posições fixas	ZB4-BG2	
	3 posições fixas	ZB4-BG3	
	3 posições fixas com retorno	ZB4-BG7	
	Cabeçotes para sinalizadores		
	com LED integrado	ZB4-BV0▲3 (2)	
	com lâmpada BA 9s	ZB4-BV0▲ (2)	
	Cabeçotes para botões luminosos		
	com LED integrado	ZB4-BW3▲3 (2)	
	com lâmpada BA 9s	ZB4-BW3▲ (2)	
	Cabeçotes duplos para comando luminoso		
	verde/vermelho	ZB4-BW813743	
	verde/vermelho com gravação		
	Cabeçotes para comutadores		
	2 posições fixas	ZB4-BK12▲3 (2)	
	3 posições fixas	ZB4-BK13▲3 (2)	
	3 posições com retorno	ZB4-BK15▲3 (2)	

⁽¹⁾ Completar o código, substituindo ● pelo número que representa a cor: 1-branco; 2-preto; 3-verde; 4-vermelho; 5-amarelo; 6-azul

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa a cor: 1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul

Unidades de comando e sinalização Corpo metálico Ø 22 mm - Acessórios

	Descrição	Referências
	Corpo metálico com contato	
	1NA	ZB4-BZ101
	1NF	ZB4-BZ102
	2NA	ZB4-BZ103
	2NF	ZB4-BZ104
	1NA+1NF	ZB4-BZ105
	Bloco de contato	
	NA	ZBE-101
	NF	ZBE-102
	Corpo para sinalizador LED	
	24 Vca/Vcc	ZB4-BVB● (1)
١	110 Vca	ZB4-BVG● (1)
١	24125 Vca/Vcc	ZB4-BVBG● (1)
ı	220 Vca	ZB4-BVM● (1)
,	LED integrado	- (/
•	24 Vca/Vcc	ZBV-B● (1)
	110 Vca	ZBV-B● (1)
	24125 Vca/Vcc	ZBV-BG● (1)
	220 Vca	ZBV-M● (1)
	Corpo para sinalizador para	lâmpada BA 9s
	(não inclusa)	
	Alimentação direta ≤ 250 V	ZB4-BV6
	c/ transformador 110 Vca	ZB4-BV3
	c/ transformador 220 Vca	ZB4-BV4
	Corpo para botões luminoso	
	LED integrado 24 Vca/Vcc	ZB4-BW0B●▲(1)(2)
	LED integrado 110 Vca/Vcc	ZB4-BW0G●▲(1)(2)
	LED integrado 220 Vca/Vcc	ZB4-BW0M●▲(1)(2)
	Alimentação direta ≤ 250 V	ZB4-BW06▲(2)
	c/transf. 110 Vca NA+NF	ZB4-BW035
	c/transf. 220 Vca NA+NF	ZB4-BW045
	Base de fixação	
	Para fixar blocos elétricos	ZB4-BZ009

⁽¹⁾ Completar o código, substituindo

pelo número que representa a cor:
1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa os contatos:

¹⁻NA; 2-NF; 3-2NA; 4-2NF; 5-1NA+1NF

Unidades de comando e sinalização Corpo plástico Ø 22 mm

Descrição	Referências			
Botões à impulsão				
	XB5-AA●▲ (1)(2)			
Botões salientes à impulsão				
•	XB5-AL●▲ (1)(2)			
Botões à impulsão com rev	Botões à impulsão com revestimento			
•	XB5-AP●▲ (1)(2)			
Botões com duplo comando				
verde/vermelho	XB5-AA815			
verde/verm. c/gravação	XB5-AL845			
Botões tipo "soco" desliga	emergência			
Empurrar-puxar 1NA+1NF	XB5-AT845			
Girar para destravar 1NF	XB5-AS542			
Destrav. por chave 1NF	XB5-AS142			
Comutadora com manopla curta				
2 posições fixas NA	XB5-AD21			
3 posições fixas 2NA	XB5-AD33			
3 posições com retorno 2NA	XB5-AD53			
Comutadores com manopla	longa			
2 posições fixas NA	XB5-AJ21			
3 posições fixas 2NA	XB5-AJ33			
3 posições com retorno 2NA	XB5-AJ53			
Comutadores com chave				
2 posições fixas NA	XB5-AG21			
3 posições fixas 2NA	XB5-AG33			
3 posições fixas c/retorno 2NA	XB5-AG73			

⁽¹⁾ Completar o código, substituindo

pelo número que representa a cor: 2-preto; 3-verde; 4-vermelho; 5-amarelo; 6-azul

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa os contatos: 1: 1NA: 2: 1NF: 3: 2NA: 4: 2NF: 5: 1NA+1NF

Unidades de comando e sinalização Corpo plástico Ø 22 mm

Descrição	Referências
Sinalizadores com LED integ	ırado
24 Vca/Vcc	XB5-AVB●(1)
110 Vca	XB5-AVG●(1)
220 Vca	XB5-AVM●(1)
Sinalizadores para lâmpada	BA 9s (não
inclusa)	
Alimentação direta ≤ 250 V	XB5-AV6●(1)
c/ transformador 110 Vca	XB5-AV3●(1)
c/ transformador 220 Vca	XB5-AV4●(1)
Botões luminosos com LED	•
24 Vca/Vcc NA+NF	XB5-AW3●B5(1)
110 Vca NA+NF	XB5-AW3●G5(1)
220 Vca NA+NF	XB5-AW3●M5(1)
Botões luminosos para lâmp	ada BA 9s (não
inclusa)	
aliment. dir. ≤ 250 V NA+NF	XB5-AW3●65(1)
c/transformador 110 Vca NA+NF	XB5-AW3●35(1)
c/transformador 220 Vca NA+NF	XB5-AW3●45(1)
Botões com duplo comando	c/ LED
verde/vermelho 24 Vca/Vcc	XB5-AW81B5
verde/vermelho 110 Vca	XB5-AW81G5
verde/vermelho 220 Vca	XB5-AW81M5
verde/verm. c/grav. 24 Vca/Vcc	
verde/verm. c/grav. 110 Vca	XB5-AW84G5
verde/verm. c/grav. 220 Vca	XB5-AW84M5
Comutadores luminosos con	
24 Vca/Vcc 2 posições fixas	XB5-AK12▲B5(2)
110 Vca 2 posições fixas	XB5-AK12▲G5(2)
220 Vca 2 posições fixas	XB5-AK12▲M5(2)

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa a cor: 3-verde: 4-vermelho: 5-amarelo

⁽¹⁾ Completar o código, substituindo

pelo número que representa a cor:
1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul

Unidades de comando e sinalização Corpo plástico Ø 22 mm - Acessórios

Dogorioão	Referências (1)
Descrição	neierencias (1)
Cabeçotes para botões	
à impulsão	ZB5-AA●(1)
salientes à impulsão	ZB5-AL●(1)
à impulsão com revestimento	ZB5-AP●(1)
Cabeçotes para botões duple	
verde/vermelho	ZB5-AA8134
verde/vermelho c/gravação	ZB5-AA8434
	"soco"
Empurrar-puxar	ZB5-AT84
Girar para destravar	ZB5-AS844
Destravamento por chave	ZB5-AS944
Cabeçotes para comutadores	
2 posições fixas	ZB5-AD2
3 posições fixas	ZB5-AD3
3 posições fixas com retorno	ZB5-AD5
Manopla longa	
2 posições fixas	ZB5-AJ2
3 posições fixas	ZB5-AJ3
3 posições fixas com retorno	ZB5-AJ5
Com chave	705 400
2 posições fixas	ZB5-AG2
3 posições fixas	ZB5-AG3
3 posições fixas com retorno Cabeçotes para sinalizadores	ZB5-AG7
com LED integrado	ZB5-AV0▲3(2)
com lâmpada BA 9s	ZB5-AV0▲(2)
Cabeçotes para botões lumir	
com LED integrado	ZB5-AW3▲3(2)
com lâmpada BA 9s	ZB5-AW3▲(2)
Cabeçotes duplos para com	
verde/vermelho	ZB5-AW813743
verde/vermelho com gravação	
Cabeçotes para comutadores	
2 posições fixas	ZB5-AK12▲3(2)
3 posições fixas	ZB5-AK13▲3(2)
3 posições com retorno	ZB5-AK15▲3(2)

⁽¹⁾ Completar o código, substituindo

pelo número que representa a cor:
1-branco; 2-preto; 3-verde; 4-vermelho; 5-amarelo; 6-azul

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa a cor: 1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul

Unidades de comando e sinalização Corpo plástico Ø 22 mm - Acessórios

Descrição	Referências
Corpo metálico com contato	
1NA	ZB5-AZ101
1NF	ZB5-AZ102
2NA	ZB5-AZ103
2NF	ZB5-AZ104
1NA+1NF	ZB5-AZ105
Bloco de contato	
NA	ZBE-101
NF	ZBE-102
Corpo para sinalizador LED	
24 Vca/Vcc	ZB5-AVB●(1)
110 Vca	ZB5-AVG●(1)
24125 Vca/Vcc	ZB5-AVBG●(1)
220 Vca	ZB5-AVM●(1)
LED integrado	
24 Vca/Vcc	ZBV-B●(1)
110 Vca	ZBV-G●(1)
24125 Vca/Vcc	ZBV-BG●(1)
220 Vca	ZBV-M●(1)
Corpo para sinalizador para	lâmpada BA 9s
(não inclusa)	
Alimentação direta ≤ 250 V	ZB5-AV6
c/ transformador 110 Vca	ZB5-AV3
c/ transformador 220 Vca	ZB5-AV4
Corpo para botões luminoso	
LED integrado 24 Vca/Vcc	ZB5-AW0B●▲(1)(2)
LED integrado 110 Vca/Vcc	ZB5-AW0G●▲(1)(2)
LED integrado 220 Vca/Vcc	ZB5-AW0M●▲(1)(2)
Alimentação direta ≤ 250 V	ZB5-AW06▲(2)
c/transf. 110 Vca NA+NF	ZB5-AW035
c/transf. 220 Vca NA+NF	ZB5-AW045
Base de fixação	
Para fixar blocos elétricos	ZB5-AZ009

⁽¹⁾ Completar o código, substituindo ● pelo número que representa a cor:

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa os contatos: 1-NA; 2-NF; 3-2NA; 4-2NF; 5-1NA+1NF

¹⁻branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul

Unidades de comando e sinalização Corpo plástico Ø 22 mm monobloco

_				
	Descrição)		Referências
		ormais à i	impulsão	
	NA			XB7-EA●1P(1)
	NF (verm	elho)		XB7-EA42P
	2NA			XB7-EA▲3P(2)
	NA/NF			XB7-EA●5P(1)
		ormais à i	impulsão	com retenção
	NA			XB7-EH▲1P(2)
	NA+NF			XB7-EH▲5P(2)
	Comutad	ores com	manopla	
	2 posiçõe	s fixas NA		XB7-ED21P
	2 posiçõe	s fixas NA	+NF	XB7-ED25P
	3 posiçõe	s fixas NA		XB7-ED33P
	Comutad	ores com	chave	
,	2 posiçõe	s fixas NA		XB7-EG21P
		s fixas 2N		XB7-EG33P
	Botões ti	po "soco"	desliga e	emergência
	Girar para destravar NF		XB7-ES542P	
	Girar p/ d	lestravar c/	chave NF	XB7-ES142P
	Sinalizadores com LED integrado			
	24 Vca/Vo	cc		XB7-EV0△BP(3)
	120 Vca			XB7-EV0△GP(3)
	220 Vca			XB7-EV0△MP(3)
	Sinalizade	ores para l	lâmpada B	A 9s (não inclusa)
	Alimentaç	ão direta ≤	250 V	XB7-EV6■P(4)(5)
	Com redu	itor de tens	são 220V	XB7-EV7 ■ P(4)
		uminosos	com LED	
	24 Vcc	Verde	NA	XB7-EW33B1P
	24 Vcc	Vermelho	NF	XB7-EW34B2P
	220 Vca		NA	XB7-EW33M1P
	220 Vca	Vermelho	NF	XB7-EW34M2P
				BA 9s (não inclusa)
	≤ 250 V		NA	XB7-EW3361P
	≤ 250 V	Vermelho	NA	XB7-EW3461P
	≤ 250 V	Amarelo	NA	XB7-EW3561P

⁽²⁾ Completar o código, substituindo ▲ pelo número que representa a cor: 2-preto; 3-verde

(4) Completar o código, substituindo ■ pelo número que representa a cor: 1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul; 7-incolor

(5) Lâmpada não inclusa

Ø40mm

Unidades de comando e sinalização Corpo metálico Ø 30 mm

D . ~	B (^ :
Descrição	Referências
Botões à impulsão	
	XB3-BA●▲ (1)(2)
Botões salientes à impulsão	
	XB3-BL●▲ (1)(2)
Botões à impulsão com reve	estimento
	XB3-BP●▲ (1)(2)
Botões tipo "soco" à impuls	ão

- (1) Completar o código. substituindo pelo número que representa a cor: 2-preto; 3-verde;
- 4-vermelho; 5-amarelo: 6-azul (exceto p/botões tipo "soco")
- (2) Completar o código. substituindo A pelo número dos contatos: 1-1NA: 2-1NF: 11-2NA: 22-2NF: 12-1NA+1NF
- (3) Completar o código. substituindo A pelo número que representa a cor: 3-verde: 4-vermelho: 5-amarelo:
- XB3-BC●▲ (1)(2) Ø60mm XB3-BR●▲ (1)(2) Botões tipo "soco" desliga emergência Ø40mm XB3-BT●▲ (1)(2) XB3-BX●▲ (1)(2) Ø60mm Comutadores com manopla curta 2 posições fixas NA XB3-BD21 3 posições fixas 2NA **XB3-BD33** 3 posições com retorno 2NA XB3-BD53 Comutadores com manopla longa 2 posições fixas NA XB3-BJ21 3 posições fixas 2NA XB3-BJ33 3 posições com retorno 2NA XB3-BJ53 Comutadores com chave 2 posições fixas NA XB3-BG21 3 posições fixas 2NA **XB3-BG33** 3 posições com retorno 2NA **XB3-BG73** Sinalizadores com lâmpada BA 9s Alimentação dir. ≤ 130 V $XB3-BV6\Delta(3)(4)$ com redutor de tensão 220 V $XB3-BV7\Delta(3)$ XB3-BV3△(3) c/ transformador 110 Vca c/ transformador 220 Vca XB3-BV4∆(3) c/ transformador 380 Vca $XB3-BV5\Delta(3)$

Alimentação dir. ≤ 130 V NA+NF XB3-BW3\(\triangle 65(3)(4) c/red. de tensão 220 V NA+NF XB3-BW3△75(3) Botões tipo "soco" luminosos

Alimentação dir. ≤ 130 V NA+NF XB3-BW6△65(3)(4) c/red. de tensão 220 V NA+NF XB3-BW6△75(3)

6-azul; 7-incolor (4) Lâmpada

não inclusa

Botões à impulsão luminosos

Unidades de sinalização XV Harmony

Sirenes e faróis c/ espelhos rotativos

		Referências
Intermitente	~ 24 V	XVS-B● (1)
	~ 120 V	XVS-G● (1)
	~ 220 V	XVS-M● (1)

XVS

Faróis c/ espelho rotativo XVR IP65

XVR-1B9▲ (2)

XVR-1B0▲ (2)

XVR-1G0▲ (2)

XVR-1M0▲ (2)

~ 24 V

~ 24 V

~ 120 V

~ 220 V

Acessórios para faróis com espelho rotativo

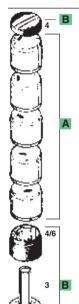
Halógena

Incandescente

XVR

Tipo Referências Cúpula XVR-015▲ (2) Grade de proteção XVR-016 Base de fixação vertical XVR-012 Lâmpada halógena 70 W, BA15d **DL1-BRBH** Lâmpada 24 V DL1-BRB Incandescente 120 V DL1-BRG 25W, BA15d 220 V DL1-BRM

⁽¹⁾ Completar o código, substituindo ● pelo nº de tons: 1/um tom, 2/dois tons.


⁽²⁾ Completar o código, substituindo ▲ pelo nº das cores: 3/verde, 4/vermelho, 5/larania, 6/azul, 7/branco, 8/amarelo,

Colunas Iuminosas XVB Harmony

Elementos luminosos modulares p/ montagem Elementos de reposição e acessórios

Fixo/intermitente 12/48 Vcc

Fixo/intermitente 120/220 Vca

Para montar uma coluna luminosa, são necessários: 1 base + 1 tubo de pedestal + até 5 elementos sonoros e/ou luminosos. Apenas é permitido um elemento flash por coluna e sempre localizado no extremo superior da coluna.

3/20

Elementos lur	minosos IP	65 A
Tipo	Tensão	Referências
Perman. s/lâmpada	≤ 250 V	XVB-C3●(1)
Perman. c/LED	~ 24 V	XVB-C2B●(1)
Perman. c/LED	~ 120 V	XVB-C2G●(1)
Perman. c/LED	~ 220 V	XVB-C2M●(1)
Piscante s/lâmpada	48/220 V	XVB-C4M●(1)
Piscante c/LED	∼ 24 V	XVB-C5B●(1)
Piscante c/LED	~ 120 V	XVB-C5G●(1)
Piscante c/LED	~ 240 V	XVB-C5M●(1)
Flash	24 Vcc	XVB-C6B●(1)
Flash	110-120 Vca	XVB-C6G●(1)
Flash	220VCA	XVB-C6M●(1)
Elementos so	noros IP 65	(90db a 1 m)

Bases, tubos e pedesta	is B
Tipo	Referências
Base de fixação vertical	XVB-C12
3 Pedestal + tubo 80 mm	XVB-Z02
3 Pedestal + tubo 380 mm	XVB-Z03
3 Pedestal + tubo 780 mm	XVB-Z04
6 Base p/ flash	XVB-C07
4 Base + tampa	XVB-C21

XVB-C9B

XVB-C9M

Referências

DL1-BDB▲(2)

DL1-BDG▲(2)

Lâmpadas incandescentes XVB Lâmpadas incandescentes base tipo BA15d Tensão Referências 24 V DL1-BLB 48 V DL1-BLE 120 V DL1-BA160 230 V DL1-BLM Lâmpadas com LED base tipo BA15d

da coluna. 230 V

Completar o código, substituindo ● pelo nº das cores: 3/verde, 4/vermelho, 5/laranja, 6/azul, 7/branco, 8/amarelo. Ex.: Elemento fixo sem lâmpada 110 V vermelho: XVB-C34 (2) Completar o código, substituindo ▲ pelo nº das cores: 1/branco, 3/verde, 4/vermelho, 6/azul, 8/laranja.

* Para lâmpadas com LED piscante base tipo BA15d, substituir D por K.

Tensão

24 V

120 V

Sistema XAL

As botoeiras XAL
permitem, graças a sua
composição variável,
montar sua configuração
desejada com poucas
referências.
São vedadas e robustas
com sua estrutura
com dupla isolação
desenvolvidas para serem
utilizadas em qualquer
ambiente.

Botoeiras plásticas em policarbonato, dupla isolação IP65

XAL-D102

Função Partida ou Parada

Acionador	símbolo	Referências
1 botão verde NA	I	XAL-D102
1 botão vermelho NF	0	XAL-D112
1 seletora		
2 pos. fixas NA	I-O	XAL-D134
1 botão verde NA		
1 botão vermelho NF	I-O	XAL-D213
2 botões à impulsão	Liga	
1 verde/ 1 vermelho	Desl.	XAL-D211H23
2 botões VD/VM	Liga	
1 sin. LED VM 230Vca	Desl.	XAL-D361MH23

XAL-K174

Função "Desliga" emergência

Acionador	Referências
Botão soco "girar p/destravar"	XAL-K174
Botão soco com chave	XAL-K184
Botão soco empurrar-puxar	XAL-K194
Botão soco "girar p/destravar"	XALK1741H23
c/gravação "desliga emergência"	

Botoeiras vazias

XAL-D02

Caixa vazia	Nº orifícios	Referências
Tampa amarela	1	XAL-K01
Tampa cinza	1	XAL-D01
Tampa cinza	2	XAL-D02
Tampa cinza	3	XAL-D03
Tampa cinza	4	XAL-D04
Tampa cinza	5	XAL-D05

Nota: as botoeiras de botões de tipo XALD utilizam as unidades de comando e sinalização XB5

Acessórios e elementos de reposição Botoeiras XAL

Cabeçote plástico para botão normal à impulsão com gravação

ZB5-AA●

ZB5-AS54

c/revest. de cor determ. pelo botão ZB5-AP●(1) (1) Substituir o ● pelo número que representa a cor: 1/branco, 2/preto, 3/verde, 4/vermelho, 5/amarelo e 6/azul.

Cabecote para botão tipo soco

Diâmetro (mm.) Cor

40		Vermelho	ZB5-AC4
30		Vermelho	ZB5-AC44
40 c/	chave	Vermelho	ZB5-AS14
30 c/	chave	Vermelho	ZB5-AS74
40 c/	retenção	Vermelho	ZB5-AS54
30 c/	retençao	Vermelho	ZB5-AS44

ZB5-AD

Cabeçote para comutadores

Posição	Referências
2 fixas manopla curta	ZB5-AD2
3 fixas manopla curta	ZB5-AD3
3 fixas c/retorno centro	ZB5-AD5
2 fixas c/chave, saída esq.	ZB5-AG2
3 fixas c/chave, saída centro	ZB5-AG3

ZEN-LII.

3locos	de	contatos
--------	----	----------

	N.	A (3)	ZEN-L	1111
	N	F (3)	ZEN-L	1121
=-	 			

			ZAL-V▲● (2)(4	1)
			Referências	5
Blocos	luminosos	c/LED	integrado	

⁽²⁾ Completar o código, substituindo ● pelo número que representa a cor: 1-branco, 3-verde, 4-vermelho, 5-amarelo, 6-azul.

Referências

Referências

⁽³⁾ Para fixar em placa metálica no fundo da botoeira.

⁽⁴⁾ Completar o código, substituindo ▲ pela letra de tensão de emprego: B-24 Vca/cc; G-110 Vca, M-220 Vca.

Acessórios e elementos de reposição Botoeiras XAL

Tipo	Referências
Cabeçote para sinalizadores	
Com LED integrado	ZB5-AV0●3 (1)
Botão normal	ZB5-AA●8 (1)
Botão saliente	ZB5-AW1●3 (1)

ZB5-AV0●3

⁽¹⁾ Completar o código, substituindo

pelo número que representa a cor:
1-branco, 3-verde, 4-vermelho, 5-amarelo, 6-azul.

Botoeiras murais XB2TB

Botoeiras metálicas para comando e sinalização Ø 22 mm e Ø 30 mm

Descrição		Referências				
Botoeira metálio	Botoeira metálica vazia Ø22 mm					
1 furo	cinza	XB2-TB11B				
	laranja	XB2-TB11BL				
2 furos	cinza	XB2-TB12B				
	laranja	XB2-TB12BL				
3 furos	cinza	XB2-TB13B				
	laranja	XB2-TB13BL				
4 furos	cinza	XB2-TB14B				
	laranja	XB2-TB14BL				
5 furos	cinza	XB2-TB15B				
	laranja	XB2-TB15BL				
Botoeira metálio	Botoeira metálica vazia Ø30 mm					
1 furo	cinza	XB2-TB11M				
	laranja	XB2-TB11ML				
2 furos	cinza	XB2-TB12M				
	laranja	XB2-TB12ML				
3 furos	cinza	XB2-TB13M				
-	laranja	XB2-TB13ML				

XB2-TB11ML

6 Botoeiras murais XAL E Optimum

Botoeiras murais plásticas em ABS

Botoeiras vazias						
Tipo de caixa	cinza claro RAL 7035 cinza RAL 7 e tam amare			Caixa cinza claro RAL 7035 e tampa amarela RAL 1021		
Grau de proteção	IP54 / Clas	se II				
Dimensões (mm) L x A x P (sem botão)	73x73x52	73x115x60		73x73x52		
Fixação (mm)	2 oblongos Ø 3 x 5					
Número de furações	1 2 3 1			1		
Referências	XALE1 XALE2 XALE3 XALEK1					

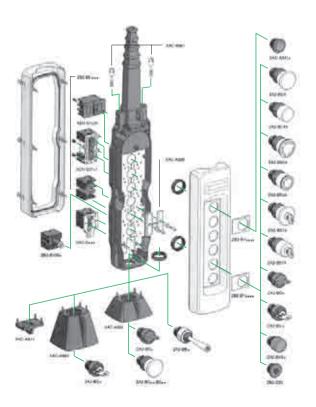
Botoeiras montadas					
Tipo de caixa	Caixa e tam	Caixa e tampa			
	cinza claro	cinza claro RAL 7035			
				RAL 7035	
				e tampa	
				amarela RAL	
				1021	
Função	1 função	1 função			
	Liga ou Des	Liga ou Desliga			
Gravação	No botão à	No botão à impulsão			
Tipo	Botão	Botão	Botão	1 botão tipo	
	normal	normal	saliente	soco girar	
	verde	vermelho	vermelho	p/ destravar	
				Ø 40	
				vermelho	
Referências					
"NA"	XALE1011	-	-	-	
I	XALE1021	-	-	-	
"NF"	-	XALE1112		XALEK1701	
0	-	-	XALE1152	-	
"NA"+ "NF" -	-	-	-	XALEK1702	
"NA"+ "NA" -	XALE1013	-	-	-	

Nota: as botoeiras de botões de tipo XALE utilizam as unidades de comando e sinalização XB7.

Botoeiras murais XAL E Optimum

Botoeiras murais plásticas em ABS

Botoeiras montadas com 2 e 3 botões						
	แลนสร					
Tipo de caixa		Caixa e tampa cinza claro RAL 7035				
Função		2 funções		2 funções	3 funções	
		Liga-Desliga				
Gravação		No botão à impulsão				
Tipo		1 normal	1 normal	1 normal	1 normal	1 normal
•		verde	verde	branco	branco;	verde;
		1 saliente	1 normal	1 normal		1 saliente
			vermelho	preto		vermelho:
		VOITHORIO	10111101110	proto	1 normal	
D (^ '					preto	verde
Referências			.			
		-	XALE2011	-	-	-
"NA"+"NF"	I-O	XALE2141	-	-	-	-
INA + INF	Start- Stop	-	XALE2151	-	-	-
"NA"+"NA"	↑	-	-	XALE2221	-	-
"NA"+ "NF"+	†	-	-	-	XALE3251	-
"NA"	I-O-II	-	-	-	-	XALE3401



Botoeiras pendentes XAC

Composição XAC

As botoeiras pendentes XAC, permitem, graças a sua composição variável, montar sua configuração desejada com poucas referências. São vedadas e robustas com sua estrutura em dupla isolação preparadas para serem utilizadas em qualquer ambiente.

Botoeiras pendentes XAC

Dupla isolação Ith 10 A

Botoeiras para circuitos auxiliares IP 65

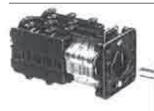
Botão	Contatos por botão	Referências
2 c/trav.	NA	XAC-A211
2	NA + NF	XAC-A281
4	NA + NF	XAC-A481
6	NA + NF	XAC-A681
8	NA + NF	XAC-A881

Botoeiras vazias p/ circuitos aux.

XAC-A...

Caixa vazia	Nº de orificios	Referências
Com tampa	2	XAC-A02
	4	XAC-A04
	6	XAC-A06
	8	XAC-A08
	12	XAC-A12
Cabeçote		
do botão	cor	Referências
c/capa		
silicone	Branco	XAC-A9411
	Preto	XAC-A9412
	Vermelho	XAC-A9414
sinalizador		ZA2-BV0e(1)
Trav. mec. p/2 botões		XAC-A009
Ponteira p/XAC-A211		XAC-A913
Ponteira p/XAC-A		XAC-A960
Grade de prot	eção	
Ø 40mm		XAC-A982
Grade de proteção c/chave		XAC-A983
Bloco de conta	ato NF	
mont. inferior		XAC-S102
Contatos		
NA p/XAC de 10 A		ZB2-BE101
NF p/XAC de 10 A		ZB2-BE102
Direta s/lâmp. p/XAC ≤ 400 V		ZB2-BV006

ZB2-BE10.


Com redutor p/XAC 230 V

ZB2-BV007

⁽¹⁾ Completar o código, substituindo ● pelo número que representa a cor: 1-branco; 3-verde; 4-vermelho; 5-amarelo; 6-azul; 7-incolor

8 Comutadores rotativos montados

Comando rotativo

Corrente de emprego 12 a 150 A. Fixação por parafusos.

Descrição	Referências	
3 Pólos	Interruptor 0-1	Interruptor 2-0-1
12 A	K1C003ALH	K1F003ULH
20 A	K2C003ALH	K2F003ULH
32 A	K30C003AP	K30F003UP
50 A	K50C003AP	K50F003UP
63 A	K63C003AP	K63F003UP
115 A	K115C003AP	K115F003UP
150 A	K150C003AP	K150F003UP
Comutadores 1	pólo	
2 posições 0-1-2	12 A	K1B002QLH
3 posições 0-1-2	!-3 12 A	K1C003QLH
4 posições 0-1-2	!-3-4 12 A	K1D004QLH
Para amperimet	ro 12 A	K1F003MLH
Para voltímetro	12 A	K1F027MLH
Estrela-triângulo)	
3 pólos completo	20 A	K2H001YLH
	32 A	K30H001YP
	50 A	K50H001YP
	63 A	K63H001YP
	115 A	K115H001YP
	150 A	K150H001YP

Visite nosso site:

www.schneider-electric.com.br wap.schneider.com.br

Para mais informações sobre produtos:

Call Center 0800 7289 110 / (11) 3468-5791

call.center.br@br.schneider-electric.com

Variadores de velocidade e partidas eletrônicas

Índice

Generalidades	
Acionamentos elétricos	

2 Inversores de freqüência 4/13

4/4

Partidas e paradas progressivas 4/20
 Soft Starter

Produtos 4 Guia de escolha

Altivar 71

	dala de cocollia	7/20
5	Inversores de freqüência Altivar 11 Altivar 21 Altivar 31	4/30
	Altivar 61	

6	Partidas e paradas progressivas	4/46
	Altistart ATS01	
	Altistart ATS48	

7 Tabela de motores 4/55

Acionamentos elétricos

Classificação dos diferentes tipos de cargas

As cargas mecânicas têm comportamentos diferentes quanto aos conjugados resistentes que oferecem aos motores elétricos.

As mesmas podem ser classificadas em 5 grupos:

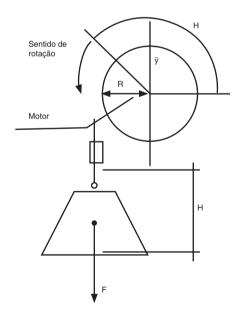
- a) Cargas de conjugado resistente constante.
- b) Cargas de conjugado resistente crescente com a velocidade.
- c) Cargas de conjugado resistente crescente com o quadrado da velocidade.
- d) Cargas de conjugado resistente inversamente proporcional com a velocidade.
- e) Cargas com forte variação de conjugado com a velocidade.

Além disso, quando o motor está acelerando ou desacelerando, o mesmo precisa vencer o efeito de inércia de todas as partes girantes do acionamento que incluem:

- O próprio rotor,
- Carga acionada,
- Sistema de redução (redutores).

Velocidade

A velocidade é um termo fácil de medir, através de um tacômetro ou tacogerador. A velocidade angular geralmente é expressa em rpm; rotações por minuto (N), sendo que os cálculos exigem radianos por segundos (ω) .


$$\omega = \frac{2\pi N}{60}$$

Conjugado

O conjugado ou torque é o esforço que o motor desenvolve para movimentar a carga mecânica.

T=F X R=PESO X RAIO PESO = T

O conjugado é expresso em newton-metros [Nm] podendo também ser quantificado em quilogramaforça [kgf.]. A relação entre as duas unidades é dada por 1 kgf=9,8Nm.

Potência

A potência é o produto dos dois termos anteriores: velocidade e conjugado.

P = Txm

A potência é expressa em watts [W]. Um watt é o produto de um newton-metro por um radiano/segundo.

 $1[W] = 1 [Nm] \times 1[rd/Sea]$

Diferentes conjugados existentes nas máguinas

Conjugado resistente:

Conjugado resistente se opõe ao movimento em qualquer sentido de rotação.

A máquina é movimentada pelo motor.

Conjugado resistente pode alterar-se com a velocidade de vários modos.

Conjugado de arraste:

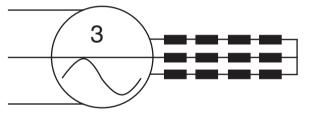
Favorece o movimento em qualquer sentido de rotação.

A máquina arrasta o motor.

Constituição de um motor assíncrono de gaiola

Princípio:

Três enrolamentos alojados no estator da máquina estão deslocados no espaço de 120°. Os mesmos são alimentados por um sistema elétrico trifásico (três tensões e correntes defasadas no tempo de 120°), acarretando a formação de um campo elétrico girante.

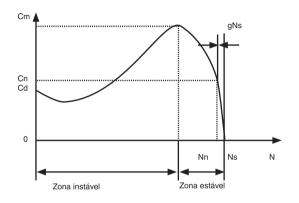

Este campo atravessa o entreferro passando pelas barras do rotor, induzindo forças eletromotrizes nas mesmas e, que pelo fato de estarem curto-circuitadas nas extremidades por dois anéis, dão passagem a correntes elétricas. Estas correntes interagindo com o campo girante produzem o conjugado eletromagnético que arrasta o rotor no sentido do campo girante. O rotor atingindo a velocidade do campo girante tem as tensões induzidas nas barras nulas, cessando o conjugado eletromagnético. Por este fato, o motor só desenvolve conjugado quando a velocidade do rotor é diferente da velocidade do campo girante.

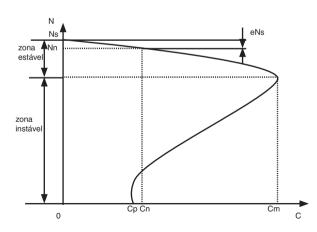
Constituição dos diferentes tipos de motores assíncronos

Para os motores assíncronos de gaiola, o usuário não tem acesso ao rotor.

A característica ω = F(C) é escolhida em função das necessidades mecânicas, mas não pode ser modificada em seguida. Motor de gaiola de esquilo é o motor mais simples.

Seu rotor é constituído de tiras de alumínio (ou outros materiais condutores), fundidos simultaneamente. É econômico, robusto, estanque, sem manutenção, mas possui uma alta corrente na partida.


Para os motores assíncronos de anéis, o rotor bobinado em trifásico é ligado em três anéis.


Isto permite a adição de resistências externas.

A característica ω = F(C) pode ser escolhida e modificada à vontade

Conjugados disponíveis com um motor alimentado pela rede

Cn = Conjugado nominal Cp = Conjugado de partida Cm = Conjugado máximo Ns = Velocidade de sincronismo Nn = Velocidade nominal

Velocidade

Podemos multiplicar os enrolamentos e ligar as bobinas de tal maneira que a cada período da rede, o campo não gire mais de meia volta (motor de 4 pólos), um terço de volta (motor de 6 pólos).

A velocidade do campo girante se chama velocidade de sincronismo.

Com Ns. velocidade em rpm.

 $Ns = 60 \, \underline{f}$ F: frequência em Hz

P: o número de pares de pólos do motor.

A velocidade do rotor (ou do motor) é nominal quando o motor fornece seu conjugado nominal (Nn).

Uma velocidade se exprime geralmente em rotações por minuto e se escreve N.

A unidade de velocidade angular que permite efetuar cálculos é radianos por segundos e se escreve: ω.

Para passar de um para outro, é suficiente aplicar a fórmula bem conhecida:

rad/s $\omega = 2\underline{\pi}\underline{N}$ rpm.

60

Escorregamento

A diferença relativa da velocidade entre o campo girante e o rotor se chama escorregamento.

Em porcentagem: S = (Ns-Nn)/Ns Diferença entre as rotações do campo e do rotor (devido ao escorregamento):

 $S \times Ns = Ns-Nn$

A velocidade nominal é Nn = Ns x (1-S)

S = Escorregamento nominal

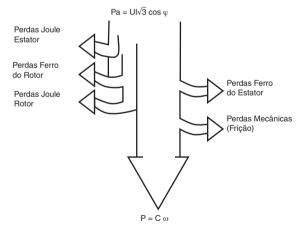
Nn = Velocidade nominal

Ns = Velocidade de sincronismo

Conjugado

O conjugado de um motor assíncrono varia com o quadrado da tensão de alimentação, da velocidade do rotor e dos parâmetros do circuito equivalente do motor.

Conjugado máximo


O conjugado máximo disponível é proporcional também ao quadrado da tensão.

O aumento da resistência rotórica causa um aumento de escorregamento para um mesmo conjugado.

Dobrando a resistência, dobramos o escorregamento para o qual ele acontece; o conjugado máximo disponível permanece o mesmo, mas a uma velocidade mais baixa. É o princípio das partidas com reostato de motores com rotor bobinado.

Potência - Balanço energético do motor

Potência total fornecida pela rede Potência absorvida pelo motor

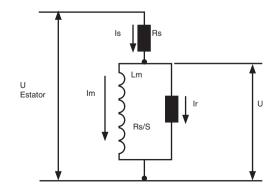
Potência mecânica útil no eixo

Potência

Potência mecânica (Potência útil sobre o eixo).

$$Pu = C \omega \qquad com \omega = \frac{2\pi N}{60}$$

Potência elétrica (Potência consumida pelo motor).


Pa = ÚI 3 cos φ

U = Tensão de alimentação da rede I = Corrente eficaz consumida pelo motor $\cos \omega = \text{Fator de potência}$

Rendimento

Circuito equivalente de um motor assíncrono

Is = Corrente estatórica

Im = Corrente magnetizante (fluxo) Ir = Corrente rotórica vista do estator

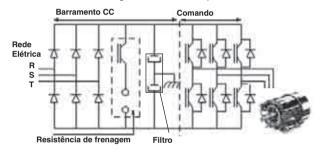
(conjugado)

U = Tensão que deve ser proporcional à freqüência para se obter um conjugado constante.

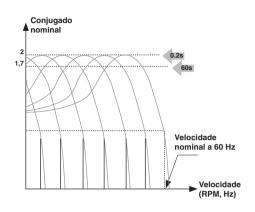
Uest = Tensão total aplicada no estator. Este esquema equivalente de um motor assíncrono coloca em evidência a queda da tensão no estator (RsIs).

A indutância Lm representa o enrolamento estatórico, gerando o fluxo no motor. A corrente que atravessa esta indutância está defasada de 90° em relação à tensão U. A resistência Rr/s representa o rotor visto do estator. A corrente Ir em fase com a tensão U é a imagem do conjugado.

2 Inversores de frequência


Os inversores de freqüência são dispositivos eletrônicos destinados a variar a velocidade dos motores elétricos assíncronos trifásicos de gaiola, convertendo amplitudes fixas, freqüências e tensão de rede em amplitudes variáveis.

São aplicados quando as aplicações têm por necessidade o:


- Controle de conjugado e velocidade,
- Partida e parada progressivas,
- Movimentos complexos (horizontais e/ou verticais).
- Mecânica delicada,
- Controle e regulação de golpes mecânicos (golpes de aríete).

O inversor de frequência

São classificados como inversores de freqüência, os inversores de velocidade que retificam a tensão alternada da rede (monofásica ou trifásica) e pela utilização de seis transistores trabalhando na modulação da largura do pulso gerando uma corrente trifásica de freqüência e tensão variável. Um transistor utilizado na frenagem permite direcionar a energia que o motor devolve (durante a frenagem regenerativa) utilizando uma resistência externa. Abaixo, mostramos um diagrama eletrônico típico.

A técnica de disparo dos transistores do sistema ondulado é realizado por um microprocessador que, a fim de assegurar o máximo desempenho do motor dentro de toda a faixa de velocidade, utilizando um algorítmo de controle vetorial de fluxo. Este algorítmo utilizando os dados e parâmetros do motor e as variáveis de funcionamento (tensão, corrente, frequência, etc.) realiza um controle preciso do fluxo magnético no motor, mantendo constante o fluxo independentemente da frequência de trabalho. No gráfico seguinte se observa que a partir de 1 Hz até 60 Hz. o conjugado do motor está disponível para uso permanente. Os 170% do conjugado nominal permanece disponível durante 60 segundos e os 200% do conjugado nominal disponível durante 0,2 s.

Escolha de um inversor de frequência

Para a correta escolha de um inversor de freqüência é necessário conhecer a aplicação, pois a mesma direcionará qual o tipo de inversor e seus componentes a associar:

- Tipo de carga: conjugado constante, conjugado variável, potência constante, cargas especiais;
- Tipo do motor: de indução, rotor de gaiola ou bobinado, corrente e potência nominal, fator de serviço, faixa de tensão;
- Faixas de funcionamento: velocidades máximas e mínimas. Verificar a necessidade de ventilação forçada do motor ou não;
- Conjugado na partida: assegurar que não sejam excedidos os valores permitidos para cada tipo de inversor. Se superar os 170% do conjugado nominal, por exemplo, recomenda-se a substituição do mesmo por outro adequado de maior calibre;
- Frenagem regenerativa: cargas de grande inércia, altas velocidades e movimentos verticais requerem uma resistência de frenagem externa;

- Condições ambientais: temperatura ambiente, umidade, altitude, tipo de invólucro* e ventilação
- *tipo de invólucro = montado sobre placa, dissipador ou modelo equipado;
- Aplicação mono ou multimotor: prever proteção térmica individual para cada motor. A somatória das correntes de todos os motores será o calibre nominal do inversor a especificar;
- Considerações sobre a aplicação: proteção do motor por sobretemperatura e/ou sobrecarga, contator de isolamento, bypass, partida automática após uma falta, controle automático de velocidade.
- Aplicações especiais: compatibilidade eletromagnética, ruído audível do motor, bombeamento, ventiladores e separadores, içamento, motores em paralelo, controle em malha fechada PI, etc.

Configurações recomendadas

O circuito a utilizar um inversor pode conter alguns dos seguintes elementos:

■ Disjuntor: sua escolha está determinada em considerações e explanações contidas no capítulo 1.

A corrente de linha corresponde à corrente absorvida pelo inversor, considerando a potência nominal de utilização em uma rede de alimentação impedante.

■ Contator de linha: este dispositivo assegura um seccionamento automático do circuito em caso de uma emergência ou em paradas por defeitos. Seu uso juntamente com o disjuntor assegura a coordenação tipo 2 (ver página 2/15) da saída, facilitando a manutenção. Sua escolha se dá em função da potência nominal e da corrente nominal do motor em serviço e categoria de emprego AC-1 (ver página 2/8).

As principais soluções para reduzir as correntes harmônicas são:

- Indutância CC: inserida no circuito intermediário CC do inversor, podendo já estar incorporada internamente, ou ser instalada externamente como opcional. Associada com filtros passivos, temos as maiores reduções de correntes harmônicas. Tem vantagem em relação à indutância CA (de linha) pela manutenção do conjugado motor pela menor queda de tensão e possui custo e dimensões menores.
- Indutância de linha: estas indutâncias permitem assegurar uma proteção melhor contra as sobretensões da rede de alimentação e reduzir o índice de harmônicos de corrente que o inversor produz, reduzindo a distorção da tensão no ponto de conexão.

Esta melhora e redução nos harmônicos determinam uma diminuição do valor rms de corrente na fonte de alimentação e uma redução do valor em rms de corrente na entrada do inversor (retificada, contator de pré-carga, capacitores).

O emprego de indutância de linha é especialmente recomendado nos seguintes casos:

- Rede elétrica perturbada por ação de outros receptores (efeitos tipo parasita, sobretensões);
- Rede de alimentação com desequilíbrio de tensão entre fase >1,8% da tensão nominal.
- Inversor alimentado por uma linha de baixa impedância (transformador de potência superior a 10 vezes o calibre do inversor).
- Instalação de um grande número de inversores de freqüência em uma mesma linha.
- Redução de sobrecarga dos capacitores e melhora do cos φ, considerando que a instalação inclua compensação de fator de potência.

A correta escolha deve ser baseada na corrente nominal do inversor e sua freqüência de chaveamento. Existem indutâncias padrão para cada tipo de inversor de freqüência.

■ Filtros passivos ■ Filtro de radiofreqüência: estes filtros permitem limitar a propagação das perturbações parasitas que os inversores geram por condução e que poderiam

geram por condução e que poderiam perturbar determinados receptores próximos do dispositivo (rádio, TV, sistemas de áudio e video, etc).

Estes filtros somente podem ser utilizados em redes de alimentação tipo TN e TT (ver página 1/45).

Existem filtros padrão para cada tipo de inversor. Alguns inversores já possuem este filtro como padrão montado em fábrica.

■ Resistência de frenagem: sua função é dissipar a energia de frenagem, permitindo assim o uso de inversores nos quadrantes 2 e 4 do diagrama conjugado-velocidade. Deste modo, consegue-se o máximo aproveitamento do conjugado do motor, durante o momento de frenagem e se denomina também frenado dinâmico. Geralmente é um opcional, já que somente é utilizado em aplicações de altos conjugados de frenagem.

A instalação desta resistência é muito sensível: a mesma é alocada fora do invólucro do inversor, uma vez que precisa de uma correta dissipação térmica. O inversor com chopper de frenagem possui uma borneira onde a resistência será conectada diretamente.

De acordo com o fator de marcha do motor, determina-se a potência que a resistência deverá dissipar. O valor ôhmico mínimo da resistência é característico do inversor e deve ser obedecido.

Recomendações de instalação

Cabeamento:

- Os cabeamentos de controle utilizam cabo trançado e blindado para os circuitos de referência;
- Deve haver uma separação física entre os circuitos de potência e os circuitos de sinais de baixo nível;
- O aterramento deve ser de boa qualidade e com conexões de baixa impedância;
- Cabeamento com o menor comprimento possível;
- O inversor deverá estar o mais próximo possível do motor;
- Cuidar que os cabos de potência estejam mais longe possível de antenas de TV, rádio, TV a cabo ou de redes de comunicação.

- Invólucro: metálico ou ao menos uma bandeja metálica conectada à barra de terra. Nos manuais específicos de cada inversor estão indicadas as recomendações específicas e características de cada modelo.
- Ventilação: deve ser de acordo com o calor dissipado pelo equipamento à sua potência nominal. Se preciso, prever como opcionais kits de montagem de ventilação que assegurem uma proteção IP54, sem perder a característica de uma adequada dissipação.
- Aterramento: o sistema de aterramento deve ser de boa qualidade e com conexões de baixa impedância. É preciso conectar ao terra de todas as massas da instalação (mesmo nível do equipotencial), assim como as carcaças dos motores elétricos.

 O sistema de aterramento deverá possuir um valor de resistência final que assegure uma

tensão de contato menor que 24 V.

3 O soft starter

É recomendado o uso de partidas progressivas soft starter, quando se desejar os sequintes benefícios:

- limitação do conjugado, visando a proteção das pessoas e dos produtos transportados;
- limitação dos conjugados, visando aumentar a vida das máquinas e reduzir o tempo perdido;
- redução de picos de corrente na rede durante a partida;
- desacelerações suaves e eliminação de golpes de aríete em bombas;

- paradas controladas sem desgastes e sem aumento de temperatura;
- redução das quedas de tensão na linha;
- redução do tempo de manutenção;
- proteção térmica efetiva do motor e da instalação e otimização do funcionamento da máquina;
- pré-aquecimento do motor nas paradas longas sem necessidade de outro artifício específico;
- manutenção de um conjugado de frenagem na parada;
- supervisão do motor e da instalação;
- possibilidade da partida em cascata de vários motores.

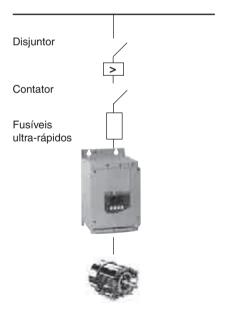
Os soft starters são equipamentos eletrônicos tiristorizados que, de acordo com o controle das três fases do motor assíncrono, regulam a tensão e a corrente durante uma parada e partida de motores elétricos, realizando o controle efetivo do conjugado.

Os sensores de corrente incorporados enviam as informações ao microprocessador para realizar e controlar o conjugado, diante das diferentes condições de carga e proteger o motor de sobrecargas.

Principais aplicações

Conforme o tipo de máquina, as aplicações são classificadas como uso em serviço standard ou severo, em função das características de partida. A tabela a seguir é fornecida a título informativo.

Tipo de máquina	Aplicação	Funções realizadas	Corrente	tempo de
		pelo Altistart	de partida (em % In)	partida (em s)
Bomba centrífuga	Standard	Desaceleração (redução do golpe de aríete) Proteção contra a subcarga ou a inversão do sentido de rotação das fases	300	5 a 15
Bomba a pistão	Standard	Controle da cavitação e do sentido de rotação da bomba	350	5 a 10
Ventilador	Standard Severo se > 30s	Detecção contra a sobrecarga por atrito ou a subcarga (transmissão motor/ventilador quebrado) Conjugado de frenagem na parada	300	10 a 40
Compressor de refrigeração Standard	o Standard	Proteção, mesmo para motores especiais	300	5 a 10
Compressor a parafuso	Standard	Proteção contra a inversão do sentido de rotação das fases Contato para descarga automática na parada	300	3 a 20
Compressor centrifugo	Standard Severo se > 30s	Proteção contra a inversão do sentido de rotação das fases Contato para descarga automática na parada	350	10 a 40
Compressor a pistão	Standard	Proteção contra a inversão do sentido de rotação das fases Contato para descarga automática na parada	350	5 a 10
Transportador	Standard	Controle de sobrecarga para detecção de incidente ou de subcarga para detecção de ruptura	300	3 a 10
Rosca sem fim	Standard	Controle de sobrecarga para detecção de ponto duro ou de subcarga para detecção de ruptura	300	3 a 10
Teleférico	Standard	Controle de sobrecarga para detecção de travamento ou de subcarga para detecção de ruptura	400	2 a 10
Elevador	Standard	Controle de sobrecarga para detecção de travamento ou de subcarga para detecção de ruptura Partida constante com carga variável	350	5 a 10


Tipo de máguina	Aplicação	Funcões realizadas	Corrente	tempo de
		pelo Altistart	de partida (em % In)	partida (em s)
Serra circular, sem fita	Standard Severo se> 30s	Frenagem por parada rápida	300	10 a 60
Guilhotina	Severo	Controle do conjugado na partida	400	3a 10
Agitador	Standard	A visualização da corrente fornece a densidade do material	350	5 a 20
Misturador	Standard	A visualização da corrente fornece a densidade do material	350	5a 10
Triturador	Severo	Frenagem para limitar as vibrações durante a parada, controle de sobrecarga para detecção de travamento	450	5 a 60
Moinho	Severo	Frenagem para limitar as vibrações durante a parada, controle de sobrecarga para detecção de travamento	400	10 a 40
Refinaria	Standard	Controle do conjugado na partida e na parada	300	5 a 30
Prensa	Severo	Frenagem para aumentar o número de ciclos	400	20 a 60

Escolha de soft starter

A escolha se dá em função da potência do motor e o tipo de serviço (standard ou severo). Entende-se por serviço severo aquelas aplicações onde as partidas dos motores são muito pesadas e longas ou muito freqüentes.

Circuito recomendado

A coordenação tipo 2 se consegue (ver página 2/16) na disposição de um disjuntor ou seccionador, fusíveis ultra-rápidos para proteger os tiristores e um contator, garantindo desta forma as condições de segurança para o operador e para os dispositivos envolvidos, já que a proteção térmica está integrada no inversor.

Economia de energia

A economia de energia que suporta o soft starter se produz, de acordo com o período de funcionamento em que ele se encontra, de duas maneiras: durante o transitório de partida por intermédio da regulagem do conjugado entregue ao motor à mínima corrente necessária para realizar a rampa programada. Em funcionamento estável na velocidade nominal, mediante a função bypass que chaveia o soft starter e liga o motor diretamente na rede de alimentação, com o uso de um contator. Deste modo, se evita o desperdício de energia térmica dos tiristores durante longos períodos de funcionamento.

Tipo de Máq.	Máquinas de Uso Geral					
Produtos	Conversores de part. e parada progres. "soft starters"	Inversores de freqüência				
	Altistart 01	Altivar 11	Altivar 31			
Faixas de tensão de alimentação para rede 50/60 Hz	Monofásico 110230 V Trifásico 110690 V	Monofásico 100120V Monofásico 200240V Trifásico 200230 V	Monofásico 200240V Trifásico 200240 V Trifásico 380500 V Trifásico 525600 V			
Potência do motor	0,3775 kW	0,182,2 kW	0,1815 kW			
Acionamento	-	0200 Hz	0500 Hz			
Freqüência de saída Tipo de controle Motor assíncrono	-	Controle vetorial de fluxo	sem realimentação			
Motor síncrono						
Sobreconjugado	-	150% do conjugado	170200% do conj.			
transitório		nominal do motor	nominal do motor			
Funções N° de funções	1	26	50			
N° de velocidades	'	20	30			
pré-selecionadas	_	4	16			
N° de entr./saídas						
Entradas analógicas		1	3			
Entradas lógicas	3	4	6			
Saídas analógicas	-	1 (PWM)	1			
Saídas lógicas Saídas a relé	1	1 (+ saída analógica)	2			
Comunicação	1	I	4			
Integrada	_	_	Modbus e CANopen			
Opcional	Em associação com a partida de motores TeSys modelo U	_	DeviceNet, Ethernet TCP/IP, Fipio, Profibus DP			
Placas (opcional)	-	-	-			
Normas e certificações	IEC/EN 60947-4/2 C-TICK - CSA - UL CE - CCC	EN 50178, EN 61800-3 EN 55011 - EN 55022 classe B e classe A gr.1 NOM117-C-TICK-CSA UL - N998 - CE	EN50178,EN61800-3 EN 55011-EN 55022: classe A, classe B com opcional C-TICK-UL-N998-CE			

Tipo de Máq.	Máquinas de Bombeam	ento e Ventilação
Produtos	Conversores de partida	Inversores de fregüência
	e parada progressivas	
	"soft starters"	
	Altistart 48	Altivar 21
		9
Faixas de tensão de alimentação para rede	Trifásico 230415 V Trifásico 208690 V	Trifásico 200240 V Trifásico 380480V
50/60 Hz		
Potência do motor	41200 kW	0,7575 kW
Acionamento	_	0200 Hz
Freqüência de saída		
Tipo de controle	Controle de conjugado TCS	Controle vetorial de fluxo sem realimentação,
Motor assíncrono	(Torque Control System)	relação tensão/freqüência (2 ou 5 pontos), relação economia de energia
Motor síncrono		
Sobreconjugado	-	110% do conjugado nominal
transitório		do motor
Funções		
N° de funções	36	50
N° de velocidades	-	7
pré-selecionadas N° de entr./saídas		
	1 and BTO	
Entradas analógicas Entradas lógicas	1 sonda PTC 4	3
Saídas analógicas	1	1
Saídas anaiogicas Saídas lógicas	2	-
Saídas logicas Saídas a relé	3	2
Comunicação	3	-
Integrada	Modbus	Modbus
Opcional	DeviceNet.	LonWorks, METASYS N2
Opololiai	Ethernet TCP/IP.	APOGEE FLN.
	Fipio, Profibus DP	BACnet
Placas (opcional)	-	Placa multi-bombas Placas de extensão de entradas/saídas
Normas e	IEC/EN 60947-4-2	IEC/EN 61800-5-1, IEC/EN 61800-3
certificações	CEM classe A e B	(ambientes 1 e 2), EN 55011: grupo 1,
	DNV - C-TICK - GOST	classe A e classe B com opcional.
	CCIB - NOM - UL - CE	CE, UL, CSA, C-Tick
	CCC - CSA	NOM 117

Tipo de Máq.	Máquinas de Bombeamento e Ventilação
Produtos	Inversores de freqüência
	Altivar 61
Faixas de tensão de alimentação para rede 50/60 Hz	Monofásico 200240 V Trifásico 200240 V Trifásico 380480V Trifásico 380690V
Potência do motor	0,37800 kW
Acionamento	
Freqüência de saída	01000 Hz até 37 kW, 0500 Hz de 45 kW até 800 kW
Tipo de controle	Controle vetorial de fluxo sem realimentação
Motor assíncrono	relação tensão/freqüência (2 ou 5 pontos), relação economia de energia
Motor síncrono	-
Sobreconjugado	110120 % do conjugado nominal do motor durante 60 s
transitório Funções	motor durante 60 s
N° de funções	>150
N° de junções	16
pré-selecionadas	·*
N° de entr./saídas	
Entradas analógicas	2 a 4
Entradas lógicas	6 a 20
Saídas analógicas	1a3
Saídas lógicas	0a8
Saídas a relé	2 a 4
Comunicação	
Integrada	Modbus e CANopen
Opcional	Ethernet TCP/IP, Fipio, Modbus Plus, InterBus, Profibus DP, Modbus/ Uni-Telway, DeviceNet, LonWorks, METASYS N2, APOGEE FLN, BACnet
Placas (opcional)	Placa multi-bombas Placas de extensão de entradas/saídas Placa programável "Controller Inside"
Normas e certificações	IEC/EN 61800-5-1, IEC/EN 61800-3 (ambientes 1 e 2, C1 a C3), EN 55011, EN 55022,IEC/EN 61000-4-2/4-3/4-4/4-5/4-6/4-11, CE, UL, CSA, DNV, C-Tick, NOM 117, GOST

Tipo de Máq.	Máquinas Complexas até altas Potências		
Produtos	Inversores de freqüência		
	Altivar 71		
Faixas de tensão de alimentação para rede 50/60 Hz	Monofásico 200240 V Trifásico 200240 V Trifásico 380500 V Trifásico 500690 V		
Potência do motor	0,37630 kW		
Acionamento			
Freqüência de saída	01000 Hz até 37 kW, 0500 Hz de 45 kW até 630 kW		
Tipo de controle	Controle vetorial de fluxo com ou sem realimentação		
Motor assíncrono	relação tensão/freqüência (2 ou 5 pontos), ENA System		
Motor síncrono	Controle vetorial sem realimentação		
Sobreconjugado	220% do conjugado nominal do motor durante 2 s,		
transitório	170% durante 60 s		
Funções			
N° de funções N° de velocidades	> 150		
nº de velocidades pré-selecionadas	16		
N° de entr./saídas	10		
Entradas analógicas	2 a 4		
Entradas lógicas	6 a 20		
Saídas analógicas	1a3		
Saídas lógicas	0.88		
Saídas a relé	2 a 4		
Comunicação	- u -		
Integrada	Modbus e CANopen		
Opcional	Ethernet TCP/IP, Fipio, Modbus Plus, InterBus, Profibus DP,		
opoloniai	Modbus/Uni-Telway, DeviceNet		
Placas (opcional)	Placa de interface do encoder Placas de extensão entradas/saídas Placa programável "Controller Inside"		
Normas e certificações	IEC/EN 61800-5-1, IEC/EN 61800 61800-3 (ambientes 1 e 2, C1 a C3 EM 55011, EM 55022, IEC/EN 61000-4-2/4-3/4-4/4-5/4-6/4-11 CE, UL, CSA, DNV, C-Tick, NOM 117, GOST		

Inversores de freqüência microprocessados para motores assíncronos de 0,18 a 2,2 kW

O Altivar 11 é um inversor robusto e extremamente compacto. Sua alta performance no acionamento de motores elétricos é garantida através do seu controle vetorial de fluxo e de todas as proteções essenciais incorporadas para operação contínua sem falhas. O Altivar 11 foi projetado para ter as mesmas qualidades dos contatores quanto ao ganho no espaço de montagem, agilidade na instalação e facilidade de operação. Flexível e econômico, o Altivar 11 permite que suas entradas lógicas tenham mais que uma função, aumentando sua capacidade para atender às necessidades de variadas aplicações.

Inversores de freqüência microprocessados para motores assíncronos de 0,18 a 2,2 kW

Motor Potênci indicad na plac	a a	Rede Corrente de linha máx.(1) nente (2)	Altivar11 Corrente de saída perma-	Corrente transi- tória máx. (3)	Potência dissipada com carga nominal	Referências	
kW Tensão	HP de alima	A entação moi	A nofásica: 10	A 0120 V 50/	W 60 Hz (4)		
0,18	0.25	6	1,4	2,1	14	ATV11HU05F1A	
0,37	0.5	9	2,4	3,6	25	ATV 11HU09F1A	
0,75	1	18	4	6	40	ATV 11HU18F1A (5)	
	de alime	entação mo	nofásica: 20	0240 V 50/	60 Hz (4)	(.,	
0,18	0,25	3,3	1,4	2,1	14	ATV 11HU05M2A	
0,37	0,5	6	2,4	3,6	25	ATV 11HU09M2A	
0,75	1	9,9	4	6	40	ATV 11HU18M2A	
1,5	2	17,1	7,5	11,2	78	ATV 11HU29M2A (5)	
2,2	3	24,1	10	15	97	ATV 11HU41M2A (5)	
	de alime	entação trifa	isica: 200:	230 V 50/60 H			
0,18	0,25	1,8	1,4	2,1	13,5	ATV 11HU05M3A	
0,37	0,5	3,6	2,4	3,6	24	ATV 11HU09M3A	
0,75	1	6,3	4	6	38	ATV 11HU18M3A	
1,5	2	11	7,5	11,2	75	ATV 11HU29M3A (5)	
2,2	3	15,2	10	15	94	ATV 11HU41M3A	
T	Tensão de alimentação monofásica: 100120 V 50/60 Hz (4)						
						ATV 44 DU0054 A	
0,37	0,5	9	2,4	3,6	25	ATV 11PU09F1A	
				0240 V 50/		ATV 44 DUODNO A	
0,37	0,5	9.9	2,4	3,6	25 40	ATV 11PU09M2A ATV 11PU18M2A	
						AIV IIPU18M2A	
				230 V 50/60 H		ATV 11PU09M3A	
0,37	0,5	3,6	2,4	3,6	24		
0,75	1	6,3	4	6	38	ATV 11PU18M3A	

(1) O valor da corrente de linha é dado para as condições de medição indicadas na tabela

Calibre do inversor	Icc presumida	Tensão de linha	
ATV 11●UF1A	1 kA	100 V	
ATV 11●UM2A	1 kA	200 V	
ATV 11●UM3A	5 kA	200 V	

⁽²⁾ O valor da corrente é dado por uma fregüência de chaveamento em 4 kHz.

⁽³⁾ Durante 60 segundos.

⁽⁴⁾ Saída trifásica para o motor. Para o ATV11●U●●F1A, a tensão máxima de saída é igual ao dobro da tensão de alimentação.

⁽⁵⁾ Com ventilador integrado.

Inversores de freqüência microprocessados para motores assíncronos de 0,75 a 70 kW

O Altivar 21 é um inversor de freqüência compacto e de alta performance, desenvolvido para as aplicações de conjugado variável (bombas e ventiladores). Para atender às necessidades do mercado de HVAC, o Altivar 21 disponibiliza comunicação nas redes LonWorks, METASYS N2, APOGEE FLN e BACnet. Uma característica especial do Altivar 21 é a sua dimensão extremamente compacta. Sua operação é rapidamente garantida através do seu ajuste rápido "Quick menu" que integra os dez parâmetros essenciais.

Inversores de freqüência microprocessados para motores assíncronos de 0,75 a 70 kW

Inversores UL tipo 1 / IP20 sem filtro CEM

indic na p (1)	encia cada laca	Rede Corren linha (3	240 V	240 V	presumida máxima	Corrente máxima permanente (1) 230 V	Altivar 21 Corrente transitória máxima durante 60 s	Referências
kW	HP	Α	Α _	kVA	kA	Α	Α	
Tens	são d	e alime	ntação	trifásica: 2	:00240 V 50	/60 Hz		
0,75	1	3,3	2,7	1,8	5	4,6	5,1	ATV 21H075M3X
1,5	2	6,1	5,1	2,9	5	7,5	8,3	ATV 21HU15M3X
2,2	3	8,7	7,3	4,0	5	10,6	11,7	ATV 21HU22M3X
3	-	11,9	10,0	5,2	5	13,7	15,1	ATV 21HU30M3X
4	5	15,7	13,0	6,7	5	17,5	19,3	ATV 21HU40M3X
5,5	7,5	20,8	17,3	9,2	22	24,2	26,6	ATV 21HU55M3X
7,5	10	27,9	23,3	12,2	22	32,0	35,2	ATV 21HU75M3X
11	15	42,1	34,4	17,6	22	46,2	50,8	ATV 21HD11M3X
15	20	56,1	45,5	23,2	22	61	67,1	ATV 21HD15M3X
18,5	25	67,3	55,8	28,5	22	74,8	82,3	ATV 21HD18M3X
22	30	80,4	66,4	33,5	22	88	96,8	ATV 21HD22M3X
30	40	113,3	89,5	44,6	22	117	128,7	ATV 21HD30M3X

Inversores IP 20/UL tipo 1 com filtro CEM classe A integrado

Moto	~=	Rede					Altivar 21	•
Potê	ncia cada	Corren linha (2		aparente	lcc linha presumida máxima	Corrente máxima permanente (1) 380 V/460 V	Corrente transitória máxima durante 60 s	Referências
kW	ΗD	300 V	400 V	kVA	kA	A V/460 V	Α	
					80480 V 50		^	
	1	1,7	1,4	1,6	5	2,2	2,4	ATV 21H075N4
1,5	2	3,2	2,5	2,8	5	3,7	4	ATV 21HU15N4
2,2	3	4,6	3,6	3,9	5	5,1	5,6	ATV 21HU22N4
3	-	6,2	4,9	5,5	5	7,2	7,9	ATV 21HU30N4
4	5	8,1	6,4	6,9	5	9,1	10	ATV 21HU40N4
5,5	7,5	10,9	8,6	9,1	22	12	13,2	ATV 21HU55N4
7,5	10	14,7	11,7	12,2	22	16	17,6	ATV 21HU75N4
11	15	21,1	16,8	17,1	22	22,5	24,8	ATV 21HD11N4
15	20	28,5	22,8	23,2	22	30,5	33,6	ATV 21HD15N4
18,5	25	34,8	27,8	28,2	22	37	40,7	ATV 21HD18N4
22	30	41,6	33,1	33,2	22	43,5	47,9	ATV 21HD22N4
30	40	56,7	44,7	44,6	22	58,5	64,4	ATV 21HD30N4
37	50	68,9	54,4	52	22	79	86,9	ATV 21HD37N4
45	60	83,8	65,9	61,9	22	94	103,4	ATV 21HD45N4
55	75	102,7	89	76,3	22	116	127,6	ATV 21HD55N4
75	100	141,8	111,3	105,3	22	160	176	ATV 21HD75N4

⁽¹⁾ Estas potências são dadas para uma freqüência de chaveamento nominal de 12 kHz até ATV 21HD15M3X e até ATV 21HD15N4 ou 8 kHz para ATV 21HD18M3X...HD30M3X e

A freqüência de chaveamento é ajustável de 6...16 kHz para o conjunto dos calibres. Acima de 8 ou 12 kHz, segundo o calibre, o inversor de freqüência diminuirá automaticamente a freqüência de chaveamento em caso de aquecimento excessivo. Para funcionamento em regime permanente acima da freqüência de chaveamento nominal, uma desclassificação deve ser aplicada à corrente nominal do inversor (ver curvas de desclassificação nas páginas 39 a 43). (2) Valor típico para a potência do motor indicada e para loc linha presumida máxima.

ATV 21HD18N4...HD75N4, com utilização em regime permanente.

Inversores de freqüência microprocessados para motores assíncronos de 0,18 a 15 kW

O Altivar 31 é um inversor de freqüência compacto e de alta performance, desenvolvido para o acionamento de motores elétricos trifásicos com potências entre 0.18 a 15 kW.

Integra inúmeras funções dedicadas que o possibilitam adaptar-se às mais diversas aplicações (movimentação de cargas, bombas, ventiladores, máquinas de embalagem, máquinas especiais, setor terciário, etc.).

Uma característica especial do Altivar 31 é a sua dimensão extremamente compacta. Robusto, sua operação é rapidamente garantida mesmo em condições ambientais severas, através do conceito "plug and drive".

Inversores de freqüência microprocessados para motores assíncronos de 0,18 a 15 kW

Motor Potência indicada na placa (1)		Altivar 31 Corrente nominal	Corrente transitória máx. 4 kHz 60s	Potência dissipada com carga durante	Referências nominal
kW	HP	Α	Α	W	
Tensão	de alimer	ntação monofási	ica: 200240 V	50/60 Hz	
0,18	0,25	1,5	2,3	24	ATV 31H018M2A
0,37	0,5	3,3	5	41	ATV 31H037M2A
0,55	0,75	3,7	5,6	46	ATV 31H055M2A
0,75	1	4,8	7,2	60	ATV 31H075M2A
1,1	1,5	6,9	10,4	74	ATV 31HU11M2A
1,5	2	8	12	90	ATV 31HU15M2A
2,2	3	11	16,5	123	ATV 31HU22M2A
		ntação trifásica:			
0,18	0,25	1,5	2,3	23	ATV 31H018M3XA
0,37	0,5	3,3	5	38	ATV 31H037M3XA
0,55	0,75	3,7	5,6	43	ATV 31H055M3XA
0,75	1	4,8	7,2	55	ATV 31H075M3XA
1,1	1,5	6,9	10,4	71	ATV 31HU11M3XA
1,5	2	8	12	86	ATV 31HU15M3XA
2,2	3	11	16,5	114	ATV 31HU22M3XA
3	-	13,7	20,6	146	ATV 31HU30M3XA
4	5	17,5	26,3	180	ATV 31HU40M3XA
5,5	7,5	27,5	41,3	292	ATV 31HU55M3XA
7,5	10	33	49,5	388	ATV 31HU75M3XA
11	15	54	81	477	ATV 31HD11M3XA
15	20	66	99	628	ATV 31HD15M3XA
	de alimer	ntação trifásica:			
0,37	0,5	1,5	2,3	32	ATV 31H037N4A
0,55	0,75	1,9	2,9	37	ATV 31H055N4A
0,75	1	2,3	3,5	41	ATV 31H075N4A
1,1	1,5	3	4,5	48	ATV 31HU11N4A
1,5	2	4,1	6,2	61	ATV 31HU15N4A
2,2	3	5,5	8,3	79	ATV 31HU22N4A
3	-	7,1	10,7	125	ATV 31HU30N4A
4	5	9,5	14,3	150	ATV 31HU40N4A
5,5	7,5	14,3	21,5	232	ATV 31HU55N4A
7,5	10	17	25,5	269	ATV 31HU75N4A
11	15	27,7	41,6	397	ATV 31HD11N4A
15	20	33	49,5	492	ATV 31HD15N4A
Tensão	o de alimer	ntação trifásica:	525600 V 50/	60 Hz	
0,75	1	1,7	2,6	36	ATV 31H075S6X (2)
1,5	2	2,7	4,1	48	ATV 31HU15S6X (2)
2,2	3	3,9	5,9	62	ATV 31HU22S6X (2)
4	5	6,1	9,2	94	ATV 31HU40S6X (2)
5,5	7,5	9	13,5	133	ATV 31HU55S6X (2)
7,5	10	11	16,5	165	ATV 31HU75S6X (2)
11	15	17	25,5	257	ATV 31HD11S6X (2)
15	20	22	33	335	ATV 31HD15S6X (2)
(1) Est	as potência	s são dadas para	uma freqüênci	a de chaveamer	nto máxima de 4 kHz, com

⁽¹⁾ Estas potências são dadas para uma freqüência de chaveamento máxima de 4 kHz, com utilização em regime permanente. A freqüência de chaveamento é ajustável de 2 a 16kHz. Acima de 4 kHz, uma desclassificação deve ser aplicada à corrente nominal do inversor e a corrente nominal do motor não deverá ultrapassar este valor.

⁽²⁾ Para estas referências, o potenciômetro e botões "RUN" e "STOP" não são incorporados ao display do produto.

Inversores de freqüência microprocessados para motores assíncronos de 0,18 a 15 kW

Inversores equipados (personalizado pelo usuário) IP 55 (2) (gama de freqüência de 0 a 500 Hz)

Monofásico

Tensão de

alimentação	200240 V ⁽³⁾	380500 V(3)					
Grau de proteção	IP 55						
Descrição	Cofre equipado com inversor ATV31 com dissipador de calor externo.						
	Tampas desmontáveis permitem adicionar 1 chave seccionadora ou						
	1 disjuntor, 3 botões e/ou LEDs, 1 potenci	ômetro					
Potência do motor (1)	ATV31 Corr. nominal (A)	ATV31 Corr. nom. (A)					
kW/cv 0,18/0,25	C018M2 1,5 T1 (3)	-					
0,37/0,5	C037M2 3,3 T1 (3)	C037N4 1,5 (3) T2					
0,55/0,75	C055M2 3,7 T1 (3)	C055N4 1,9 (3) T2					
0,75/1	C075M2 4,8 T1 (3)	C075N4 2,3 (3) T2					
1,1/1,5	CU11M2 6,9 T2 (3)	CU11N4 3 (3) T2					
1,5/2	CU15M2 8 T2 (3)	CU15N4 4,1 (3) T2					
2,2/3	CU22M2 11 T3 (3)	CU22N4 5,5 (3) T3					
3/4	-	CU30N4 7,1 (3) T3					
4/5	-	CU40N4 9,5 (3) T3					
5,5/7,5	-	CU55N4 14,3 (3) T4					
7,5/10	-	CU75N4 17 (3) T4					
11/15	-	CD11N4 27,7 (3) T5					
15/20	-	CD15N4 33 (3) T5					

Kit inversor (inversor Altivar 31 sobre base metálica com filtro CEM): consultar nosso Call Center 0800 7289 110

- (1) Estas potências são dadas para uma freqüência de chaveamento máxima de 4 kHz, com utilização em regime permanente. A freqüência de chaveamento é regulável de 2 a 16kHz. Acima de 4 kHz, uma desclassificação deve ser aplicada à corrente nominal do inversor e a corrente nominal do motor não deverá ultrapassar este valor.
- (2) Permite personalização total através de tampas desmontáveis para instalação de componentes como:
- Interruptor seccionador tipo Vario (*);
- Disjuntor motor tipo GV2 (*);
- Botões, sinalizadores etc (*);
- Potenciômetro.
- (*) Deverá ser consultado o catálogo específico.
- (3) Para estas referências, o potenciômetro e botões "RUN" e "STOP" não são incorporados ao display do produto.

Terminal remoto Designação

Para inversores ATV 31 todos os calibres,

Referência VW3 A31101

conjunto contendo:

- terminal, cabo equipado de 2 conectores (cabo com 3 m),
- junta e parafuso para montagem IP 65 na porta de armário.

Inversores de frequência microprocessados para motores assíncronos de 0,37 a 630 kW

O Altivar 61 é ideal para aplicações de aquecimento, ventilação, ar condicionado e bombeamento em instalações industriais e comerciais.

Em prédios, shopping centers e supermercados, sua utilização reduz custos de operação pela otimização de consumo de energia.

Suas inúmeras funções de base, recursos incorporados e opções disponíveis, permitem que o Altivar 61 seja adaptado e integrado facilmente aos sistemas de controle e gerenciamento dos edifícios mais sofisticados.

Inversores de freqüência microprocessados para motores assíncronos de 0,37 a 800 kW

Tipos de produtos			
Tensão de alimentação			
Grau de proteção			
Acionamento		ia de saída	
	Tipo de o	ontrole	Motor assíncrono
			Motor síncrono
	Sohrecor	njugado transi	
Faixa de velocidade	Jobiecoi	gagaao nano	
Funções	Número o	de funções	
			s pré-selecionadas
	Número	de E/S	
0:41			
Diálogo Comunicação	Integrada		
Comunicação	<u>Integrada</u> Opcional		
	Орсіонаї		
Placas (opcional)			
Potência do motor	kW / CV		
			0,37 / 0,5
			0,75 / 1
			1,5 / 2
			2,2/3
			3/4
			4 / 5 5,5 / 7,5
			7,5 / 10
			11 / 15
			15 / 20
			18,5 / 25
			22 / 30
			30 / 40
			37 / 50
			45 / 60
			55 / 75
			75 / 100
			90 / 125 110 / 150
			132 / 175
			160 / 220
D. " (1	200 / 270
Dimensões (em mm)	larg. x alt. x profund.		220 / 300
T2 : 130 x 230 x 175	T3 : 155 x 260 x 187		250 / 330
T4 : 175 x 295 x 187	T5A: 210 x 295 x 213		280 / 375
T5B : 230 x 400 x 213	T6 : 240 x 420 x 236		315 / 420
T7A : 240 x 550 x 266	T7B: 320 x 550 x 266		370 / 500
T8 : 320 x 630 x 290	T9 : 320 x 920 x 377		400 / 540
T10 : 360 x 1022 x 377	T11 : 340 x 1190 x 377		500 / 700
T12 : 440 x 1190 x 377 T14 : 890 x 1390 x 377	T13:595 x 1190 x 377 T15:1120 x 1390 x 377		560 / 750 630 / 850

⁽¹⁾ Utilizar obrigatoriamente com uma indutância de linha.

⁽²⁾ Para encomendar inversor reforçado p/condições ambientais especiais, segundo a IEC 60721-3-3 classe 3c2. acrescentar S337 no fim da referência. Exemplo: ATV61H075N4S337.

Monofásico	Trifásico	Trifásico	Trifásico
200240 V	200240 V	380480 V	500690 V

IP21 para os inversores sem proteção e IP41 na parte superior

0...1000 Hz até 37 kW; 0...500 Hz de 45 a 800 kW

Relação quadrática kn2, controle vetorial de fluxo com ou sem realimentação,

relação tensão/freqüência (2 ou 5 pontos), economia de energia

Controle vetorial sem retorno de velocidade

110 % a 120% da corrente nominal do inversor durante 60 segundos

1...100 em malha aberta

> 150

16

Entradas analógicas 2...4 / Entradas lógicas 6...20

Saídas analógicas 1...3 / Saídas lógicas 0...8

Saídas a relé 2...4

Entrada de segurança 1

Terminal gráfico remoto ou software PowerSuite

Modbus e CANopen

Protocolos HVAC: LonWorks, BACnet, METASYS N2. APOGEE FLN

Industrial: Ethernet TCP/IP, Modbus/Uni-Telway, Fipio, Modbus Plus, Profibus DP, DeviceNet, interbus

Placas multibomba, placas de extensão de E/S, placa programável "Controller Inside" Corr. Corr. Corr Corr. ATV61 nom. (A) ATV61 nom. (A) ATV61 nom. (A) ATV61 nom. (A) H075M3Z HU15M3Z 4.8 H075M3Z 4.8 T2 H075N4Z (2) T2 HU22M3Z HU15M3Z HU15N4Z (2) 4.1 HU30M3Z HU22M3Z 11 HU22N4Z (2) 5.8 T6 HU40M3Z (1) 15.7 HU30M3Z 13.7 HU30N4Z (2) 7.8 HU30Y (3) 4.5 HU55M3Z (1) T4 10.5 T6 HU40M3Z HU40N4Z (2) HU40Y (3) TΔ 14.3 T4 T₆ HU75M3Z (1) 27,5 T5A HU55M3Z 27,5 HU55N4Z (2) HU55Y (3) 7,5 HU75M3Z T5A HU75N4Z (2) 17.6 T4 HU75Y (3) HD11Y (3) HD11M3XZ 54 HD11N4Z (2) T5A HD15M3XZ 66 HD15N4Z (2) HD15Y (3) 18.5 HD18M3X HD18N4 (2) 41 T5B HD18Y (3) 24 T6 HD22M3X 88 HD22N4 (2) 48 T6 T6 HD22Y (3) HD30M3X 120 T7B HD30N4 (2) 66 T7A HD30Y (3) 35 T6 144 T8 HD37M3X HD37N4 (2) T7A HD37Y (3) 54 HD45M3X 176 HD45N4 (2) 94 T8 HD45Y (3) T8 HD55M3X 221 T9 HD55N4 (2) 116 T8 HD55Y (3) 62 T8 HD75M3X 285 T9 HD75N4 (2) 160 T8 HD75Y (3) 84 T8 HD90M3X HD90N4 (2) 179 104 T8 HD90Y (3) HC11N4 215 T9 HC11Y (3)(1) 125 HC13N4 259 T10 HC13Y (3)(1) 150 T11 HC16N4 314 T11 HC16Y (3)(1) 180 HC22N4 427 HC20Y (3)(1) T11 HC22N4 427 T12 HC25Y (3)(1) 290 T13 HC25N4 481 HC25Y (3)(1) 290 T13 HC31N4 HC31Y (3)(1) HC31N4 616 T13 HC31Y (3)(1) 355 T13 T13 HC40N4 759 T14 HC40Y (3)(1) 420 HC40N4 759 T14 HC40Y (3)(1) 420 T13 HC50N4 941 T14 HC50Y (3)(1) 543 T15 HC63N4 1188 T15 HC63Y (3)(1) 675 T15 HC63N4 1188 T15 HC63Y (3)(1) 675 T15 HC80Y (3)(1) 840

(3) Potência e corrente dimensionadas para tensão 690 V. Abaixo de 690 V, consultar o catálogo do produto. Terminal gráfico incluso para toda a linha 690 V.

Inversores de freqüência microprocessados para motores assíncronos de 0,37 a 800 kW

Tipos de produtos		
Grau de proteção		
Acionamento	Freqüência de saída	
	Tipo de controle	Motor assíncrono
		Motor síncrono
	Sobreconjugado trar	nsitório
Faixa de velocidade		
Funções	Número de funções	
		des pré-selecionadas
	Número de E/S	
Diálogo		
Comunicação	Integrada	
	Opcional	
Placas (opcional)		
Potência do motor	kW / CV	0,75 / 1
		1,5 / 2
		2,2 / 3
		3/4
		4/5
		5,5 / 7,5
D: ~ /) !		7,5 / 10
Dimensões (em mm) largura x	altura x profundidade	11 / 15
TA2:240 x 490 x 296		15 / 20
		18,5 / 25
TA3: 240 x 490 x 310 TB: 260 x 525 x 310		22 / 30
TC: 295 x 560 x 339		30 / 40
TD : 315 x 665 x 340		37 / 50
TE: 285 x 720 x 335		45 / 60
TF : 285 x 880 x 383		55 / 75
TG: 362 x 1000 x 404		75 / 100
1G . 302 X 1000 X 404		90 / 125

⁽³⁾ Filtro classe B integrado.

com interruptor

Trifásico 380...480 V

sem interruptor
UL tipo 12 / IP54

po 12 / IP54

0,5...1000 Hz até 37 kW; 0...500 Hz de 45 a 630 kW
Relação quadrática kn2, controle vetorial de fluxo com ou sem realimentação, relação tensão/freqüência

(2 ou 5 pontos), economia de energia Controle vetorial sem retorno de velocidade

120...130 % da corrente nominal do inversor durante 60 segundos

1...100 em malha aberta

> 150 16

Entradas analógicas 2...4 / Entradas lógicas 6...20

Saídas analógicas 1...3 / Saídas lógicas 0...8

Saídas a relé 2...4

Entrada de segurança 1

Terminal gráfico remoto ou software PowerSuite

Modbus e CANopen

Protocolos HVAC: LonWorks, BACnet, METASYS N2, APOGEE FLN

Industrial: Ethernet	TCP/IP, Modbus	/Uni-Telway, Fipio,	Modbus Plus, Pr	ofibus DP, DeviceNet,	interbus						
Placas multibomba, placas de extensão de E/S, placa programável "Controller Inside"											
ATV61W075N4	TA2	ATV61W075N4C	(3) TA2	ATV61E5075N4	TA2						
ATV61WU15N4	TA2	ATV61WU15N4C	(3) TA2	ATV61E5U15N4	TA2						
ATV61WU22N4	TA2	ATV61WU22N4C	(3) TA2	ATV61E5U22N4	TA2						
ATV61WU30N4	TA2	ATV61WU30N4C	(3) TA2	ATV61E5U30N4	TA2						
ATV61WU40N4	TA3	ATV61WU40N4C	(3) TA3	ATV61E5U40N4	TA3						
ATV61WU55N4	TA3	ATV61WU55N4C	(3) TA3	ATV61E5U55N4	TA3						
ATV61WU75N4	TB	ATV61WU75N4C	(3) TB	ATV61E5U75N4	TB						
ATV61WD11N4	TB	ATV61WD11N4C	(3) TB	ATV61E5D11N4	TB						
ATV61WD15N4	TC	ATV61WD15N4C	(3) TC	ATV61E5D15N4	TC						
ATV61WD18N4	TD	ATV61WD18N4C	(3) TD	ATV61E5D18N4	TD						
ATV61WD22N4	TD	ATV61WD22N4C	(3) TD	ATV61E5D22N4	TD						
ATV61WD30N4	TE	ATV61WD30N4C	(3) TE	ATV61E5D30N4	TE						
ATV61WD37N4	TF	ATV61WD37N4C	(3) TF	ATV61E5D37N4	TF						
ATV61WD45N4	TF	ATV61WD45N4C	(3) TF	ATV61E5D45N4	TF						
ATV61WD55N4	TG	ATV61WD55N4C	(3) TG	ATV61E5D55N4	TG						
ATV61WD75N4	TG	ATV61WD75N4C	(3) TG	ATV61E5D75N4	TG						
ATV61WD90N4	TG	ATV61WD90N4C	(3) TG	ATV61E5D90N4	TG						

Inversores de freqüência microprocessados para motores assíncronos de 0,37 a 630 kW

O Altivar 71 foi desenvolvido para comandar motores assíncronos de 0,37 a 500 kW para tensões de rede em 220 V, 380 V ou 440 V, 50 ou 60 Hz. Sua ampla disponibilidade de potências e versatilidade para personalização de parâmetros são ideais para suprir as exigências das máquinas mais complexas.

São mais de 150 funções especializadas, inúmeras entradas e saídas digitais e analógicas, protocolos de comunicação Modbus, CANopen e Ethernet, entre outros.

Tipos de inversores

Inversores de freqüência microprocessados para motores assíncronos de 0,37 a 630 kW

ripos de ilive	5130163		1111a51CU 30U40U V							
			Sem interruptor Com interruptor							
Grau de proteç	ão		UL Tipo 12 / IP54							
Acionamento	Freqüênc	cia de saída	01000 Hz até 37 kW, 0500 Hz de 45 a 500 kW							
	Tipo de	Motor assíncrono	Controle vetorial de fluxo com ou sem realimentação,							
	controle		relação tensão/freqüência (2 ou 5 pontos), ENA System							
		Motor síncrono	Controle vetorial sem retorno de velocidade							
	Sobrecor	njugado transitório	220% do conjugado nominal do motor durante							
			2 segundos, 170% durante 60 segundos							
Faixa de velocio	dade		11000 em malha fechada com retorno por encoder,							
			1100 em malha aberta							
Funções		de funções	> 150							
		de velocidades	16							
	pré-selec									
	Nº de E/S	Entradas analógicas								
		Entradas lógicas	620							
		Saídas analógicas	13							
		Saídas lógicas	08							
		Saídas a relé	24							
B. (1)		Entrada de segurano								
Diálogo			Terminal gráfico remoto ou software PowerSuite							
Comunicação	Integrada		Modbus e CANopen							
	Opcional		Ethernet TCP/IP, Modbus/Uni-Telway, Fipio, Modbus							
Diagon (anaign)	al\		Plus, Profibus DP, DeviceNet, interbus							
Placas (opciona	ai)		Placa de encoder, placas de extensão de E/S, placa programável "Controller Inside"							
Potência do	kW / CV	0,75 / 1	ATV71W075N4 (3) TA2 ATV71E5075N4 TA2							
motor	KVV / OV	1.5 / 2	ATV71WU15N4 (3) TA2 ATV71E5U15N4 TA2							
		2,2/3	ATV71WU22N4 (3) TA2 ATV71E5U22N4 TA2							
		3/4	ATV71WU30N4 (3) TA3 ATV71E5U30N4 TA3							
Dimensões (em mm)	4/5	ATV71WU40N4 (3) TA3 ATV71E5U40N4 TA3							
LXAXP		5,5 / 7,5	ATV71WU55N4 (3) TB ATV71E5U55N4 TB							
ATV71W A	TV71E	7,5 / 10	ATV71WU75N4 (3) TB ATV71E5U75N4 TB							
até 75 kW		11 / 15	ATV71WD11N4 (3) TC ATV71E5D11N4 TC							
TA2:240 x 4	90 x 296	15 / 20	ATV71WD15N4 (3) TD ATV71E5D15N4 TD							
TA3:240 x 4		18,5 / 25	ATV71WD18N4 (3) TD ATV71E5D18N4 TD							
TB : 260 x 5	TB : 260 x 525 x 310		ATV71WD22N4 (3) TE ATV71E5D22N4 TE							
TC : 295 x 5	60 x 339	30 / 40	ATV71WD30N4 (3) TF ATV71E5D30N4 TF							
TD :315 x 6	65 x 340	37 / 50	ATV71WD37N4 (3) TF ATV71E5D37N4 TF							
TE : 285 x 7		45 / 60	ATV71WD45N4 (3) TG ATV71E5D45N4 TG							
TF : 285 x 8		55 / 75	ATV71WD55N4 (3) TG ATV71E5D55N4 TG							
TG:362 x 1	000 x 404	75 / 100	ATV71WD75N4 (3) TG ATV71E5D75N4 TG							
(a) D ~	4		parado substituir no código "NA" nor "NAC"							

⁽³⁾ Para opção de inversor com filtro classe B integrado, substituir no código, "N4" por "N4C". Exemplo: "ÁTV71W075N4" torna-se "ATV71W075N4C".

Inversores de freqüência microprocessados para motores assíncronos de 0,37 a 630 kW

'			
Tipos de inversores			
Tensão de alimentação			
Acionamento	Freqüência de saída		
	Tipo de controle	Motor assíncrono	
	<u> </u>	Motor síncrono	
	Sobreconjugado transitório		
Faixa de velocidade			
Grau de proteção			
Funções	Número de funções		
	Nº de velocidades pré-selecionad	das	
	Número de E/S	Entradas analógicas	
		Entradas lógicas	
		Saídas analógicas	
		Saídas lógicas	
		Saídas a relé	
		Entrada de segurança	
Diálogo			
Comunicação	Integrada		
	Opcional		
Placas (opcional)			
Potência do motor			
	kW / CV	0,37 / 0,5	
		0,75 / 1	
		1,5 / 2	
		2,2/3	
		3/4	
		4/5	
		5,5 / 7,5	
		7,5 / 10	
		11 / 15	
		15 / 20	
		18,5 / 25	
		22 / 30	
		30 / 40	
		37 / 50	
		45 / 60	
		55 / 75	
		75 / 100	
		90 / 125	
		110 / 150	
		132 / 175	
	largura x altura x profundidade	160 / 220	
	75 / Tam. 3 : 155 x 260 x 187	200 / 270	
	87 / Tam. 5A : 210 x 295 x 213	220 / 300	
	213 / Tam. 6 : 240 x 420 x 236	250 / 330	
	266 / Tam. 7B : 320 x 550 x 266	280 / 375	
	290 / Tam. 9 : 320 x 920 x 377	315 / 420	
	377/ Tam. 11 : 340 x 1190 x 377	370 / 500	
	377/ Tam. 13 : 595 x 1190 x 377	400 / 540	
Tam. 14: 890 x 1390 x	377/ Tam. 15 : 1120 x 1390 x 377		
		630 / 850	

⁽¹⁾ Utilizar obrigatoriamente com uma indutância de linha.

⁽²⁾ Para encomendar inversor na versão reforçada p/condições ambientais especiais segundo IEC 60721-3-3 classe 3c2, adicionar S337 no fim da referência. Ex.: ATV71H075N4S337.

Monofásico	Trifásico	Trifásico	Trifásico
200240 V	200240 V	380480 V	500-690 V
0 1000 H= a46 07 MM 0	E00 H= de 4E e C00 HM		

0...1000 Hz até 37 kW, 0...500 Hz de 45 a 630 kW

Controle vetorial de fluxo com ou sem realimentação, relação tensão/freqüência (2 ou 5 pontos), ENA System Controle vetorial sem retorno de velocidade

220% do conjugado nominal do motor durante 2 segundos, 170% durante 60 segundos

1...1000 em malha fechada com retorno por encoder, 1...100 em malha aberta

IP 21 para os inversores sem proteção e IP 41 na parte superior

> 150

16

2 a 4

6 a 20

1 a 3

0 a 8

2 a 4

T .

Terminal gráfico remoto ou software PowerSuite

Modbus e CANopen

Ethernet TCP/IP, Modbus/Uni-Telway, Fipio, Modbus Plus, Profibus DP, DeviceNet, interbus

Placa de enco	oder, p	iacas o	ie extensão de	E/S, p	ilaca p	rogramavel "	Controll	er Insid	e"		
ATV71	Corr. n	om. (A)	ATV71	Corr. n	om. (A)	ATV71	Corr. r	nom. (A)	ATV71	Corr. n	om. (A)
H075M3Z	3	T2	H037M3Z	3	T2	-	-	-	-	-	-
HU15M3Z	4,8	T2	H075M3Z	4,8	T2	H075N4Z (2	2,3	T2	-	-	-
HU22M3Z	8	T3	HU15M3Z	8	T2	HU15N4Z (2	9 4,1	T2	-	-	-
HU30M3Z	11	T3	HU22M3Z	11	T3	HU22N4Z (2	2) 5,8	T2	HU22Y (3)	4	T6
HU40M3Z (1)	13,7	T3	HU30M3Z	13,7	T3	HU30N4Z (2	7,8	T3	HU30Y (3)	4,5	T6
HU55M3Z (1)	17,5	T4	HU40M3Z	17,5	T3	HU40N4Z (2	10,5	T3	HU40Y (3)	5,5	T6
HU75M3Z (1)	27,5	T5A	HU55M3Z	27,5	T4	HU55N4Z (2		T4	HU55Y (3)	7,5	T6
_			HU75M3Z	33		HU75N4Z (2	17,6	T4	HU75Y (3)	10	T6
_			HD11M3XZ	54		HD11N4Z (2		T5A	HD11Y (3)	13,5	T6
-			HD15M3XZ	66	T5B	HD15N4Z (2	2) 33	T5B	HD15Y (3)	18,5	T6
-			HD18M3X	75	T6	HD18N4 (2)	41	T5B	HD18Y (3)	24	T6
-			HD22M3X	88	T6	HD22N4 (2)	48	T6	HD22Y (3)	27	T6
-			HD30M3X	120		HD30N4 (2)		T7A	HD30Y (3)	35	T6
_			HD37M3X	144		HD37N4 (2)		T7A	HD37Y (3)	43	T8
-			HD45M3X	176	T7B	HD45N4 (2)	94	T8	HD45Y (3)	54	T8
-			HD55M3X	221	T9	HD55N4 (2)	116	T8	HD55Y (3)	62	T8
-			HD75M3X	285	T10	HD75N4 (2)	160	T8	HD75Y (3)	84	T8
-			-			HD90N4	179	T9	HD90Y (3)	104	T8
-			-			HC11N4	215	T10	HC11Y (3)(1)	125	T11
_			-			HC13N4	259	T11	HC13Y (3)(1)	150	T11
_			-			HC16N4	314	T12	HC16Y (3)(1)	180	T11
-			-			HC20N4	387	T13	HC20Y (3)(1)	220	T13
-			-			HC25N4	481	T13	HC25Y (3)(1)	290	T13
-			-			HC25N4	481	T13	HC25Y (3)(1)	290	T13
-			-			HC28N4	550	T13	HC31Y (3)(1)	355	T13
_			-			HC31N4	616	T14	HC31Y (3)(1)	355	T13
-			-			HC40N4	759	T14	HC40Y (3)(1)	420	T15
-			-			HC40N4	759	T14	HC40Y (3)(1)	420	T15
-			-			HC50N4	941	T15	HC50Y (3)(1)	543	T15
_			-			-	-	-	HC63Y (3)(1)	675	T15

(3) Potência e corrente dimensionadas para tensão de 690 V (abaixo de 690 V, ver catálogo do produto). Terminal gráfico incluso para toda a linha 690 V.

Conversores de partida e parada progressivas

Pronta para uso, a nova gama de produtos Altistart 01 é a solução ideal para as aplicações que necessitam de partida e parada suaves. Extremamente compacta, com cabeamento rápido e simplificado, esta solução em partidas de motores garante total eficiência, reduzindo os desgastes mecânicos e o tempo de manutenção. O Altistart 01 permite o controle do conjugado inicial aplicado aos motores, uma redução importante na corrente de saída, além disso, poupa a carga das conseqüências de uma parada brusca.

Dimensões (em mm)	LxAxP
ATS01	
N103FT/N106 FT	22,5 x 100 x 100
N109FT/N112 FT/N125 FT	45 x 124 x 130
N206ee/N209ee/N212ee	
N22200/N23200	45 x 154 x 130

N22200/N2	23200	45	5 x 154 x	130	A STATE OF	Name and Address of the Owner, where the Owner, which is the				
Tipos d	e conve	ersores			Soft starter	Soft starter / so	ft ston			
Potência		2100100			0,37 a 11 kW	0,75 a 15 kW	поор			
Grau de					IP 20	0,10 0 10 111				
Redução		s de cor	rente		Não (1 fase controlada)	Sim (2 fases co	Sim (2 fases controladas)			
Tempo d	e partida	reguláve	el		15 s	110 s				
Tempo d	e desace	leração i	reguláve	ı	Não: parada por inércia	Sim: 1 10 s				
Conjuga	do de arra	anque aj	ustável		3080% do co	njug. partida do	motor			
Tensão d	e alimen	tação			Monofásica					
Potência	do moto	r		Corr.	110230 V					
230 V				nom.	(1)					
kW	CV			(IcL)						
0,37	0,5			3 A	ATS01N103FT					
0,75	1			6 A	ATS01N106FT					
1,1	1,5			9 A	ATS01N109FT					
1,5	2			12 A	ATS01N112FT					
2,2	3			25 A	ATS01N125FT					
Tensão d	e alimen	tação			Trifásica	Trifásica	Trifásica	Trifásica		
Potência	do moto	r		Corr.	110230 V	200240 V	380415 V	440480 V		
230 V		400 V	460 V	nom.	(1)					
kW	CV	kW	CV	(lcL)						
0,37/0,55	0,5/0,75	1,1	0,5/1,5	3 A	ATS01N103FT	-	-			
0,75/1,1	1/1,5	2,2/3	2/3	6 A	ATS01N106FT	ATS01N206LU	ATS01N206QN	ATS01N206RT		
1,5	2	4	5	9 A	ATS01N109FT	ATS01N209LU	ATS01N209QN	ATS01N209RT		
2,2	3	5,5	7,5	12 A	ATS01N112FT	ATS01N212LU	ATS01N212QN	ATS01N212RT		
4/5,5	5/7,5	7,5/11	10/15	22 A	-	ATS01N222LU	ATS01N222QN	ATS01N222RT		
3/4/5,5	5/7,5	7,5/9/11	10/15	25 A	ATS01N125FT	-	-	-		
7,5	10	15	20	32 A	-	ATS01N232LU	ATS01N232QN	ATS01N232RT		

Dimensões (em mm)	LxAxP
ATS01 N230ee/N244ee	180 x 146 x 126
N27200/N28500	180 x 254.5 x 126

Tipos	s de co	nvers	ores		Soft starter / soft	stop				
Potêr	ncia do	moto	or		15 a 75 kW					
Grau	de pro	teção)						IP 20 na face front	al
Redu	ıção do	s pic	os de	corren	Sim					
Temp	o de p	artida	e de	desac	eleraç	ão reg	ulávei	s	1 25 s	
Conjugado de arranque ajustável									3080% do conju motor diretamente	gado de partida do na rede
Tens	ão de a	alimer	ntação						Trifásica	Trifásica
Potêr	ncia do	moto	or					Corr.	230690 V (2)	400 V
220V		380V		440V		690 V		nom.		
kW	CV	kW	CV	CV	kW	CV	kW	(lcL)		
7,5	10	15	20	18,5	25	30	40	32 A	ATS01N230LY	-
11	15	18,5	25	22	30	37	50	44 A	ATS01N244LY	ATS01N244Q
18,5	25	30	40	37	50	55	75	72 A	ATS01N272LY	ATS01N272Q
22	30	37	50	45	60	75	100	85 A	ATS01N285LY	ATS01N285Q

⁽¹⁾ Necessita de tensão externa de controle 110 a 220 Vca ou 24 Vca/cc.

⁽²⁾ Necessita de tensão externa de controle 110 Vca.

Conversores de partida e parada progressivas

O Altistart 48 é um conversor estático microprocessado que controla as três fases do motor assíncrono de indução através de dois tiristores por fase. A tecnologia incorporada ao produto permite alta performance na partida e parada dos motores, sendo patenteada pela Schneider Electric com Comando em Conjugado (TCS). O Altistart 48 incorpora inúmeras funções de um relé inteligente de proteção do motor, da máquina e do processo acionado, além de múltiplas possibilidades de diálogo com o operador e os sistemas de automação, através da IHM e protocolo Modbus integrados, entre outros recursos. Filtros CEM (para compatibilidade eletromagnética) estão incorporados. evitando a poluição da rede elétrica pelos ruídos de alta fregüência indesejados. A seleção do conversor se faz de maneira simples pelo regime de operação (serviço standard ou severo), conforme o tipo de máguina.

Dimens	sões (em mm)	LxAxP
ATS48 D17Q a D47Q		Tam. A: 160 x 275 x 190
	D62Q a C11Q	Tam. B: 190 x 290 x 235
	C14Q a C17Q	Tam. C: 200 x 340 x 265
	C21Q a C32Q	Tam. D: 320 x 380 x 265
	C41Q a C66Q	Tam. E: 400 x 670 x 300
1	C700 a M100	Tom E: 770 v 000 v 21E

Tensão de alimentação			Trifásico 2204	115 V (1)				
Tipo:	s de a	plicaçõ	es		Standard		Severo (2)	
Tensa	Tensão de alimentação			220415 V				
do controle do conversor								
Prote	ções	Grau o	de prot	eção	IP 20: conversores	ATS48D17	a ATS48C11 • / IP 00):
					conversores ATS4	8C14•a ATS		
		Proteç	ão téri	mica do motor	Classe 10		Classe 20	
CEM		Classe	e A		Em todos os conve	ersores de par	tida e parada	
		Classe	е В		Em todos os conve	ersores de par	tida e parada até 17	0 A
Modo	de pa	rtida			Controle de conjuç			
					(Sistema patentea	do TCS: Torqu	e Control System)	
	icia do							
220 V		380 V		Corr. nom.				
kW	CV	kW	CV	(IcL)				
2,2	3	5,5	7,5	12 A	-		ATS48D17Q	Tam. A
3,7	5	7,5	10	17 A	ATS48D17Q	Tam. A	ATS48D22Q	Tam. A
5,5	7,5	11	15	22 A	ATS48D22Q	Tam. A	ATS48D32Q	Tam. A
7,5	10	15	20	32 A	ATS48D32Q	Tam. A	ATS48D38Q	Tam. A
9	12,5	18,5	25	38 A	ATS48D38Q	Tam. A	ATS48D47Q	Tam. A
11	15	22	30	47 A	ATS48D47Q	Tam. A	ATS48D62Q	Tam. B
15	20	30	40	62 A	ATS48D62Q	Tam. B	ATS48D75Q	Tam. B
18,5	25	37	50	75 A	ATS48D75Q	Tam. B	ATS48D88Q	Tam. B
22	30	45	60	88 A	ATS48D88Q	Tam. B	ATS48C11Q	Tam. B
30	40	55	75	110 A	ATS48C11Q	Tam. B	ATS48C14Q	Tam. C
37	50	75	100	140 A	ATS48C14Q	Tam. C	ATS48C17Q	Tam. C
45	60	90	125	170 A	ATS48C17Q	Tam. C	ATS48C21Q	Tam. D
55	75	110	150	210 A	ATS48C21Q	Tam. D	ATS48C25Q	Tam. D
75	100	132	175	250 A	ATS48C25Q	Tam. D	ATS48C32Q	Tam. D
90	125	160	200	320 A	ATS48C32Q	Tam. D	ATS48C41Q	Tam. E
110	150	220	300	410 A	ATS48C41Q	Tam. E	ATS48C48Q	Tam. E
132	175	260	350	480 A	ATS48C48Q	Tam. E	ATS48C59Q	Tam. E
160	200	300	400	590 A	ATS48C59Q	Tam. E	ATS48C66Q	Tam. E
185	250	331	450	660 A	ATS48C66Q	Tam. E	ATS48C79Q	Tam. F
220	300	368	500	790 A	ATS48C79Q	Tam. F	ATS48M10Q	Tam. F
260	350	450	600	1000 A	ATS48M10Q	Tam. F	ATS48M12Q	Tam. F
331	450	630	800	1200 A	ATS48M12Q	Tam. F	-	

Possibilidade de conexão da partida no acoplamento triângulo do motor.
 Tempo de partida superior a 30 s (ventiladores, máquinas de inércia elevada e compressores).

Conversores de partida e parada progressivas

progressivas

Dimens	sões (em mm)	LxAxP
ATS48	D17Y a D47Y	Tam. A: 160 x 275 x 190
	D62Y a C11Y	Tam. B: 190 x 290 x 235
	C14Y a C17Y	Tam. C: 200 x 340 x 265
	C21Y a C32Y	Tam. D: 320 x 380 x 265
	C41Y a C66Y	Tam. E: 400 x 670 x 300
	C79Y a M12Y	Tam. F: 770 x 890 x 315

Tens	Tensão de alimentação									Trifásico 208690 V		
Tipo	s de a	plica	ções			Standard		Severo (1)				
Tens	ão de	alime	ntaçã	o do c	ontrole	110230 V						
Cara	cterís	ticas							Idênticas aos	convers	sores de 230	415 V
Potêr	ncia de	moto	r									
220 V		380 V	1	440 V	'	690 V		Corr. nom.				
kW	CV	kW	CV	kW	CV	kW	CV	(IcL)				
2,2	3	5,5	7,5	5,5	7,5	11	15	12 A	-	-	ATS48D17Y	Tam. A
3,7	5	7,5	10	7,5	10	15	20	17 A	ATS48D17Y	Tam. A	ATS48D22Y	Tam. A
5,5	7,5	11	15	11	15	18,5	25	22 A	ATS48D22Y	Tam. A	ATS48D32Y	Tam. A
7,5	10	15	20	15	20	22	30	32 A	ATS48D32Y	Tam. A	ATS48D38Y	Tam. A
9	12,5	18,5	25	18,5	25	30	40	38 A	ATS48D38Y	Tam. A	ATS48D47Y	Tam. A
11	15	22	30	22	30	37	50	47 A	ATS48D47Y	Tam. A	ATS48D62Y	Tam. B
15	20	30	40	30	40	45	60	62 A	ATS48D62Y	Tam. B	ATS48D75Y	Tam. B
18,5	25	37	50	37	50	55	75	75 A	ATS48D75Y	Tam. B	ATS48D88Y	Tam. B
22	30	45	60	45	60	75	100	88 A	ATS48D88Y	Tam. B	ATS48C11Y	Tam. B
30	40	55	75	55	75	90	125	110 A	ATS48C11Y	Tam. B	ATS48C14Y	Tam. C
37	50	75	100	75	100	110	150	140 A	ATS48C14Y	Tam. C	ATS48C17Y	Tam. C
45	60	90	125	90	125	132	175	170 A	ATS48C17Y	Tam. C	ATS48C21Y	Tam. D
55	75	110	150	110	150	160	200	210 A	ATS48C21Y	Tam. D	ATS48C25Y	Tam. D
75	100	132	175	132	175	220	300	250 A	ATS48C25Y	Tam. D	ATS48C32Y	Tam. D
90	125	160	200	160	200	260	350	320 A	ATS48C32Y	Tam. D	ATS48C41Y	Tam. E
110	150	220	300	220	300	331	450	410 A	ATS48C41Y	Tam. E	ATS48C48Y	Tam. E
132	175	260	350	260	350	368	500	480 A	ATS48C48Y	Tam. E	ATS48C59Y	Tam. E
160	200	300	400	331	450	450	600	590 A	ATS48C59Y	Tam. E	ATS48C66Y	Tam. E
185	250	331	450	368	500	630	800	660 A	ATS48C66Y	Tam. E	ATS48C79Y	Tam. F
220	300	368	500	450	600	710	1000	790 A	ATS48C79Y	Tam. F	ATS48M10Y	Tam. F
260	350	450	600	630	800	900	1200	1000 A	ATS48M10Y	Tam. F	ATS48M12Y	Tam. F
331	450	630	800	710	1000	1100	1450	1200 A	ATS48M12Y	Tam. F	-	

Conversores de partida e parada progressivas

Nota:

- Fazer a escolha do ATS 48 baseada na corrente nominal do motor e no tipo de serviço da aplicação, serviço STANDARD ou serviço SEVERO. Veja o catálogo específico do ATS 48 para auxílio na definição do tipo de serviço.
- Grau de Proteção: IP 20, de ATS 48D17● a C11● (IP 00 na ausência de conexões); IP 00, de ATS 48C14● a M12● Obs.: (1) Verificar a compatibilidade com a corrente nominal do motor utilizado. As potências indicadas foram calculadas, levando-se em conta a utilização de motores de indução trifásicos de 2 e 4 pólos. Para motores de outras polaridades (ex.: 6 e 8 pólos), dimensionar o soft starter pela corrente nominal do motor.

O ATS 48 possui proteção térmica integrada, ajustável entre 0,5 e 1,3 x ln, dispensando o uso do relé térmico.

Conversores de partida e parada progressivas

		trifásica

Para atenuar as perturbações de harmônicos na rede e/ou quando há diversos

conversores na mesma rede						
	Para conversores	Características				
VZ1-L015UM17TBR	ATS-48D17●	1,7mH-15A				
VZ1-L250U100TBR	ATS-48C17 a 48C25 ●	0,1mH-250A				
VZ1-L030U800TBR	ATS-48D22●	0,8mH-30A				
VZ1-L325U075TBR	ATS-48C32●	0,075 mH-325A				
VZ1-L040U600TBR	ATS-48D32● e 48D38●	0,6mH-40A				
VZ1-L530U045TBR	ATS-48C41● e 48C48●	0,045mH-530A				
VZ1-L070U350TBR	ATS-48D47● a 48D62●	0,35mH-70A				
VZ1-LM10U024TBR	ATS-48C59● a 48M10●	0,024mH-1025A				
VZ1-L150U170TBR	ATS-48D75● a 48C14●	0,17mH-150A				
VZ1-LM14U016TBR	ATS-48M12●	0,016mH-1435A				
Fusíveis ultra-rápid	los (não obrigatórios)					

Fusiveis ultra-rapidos (nao obrigatorios)

Para proteção do conversor, atendendo a coordenação tipo 2				
	Para conversores	Características tamanho / Ak	I2t A2.s	Qde
DF3-ER50	ATS-48D17●	14x51 / 50	2,3	1
DF3-FR80	ATS-48D22● e 48D32●	22x58 / 80	5,6	1
DF3-FR100	ATS-48D38● e 48D47●	22x58 / 100	12	1
DF4-00125	ATS-48D62● a 48D75●	00 / 125	45	1
DF4-00160	ATS-48D88● e 48C11●	00 / 160	82	1
DF4-30400	ATS-48C14● e 48C17●	30 / 400	120	1
DF4-31700	ATS-48C21● a 48C32●	31 / 700	490	1
DF4-33800	ATS-48C41●	33 / 800	490	1
DF4-331000	ATS-48C48● e 48C59●	33 / 1000	900	1
DF4-2331400	ATS-48C66●	2x33 / 1400	1200	1
DF4-441600	ATS-48C79●	44 / 1600	1600	1
DF4-442200	ATS-48M10● e 48M12●	44 / 2200	4100	1

Tampas de proteção dos bornes de potência Para utilizar com os terminais tipo olhal

Para utilizar com o	N° tampas	
LA9-F702	ATS 48C14● e ATS 48C17●	6 (1)
LA9-F703	ATS 48C21●, ATS 48C25● e 48C32●	6 (1)

Os conversores possuem 9 bornes de potência não protegidos.

Substituir ● pelo código da tensão utilizada Q: 220/380 V, Y:220/380/440/690 V

Acessório

Tipo de acessório	Referência
Terminal remoto (para todos os calibres)	VW3G48101

⁽¹⁾ Fusíveis do tipo cartucho até 100 A, do tipo faca até 160 A, e para parafusar diretamente no barramento a partir de 400 A.

Altivar e Altistart

Opcionais

OPCIONAIS DO ALTISTART 48

Para todos os conversores

VW3-G48101 Kit para terminal remoto. Conjunto contendo

1 terminal remoto com as mesmas funções do terminal integrado do ATS48, 1 cabo de 3 m e peças p/fixação do terminal no cofre ou armário.

VW3-A8104 CD-ROM PowerSuite

Software de programação

VW3-A8106 Kit de ligação com PC. Contém cabo de 3 m e um adaptador RS 485/RS 232C

Nota: O ATS 48 possui:

- Controle em conjugado (TCS Torque Control System);
- Detecção de subcarga;
- Detecção de sincronismo, inversão e falta de fases:
- Religamento automático configurável;
- Possibilidade de By-pass com continuidade de supervisão e proteção térmica;
- Ajuste do tempo de partida, de forma linear, até 999 segundos;
- Entradas e saídas configuráveis;
- Comunicação serial: ponto a ponto (RS232) ou multiponto (RS485);
- Partida e Parada, em cascata, de vários motores, sem necessidade de intervalo para resfriamento do semicondutor de potência;
- Possibilidade de colocação do display na porta do armário, com grau de proteção IP65;
- Informações disponíveis no display e na saída analógica:
- corrente do motor;
- conjugado no motor;
 potência ativa:
- fator de potência (cos j);
 potência at
 estado térmico do motor e do soft-start.

REDES DE COMUNICAÇÃO Modbus e CANopen
Acessórios de conevão

Accessorios de conicado	
Designação	Referências
Caixa de derivação para rede CANopen (ATV31)	VW3 CANTAP2
Caixa de derivação Modbus	TSX SCA 50
3 borneiras por parafuso, adaptadores de fim de linha RC,	

Ligar com o cabo VW3 A8 306 D30.

Caixa Modbus TSX SCA 62 2 conectores fêmea tipo SUB-D 15 pinos

e 2 borneiras por parafuso, adaptadores de fim de linha RC

blindado RS 485

Ligar com o cabo VW3 A8 306.

Hub Modbus LU9 GC3

10 conectores tipo RJ45 e 1 borneira por parafuso

Adaptadores Para conector R=120 Ω, C=1nf VW3 A8 306 RC de fim de linha R 145 R=150 Ω VW3 A8 306 R Modbus Para borneira R=120 Ω, C=1nf VW3 A8 306 DRC (1)por parafuso VW3 A8 306 DR R=150 Ω

Tês de derivação Modbus Com cabo integrado de 0,3 m VW3 A8 306 TF03
Com cabo integrado de 1 m VW3 A8 306 TF10

Cabos de ligação	•		
Designação	Comprimento (m)	Conectores	Referências
Cabos para	0,3	2 conectores tipo RJ45	VW3 CAN CA RR03
rede CANopen	10	2 conectores tipo RJ45	VW3 CAN CA RR1
Cabos para rede Modbus	3	1 conector tipo RJ45 e 1 extremidade desencapada	VW3 A8 306 D30
	3	1 conector tipo RJ45 e 1 conector macho tipo SUB-D 15 pinos para TSX SCA 62	VW3 A8 306
Cabos para redes	0,3	2 conectores tipo RJ45	VW3 A8 306 R03
Fipio, Devicenet,	1	2 conectores tipo RJ45	VW3 A8 306 R10
Modbus	3	2 conectores tipo RJ45	VW3 A8 306 R30
Cabos para gateway Profibus LA9 P307	1	2 conectores tipo RJ45	VW3 P07 306 R30
Cabos Modbus	100	Fornecidos sem conector	TSX CSA 100
par duplo	200	Fornecidos sem conector	TSX CSA 200
trançado	500	Fornecidos sem conector	TSX CSA 500

Altivar e Altistart Opcionais

Outras redes de comunicação

	Designação	Cabos a associar			
174-CEV 300 20	Gateway Ethernet/Modbus	VW3 A8 306 D30			
(2)	com 1 porta Ethernet				
	10baseT (tipo RJ45)				
LUF-P1	Gateway Fipio/Modbus	VW3 A8 306 R**			
LUF-P9	Gateway	VW3 A8 306 R••			
	DeviceNet/Modbus				
VX4-G48307CA	Gateway Modbus/Profibus DP	VW3 A8306R			
LUF-P7	Gateway Profibus DP/Modbus	VW3 A8 306 R••			
	Configuração dos parâmetros				
	pelo software ABC Configurator				
	catálogo "Plataforma de automação Premium".				
Software PowerSu					
	Designação				
VW3-A8101	Kit PowerSuite para PC:				
	1 CD-Rom PowerSuite				
	1 kit de conexão para PC.				
VW3-A8104	CD-Rom PowerSuite:				
	1 software p/ PC em francês, inglês, alemão				
	italiano + documentação técnica e software	ABC configurator.			
VW3-A8105	CD-Rom de upgrade PowerSuite:				
	1 software p/ PC em francês, inglês, alemã				
	italiano + documentação técnica e software	ABC configurator.			
VW3-A8106	Kit de conexão para PC:				
	2 cabos de ligação (compr. 3 m) c/2 con. R				
	1 adaptador RJ45/SUB-D 9 pinos para cone				
	1 adaptador RJ 45/SUB-D 9 pinos para cor				
	1 conversor "RS232/RS485 PC" c/1 conect				
	SUB-D fêmea 9 pinos e 1 conector tipo RJ-				
	1 conversor p/ATV/11 c/1 con mache 4 pin	oo o 1 oon D ME			

Tabela de motores

Tabela auxiliar

Corrente com carga nominal dos motores assíncronos

trifásicos de gaiola em 60 Hz.

Valores orientativos. Devem ser verificados com o fabricante do motor

Ten	são		220 V 380 V				440 V				690 V						
kW	CV		-	4		Α			Α			Α					
		2 p	4 p	6р	8р	2 p	4 p	6 p	8 p	2 p	4 p	6 p	8 p	2 p	4 p	6 p	8 p
0,12	0,16	0,76	0,90	0,99	1,15	0,44	0,52	0,57	0,66	0,38	0,45	0,50	0,58	0,24	0,29	0,32	0,37
0,18	0,25	1,04	1,26	1,38	1,96	0,60	0,73	0,80	1,13	0,52	0,63	0,69	0,98	0,33	0,40	0,44	0,62
0,25	0,33	1,30	1,56	1,80	2,30	0,75	0,90	1,04	1,33	0,65	0,78	0,90	1,15	0,41	0,50	0,57	0,73
0,37	0,5	1,70	2,25	2,46	2,50	0,98	1,30	1,42	1,44	0,85	1,13	1,23	1,25	0,54	0,72	0,78	0,80
0,55	0,75	2,40	3,00	3,10	3,30	1,38	1,73	1,79	1,90	1,20	1,50	1,55	1,65	0,77	0,96	0,99	1,05
0,75	1	3,20	3,60	3,70	4,30	1,85	2,08	2,13	2,48	1,60	1,80	1,85	2,15	1,02	1,15	1,18	1,37
1,1	1,5	4,40	4,80	5,50	6,90	2,54	2,77	3,17	3,98	2,20	2,40	2,75	3,45	1,40	1,53	1,75	2,20
1,5	2	5,70	6,90	7,30	7,60	3,29	3,98	4,21	4,39	2,85	3,45	3,65	3,80	1,82	2,20	2,33	2,42
2,2	3	8,59	8,90	10,5	10,6	4,96	5,14	6,06	6,12	4,30	4,45	5,25	5,30	2,74	2,84	3,35	3,38
3	4	10,8	12,1	12,8	13,2	6,23	6,98	7,39	7,62	5,40	6,05	6,40	6,60	3,44	3,86	4,08	4,21
3,7	5	13,6	13,8	15,6	16,0	7,85	7,96	9,00	9,23	6,80	6,90	7,80	8,00	4,34	4,40	4,97	5,10
4,4	6	15,8	16,0	18,4	21,0	9,12	9,23	10,6	12,1	7,90	8,00	9,20	10,5	5,04	5,10	5,87	6,70
5,5	7,5	20,0	20,0	22,0	25,6	11,5	11,5	12,7	14,8	10,0	10,0	11,0	12,8	6,38	6,38	7,01	8,16
7,5	10	25,0	27,0	30,0	36,0	14,4	15,6	17,3	20,8	12,5	13,5	15,0	18,0	7,97	8,61	9,57	11,5
9,2	12,5	30,0	32,0	33,6	34,0	17,3	18,5	19,4	19,6	15,0	16,0	16,8	17,0	9,57	10,2	10,7	10,8
_11	15	36,0	38,0	40,0	41,0	20,8	21,9	23,1	23,7	18,0	19,0	20,0	20,5	11,5	12,1	12,8	13,1
15	20	50,3	52,8	54,4	55,5	29,0	30,5	31,4	32,0	25,2	26,4	27,2	27,8	16,0	16,8	17,3	17,7
18,5	25	58,0	63,0	60,0	68,0	33,5	36,4	34,6	39,2	29,0	31,5	30,0	34,0	18,5	20,1	19,1	21,7
22	30	70,0	74,0	73,0	78,0	40,4	42,7	42,1	45,0	35,0	37,0	36,5	39,0	22,3	23,3	23,6	24,9
30	40 50	97,0 121	100	98,0 127	100 126	56,0	57,7	56,5	57,7	48,5	50,0	49,0	50,0	30,9	31,9	31,2	31,9 40.2
45	60	140	145	145	156	69,8 80,8	71,0 83.7	73,3 83,7	72,7 90.0	60,5 70.0	61,5	63,5	63,0	38,6	39,2 46.2	40,5 46.2	49.7
55	75	174	175	185	193	100	101	107	111	87,0	72,5 87,5	72,5 92,5	78,0 96,5	44,6 55,5	55,8	59,0	61.5
75	100	228	240	248	264	132	138	143	152	114	120	124	132	72.7	76.5	79.1	84.2
90	125	300	302	308	330	173	174	178	190	150	151	154	165	95.7	96,3	98.2	105
110	150	355	354	382	395	205	204	220	228	178	177	191	198	113	113	122	126
132	175	418	424	440	456	241	245	254	263	209	212	220	228	133	135	140	145
150	200	460	470	500	526	265	271	289	304	230	235	250	263	147	150	159	168
160	220	491	501	533	561	283	289	308	324	245	251	267	281	156	160	170	179
185	250	580	580	644	646	335	335	372	373	290	290	322	323	185	185	205	206
200	270	610	630	670	705	352	364	387	407	305	315	335	340	194	201	214	217
220	300	662	698	756	768	382	403	436	443	331	349	378	384	211	223	241	245
250	330	752	793	859	873	434	458	496	504	376	397	430	436	240	253	274	278
260	350	780	808	901	910	450	466	520	525	390	404	451	455	249	258	287	290
280	375	840	870	970	980	485	502	560	565	420	435	485	490	268	277	309	312
300	400	915	948	1.000	1.010	524	547	577	607	472	493	510	523	289	302	319	327
315	420	961	995	1.050	1.060	550	574	606	637	496	518	536	549	304	317	335	343
330	450	1.004	1.040	1.110	1.121	575	600	640	674	532	555	568	588	318	332	354	366
370	500	1.126	1.166	1.276	1.289	666	673	736	775	612	618	638	655	368	372	407	418
400	540	1.217	1.261	1.379	1.393	720	727	796	837	662	668	690	708	398	402	440	452
450	600	-	-	-	-	794	801	827	870	688	694	717	736	439	443	457	469
500	700	-	-	-	-	871	889	919	966	755	770	796	818	481	491	508	522
560	750	-	-	-	-	976	992	1.029	1.083	846	860	892	913	539	548	569	582
630	850	-	-	-	-	1.097	1.115	1.144	1.203	951	966	991	1.014	606	616	632	647
670	910	-		-	-	1.190	1.200	1.231	1.274	1.148	1.159	1.189	1.231	733	739	758	785
800	1.100	-	-	-	-	1.469	1.553	1.532	1.637	1.273	1.345	1.327	1.418	812	826	840	865

Obs.: Para a escolha das referências dos Altivar 21, 61, 71 e Lexium 05, consultar os catálogos específicos de cada linha.

Detecção

Índice

Ga	nai	rali	da	des

1	Tipos de detecção	5/4
2	Detecção eletromecânica	5/5
3	Detecção eletrônica indutiva	5/8
4	Detecção eletrônica capacitiva	5/11
5	Detecção eletrônica fotoelétrica	5/12
6	Escolha de tecnologias	5/16
7	Segurança industrial	5/18
8	Transmissores de pressão e pressostatos para circuitos de controle	5/23
9	Detecção ultra-sônica	5/28
10	Detecção por encoder	5/29
11	Detecção por RFID	5/30

	Produtos	
12	OSISWITCH Interruptores de posição/fim de curso XCKM/J Corpo Metálico XCKP/S Corpo Plástico XCK Composição	5/31
13	OSISPROX Sensores de proximidade indutivos XS Cilíndricos XS9 Controle de rotação XSA-V Controle de rotação XS Retangular	5/38
14	OSIRIS Sensores fotoelétricos	5/42
15	NAUTILUS Transmissores de pressão e pressostatos XMLA/B Pressostatos XML-E Transmissores de pressão Acessórios XML-F Transmissores de pressão com display	5/47
16	OSISONIC Sensores ultrassônicos – XX	5/52
17	OSICODER Encoders incrementais e absolutos	5/54
18	OSITRACK Sensores de RFID	5/56
19	Elementos de segurança Controle de desalinhamento e parada de emergência por cabo Interruptores de posição de segurança Controlador Programável de Segurança - Aplicação Global Cortina de Luz - Aplicação Global	5/58

1 Tipos de detecção

A aquisição de dados integra o conjunto de equipamentos ou componentes que fornecem as informações sobre o estado de um produto, de uma máquina ou de uma instalação.

Estes equipamentos podem detectar mais de um estado, o controle de um nível, a posição de um objeto ou apenas identificá-lo de acordo com suas características.

Todas estas funções denominamos genericamente de detecção. Segundo sua tecnologia, os componentes de detecção podem ser:

Eletromecânicos

Sua principal característica é o contato físico com o objeto a detectar. Os elementos que realizam o contato físico estão submetidos a desgastes mecânicos. Durante sua escolha, deve-se considerar as funções necessárias para a correta aplicação.

Eletrônicos

Sua característica é a ausência de contato físico com o objeto a detectar. Não há partes mecânicas expostas ao desgaste.

Schneider

Detecção eletromecânica

Os interruptores de posição ou fins de curso estão presentes em todas as instalações automatizadas.

Transmitem ao sistema de tratamento de dados as informações de presença/ ausência, de passagem, de posicionamento e fim do curso.

São dispositivos de uma grande simplicidade de colocação em funcionamento que oferecem os seguintes benefícios:

- Do ponto de vista elétrico:
- uma separação galvânica dos circuitos,
- uma boa capacidade de comutar baixas cargas (conforme o modelo), aliada a uma elevada vida útil elétrica.
- uma boa resistência a curtos-circuitos em coordenação com fusíveis apropriados,
- uma imunidade total aos parasitas eletrônicos.
- uma tensão de emprego elevada.
- Do ponto de vista mecânico:
- uma manobra positiva de abertura dos contatos,
- resistente aos diversos ambientes industriais.
- fidelidade até 0,01 mm nas cotas de acionamento.
- mais de 40 milhões de ciclos de manobra.

Constituição de um interruptor ou posição/fim de curso

Um fim de curso é composto por três partes

bem definidas.

Corpo Plástico

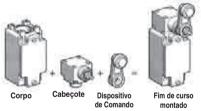
Metálico

Cabeçote Do movimento retilíneo

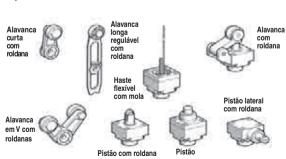
Do movimento angular

Multidirecional

Dispositivo Pistão


Pistão com roldana

Alavanca com roldana Alavanca fixa ou regulável


Haste rígida Haste flexível

Composição

de comando

Dispositivos de comando mais utilizados

Categorias de emprego

A corrente térmica (Ith) permitida pelo microcontato é de 10 A. Aciona geralmente pequenas cargas, como bobinas, resistências, em corrente contínua e corrente alternada.

É necessário certificar-se da categoria de emprego e da capacidade dos contatos para obter um correto funcionamento.

Terminologias

Repouso

Curso de chegada

Manobra positiva de abertura

Um interruptor de posição ou fim de curso possui manobra positiva de abertura quando todos os seus elementos de contato NF podem ser levados com certeza à posição aberta (sem nenhuma ligação elástica entre os contatos móveis e o dispositivo de acionamento no qual o esforço de acionamento é aplicado).

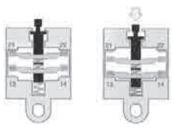
Todos os interruptores de posição/fins de curso são equipados com um bloco de contatos à ação brusca "NA + NF", ou de um bloco de contatos à ação dependente, com manobra positiva de abertura, e em total conformidade à norma IFC 60947-5-1.

Contatos de ação brusca

Mudança dos contatos

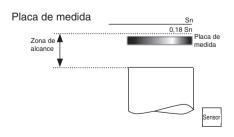
A velocidade de deslocamento dos contatos móveis independe da velocidade do dispositivo de comando. Essa particularidade permite obter performances elétricas satisfatórias, mesmo em casos de baixa velocidade do dispositivo de comando. Esse tipo de contato é caracterizado por pontos de acionamento e de desligamento não coincidentes (curso diferencial).

Contatos de ação dependente



Manobra positiva

A velocidade de deslocamento dos contatos móveis é igual ou proporcional à velocidade do dispositivo de comando, que não deve ser inferior ou igual a 0,001 m/s.


A distância de abertura é igualmente dependente do curso do dispositivo de comando.

Esse tipo de contato é caracterizado por pontos de acionamento e de desligamento coincidentes.

3 Detecção eletrônica indutiva

De acordo com as características do modelo escolhido, vai se obter um sinal de saída determinante através de um contato NA, NF ou NA+NF. Um sensor indutivo é composto essencialmente de um oscilador cuja bobina constitui a parte sensível do mesmo. Portanto, cria um campo magnético alternado. Quando se posiciona um objeto metálico neste campo, as correntes induzidas geram uma carga adicional que provoca a parada das oscilações.

Funcionamento

Na prática, as peças detectadas são metálicas de dimensões equivalentes à face sensora do dispositivo.

Para obter uma detecção segura é preciso certificar-se de que a peça detectada, passe a uma distância inferior ou igual aos valores indicados nas especificações técnicas do dispositivo escolhido.

Sinal de saída

Tipo 2 fios: Os aparelhos são alimentados em série com a carga a controlar.

Portanto, estão submetidos à:

- Uma corrente de fuga (em estado aberto)
- Uma tensão residual (em estado fechado)
 Tipo 3 fios: Os aparelhos são constituídos de:
- 2 fios para a alimentação + e -.
- 1 fio para a transmissão do sinal de saída.

Distância sensora nominal Sn

É o alcance convencional utilizado na designação do aparelho e que figura nos catálogos dos fabricantes. Não leva em conta as dispersões (fabricação, temperatura ambiente, tensão de alimentação).

Distância sensora Sr

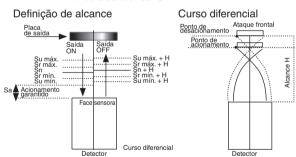
Sr - é o alcance efetivo medido sob tensão nominal à temperatura ambiente nominal Tn. Deve estar compreendido entre 90% e 110% da distância sensora nominal Sn do detector. $0.9 \text{ Sr} \le \text{Su} \le 1 \text{ Sr}$

Distância sensora útil Su

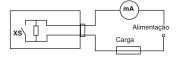
Su - é o alcance útil medido dentro dos limites admissíveis da temperatura ambiente Ta e da tensão de alimentação Un. Deve estar compreendida entre 90 e 100% da distância sensora real Sr. 0,9 Sr ≤ Su ≤ 1 Sr

Distância sensora trabalho Sa

Sa - é o alcance de trabalho compreendido entre 0 e 81% da distância sensora nominal Sn. É o campo de funcionamento do aparelho correspondente ao espaço, na qual a detecção da placa de medição é garantida, sejam quais forem as dispersões de tensão ou de temperatura. $0 \le Sa \le 0.9 \times 0.9 \times Sn$

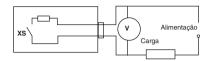

Correções típicas do alcance (curso diferencial)

Numa máquina, a trajetória da peça a detectar nunca é completamente uniforme por causa das vibrações ou das folgas. Um nível único de atuação e desativação poderia, portanto, dar origem a vibrações na saída, principalmente quando o deslocamento da peça a detectar é lento. Para evitar este inconveniente, a maior parte dos detectores tem um curso diferencial, que permite obter uma comutação correta da saída.


O curso diferencial (ou histerese) H é a distância medida entre ponto de atuação quando a placa de medição se aproxima do detector e o ponto de desativação quando a placa se afasta. Exprime-se em % da distância sensora real Sr.

Reprodutibilidade (R)

A reprodutibilidade (ou fidelidade) R é a precisão de reprodução entre duas medições do alcance útil a intervalos de tempo, de temperatura e de tensão especificados, ou seja: 8h, 10 a 30°C, Un+/- 5%. Exprime-se em % do alcance real Sr.

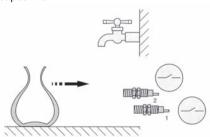


Corrente de fuga Ir: É um valor de corrente que atravessa o sensor no estado bloqueado (não passante). Característica própria dos sensores com ligação a dois fios.

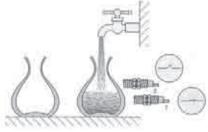
Tensão residual Ud:

É o valor de tensão nos bornes do sensor no estado passante. Este valor é medido pela corrente nominal do sensor. Características próprias de sensores com ligação a dois fios.

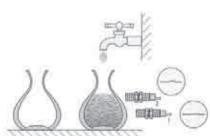
Detecção eletrônica capacitiva



É composta basicamente de um oscilador, cujos capacitores constituem a face sensível. O oscilador gera um campo elétrico circular nos arredores do detector.


A vantagem dos sensores capacitivos é que podem detectar objetos condutores e não condutores como: líquidos, vidro, madeira, plástico e outros elementos. Seu principal inconveniente é que são dispositivos demasiadamente sensíveis

Exemplo de aplicação: Detecção eletrônica capacitiva.


(1) As garrafas ao lado são transportadas por uma esteira para serem enchidas. Os sensores 1 (para material isolante) e 2 (para material condutor), estão em estado desativado.

(2) Quando a garrafa entra na zona de detecção do sensor 1, a operação de enchimento se inicia. Sensor 2 permanece desativado

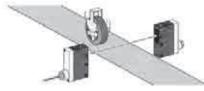
(3) O sensor 2 detecta que o nível requerido foi alcançado e o enchimento se finaliza.

5 Detecção eletrônica fotoelétrica

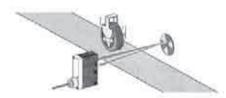
Quando um objeto atravessa a luz que emitida pelo emissor e altera a quantidade de luz recebida pelo receptor, será produzido uma troca do sinal na saída.

Um sensor fotoelétrico é composto basicamente de um emissor de luz (diodo eletroluminescente), associado a um receptor (fototransmissor), sensível à quantidade de luz recebida.

Sistemas de detecção:

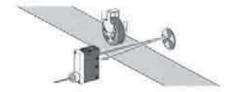

- barreira reflex
- proximidade reflex polarizado
- proximidade com isolamento do plano de fundo.

Por bloqueio de luz emitida

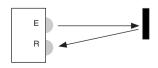


3 tipos diferentes de sistemas de detecção de acordo com as requisições do usuário:

Sistema barreira (emissor + receptor). Alcance até 60 metros (100 m para laser), detecção precisa e confiável indicada para lugares difíceis.

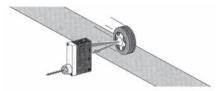


Sistema reflex (emissor/receptor + refletor) instalação sensível, alcance: até 20 metros.

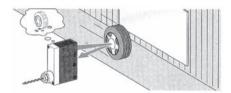


Sistema reflex polarizado

(emissor/receptor de feixe polarizado + refletor) Detecção de objetos brilhantes, instalação sensível, alcance: até 15 metros.



Por reenvio de luz emitida


O emissor e o receptor se encontram no mesmo produto e a reflexão do feixe é produzida sobre o objeto a detectar

Sistema de proximidade (emissor/receptor) Detecção direta de objetos altamente refletivos, com alcance de até 3 m.

Sistema de proximidade com isolamento de plano de fundo (emissor/receptor).

Detecção direta de um objeto, qualquer que seja a sua cor, ignorando seu plano de fundo. Alcance: até 1.5 m.

Terminologia

Distância sensora nominal Sn

É a distância máxima entre o emissor e o receptor, refletor ou objeto, incluindo uma margem de segurança. É o alcance indicado nos catálogos e que serve como referência de comparação entre os diversos aparelhos.

Distância de trabalho Sa

É a distância que garante uma confiabilidade de detecção máxima, tendo em conta os fatores do ambiente (poeiras, fumaças etc) e uma margem de segurança. Para todos os casos: Sa ≤ Sn.

Retardo à disponibilidade R

É o tempo necessário para que a saída assuma o seu estado "fechado" ou "aberto" após sua colocação sobre uma tensão.

Retardo ao acionamento Ra

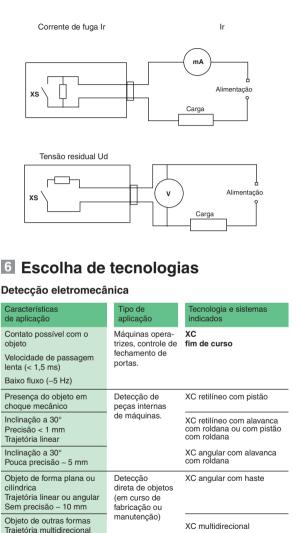
É o tempo que decorre entre o momento em que o objeto penetra na zona ativa do feixe luminoso e o momento em que a saída muda de estado. Condiciona a velocidade de passagem do objeto em função das suas dimensões.

Retardo ao desligamento Rd

É o tempo entre a saída do objeto da zona ativa do feixe e o momento em que a saída retoma o seu estado inicial. Condiciona o intervalo a respeitar entre dois alvos.

Frequência de comutação

É o número máximo de objetos que o sistema é capaz de detectar por unidade de tempo, levando em conta os retardos Ra e Td. Exprime-se geralmente em Hz.


Equivalência elétrica

Os sensores foloelétricos são disponíveis:

- em tecnologia 2 fios com saída estática. Os sensores tipo 2 fios são alimentados em série com a carga a comandar,
- em tecnología 3 fios com saída estática PNP (carga ligada ao potencial negativo), ou NPN (carga ligada ao potencial positivo). Estes sensores são protegidos contra inversão da alimentação, sobrecargas e curtos-circuitos da carga,
- em tecnologia a 5 fios com saída a relé (1 contato inversor NA/NF). Estes sensores têm isolamento galvânico entre a tensão de alimentação e o sinal de saída.

Corrente residual Ir (detector tipo 2 fios) É a corrente que atravessa o sensor no estado "aberto".

Tensão Residual Ur (detector tipo 2 fios) É a tensão nos terminais do sensor no estado "fechado".

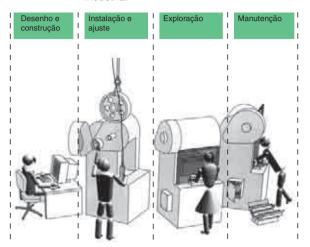
Precisão > 10 mm

Detecção indutiva

Detecção sem contato com o objeto Somente objeto metálico Cadência elevada		XS Sensores indutivos
Distância sensor/objeto de 0 a 20 mm	Detecção de peças internas das máquinas	XS cilíndrico
Distância sensor/objeto de 0 a 60 mm		XS retangular

Detecção canacitiva

Detecção capacitiva		
Características de aplicação	Tipo de aplicação	Tecnologia e sistemas indicados
Detecção sem contato com objeto		XT Sensores capacitivos
Distância sensor/objeto de 2 a 15 mm	Detecção de objetos não condutores: vidro, madeira, plástico	XT1 XT7
Distancia sensor/objeto de 8 a 20 mm	Detecção de líquidos	XT2


de 8 a 20 mm	líquidos	XIZ				
Detecção fotoelétrica						
Características de aplicação	Tipo de aplicação	Tecnologia e sistemas indicados				
Detecção sem contato com o objeto Detecção de uma grande variedade de objetos Cadência elevada		XU Sensores fotoelétricos				
Objeto não transparente Grande precisão Alcance elevado (até 100 m)	Detecção direta de objetos (caixa, paleta, etc.)	XU Barreira				
Objeto não transparente e não brilh. Precisão Ambiente "limpo" Alcance até 15 m	Detecção de pes- soas, de veículos Detecção vinculada com a manutenção (carro, vagão, etc.)	XU Reflex				
Objeto não transparente e brilhante Alcance até 10 m	(ours, ragas, oter)	XU Reflex polarizado				
Objetos transparentes Alta precisão ambiente limpo	Garrafas translúcidas, PET	XU Reflex para material transparente				
Objeto com capacidade de reflexão suficiente Alcance curto (até 2 m de acordo com a cor do objeto) Ambiente limpo		XU Proximidade				
Objeto com capacidade de reflexão suficiente e presença de plano de fundo com alto índice de reflexão		XU Proximidade com supressão do plano de fundo				
Alcance não depende da cor do objeto até 2 m Objeto muito pequeno Espaço disponível reduzido (de mm a cm) Alta precisão (< mm)	Detecção direta de objetos ou peças de máquina	XU Fibras óticas ou cabeças óticas com amplificador separado				

Segurança Industrial

A segurança do funcionamento

A segurança do funcionamento é um conceito global que abrange a todas as alternativas e ambientes presentes na indústria

A segurança implica dois conceitos fundamentais:

Segurança

A segurança é caracterizada pela capacidade de um dispositivo de limitar. até níveis aceitáveis, o risco em que estão expostas as pessoas, as máquinas e o ambiente

Disponibilidade

A disponibilidade é caracterizada pela capacidade do dispositivo em assegurar sua função em um dado momento ou durante um período determinado (confiabilidade, manutenção).

Interruptores de segurança - Generalidades

Resumo das normas EN 292-2 e EN 1088

Os protetores móveis contra riscos provocados por elementos perigosos (móveis) devem ser associados a dispositivos de travamento ou de intertravamento.

Caso onde é necessário um dispositivo de intertravamento: máquinas com inércia. Um dispositivo de intertravamento deve ser utilizado quando o tempo de parada for superior ao tempo necessário para que uma pessoa atinja a área perigosa.

Este dispositivo garante um destravamento diferenciado do protetor móvel, quando o movimento perigoso for efetivamente interrompido.

Interruptores de segurança

Os interruptores de segurança com chave oferecem uma solução bem adaptada para o travamento ou o intertravamento de protetores móveis nas máquinas industriais e respondem às exigências das normas EN 292, IC/EN 60204-1, EN 1088 e IEC/EN 60204-1.

Contribuem para a proteção dos operadores, pois intervêm nas máquinas perigosas, abrindo o circuito de comando de colocação em funcionamento após a abertura de um protetor, por acionamento positivo, isto é, interrompendo o movimento perigoso da máquina.

A interrrupção do movimento perigoso e, então, a abertura do protetor móvel pode ser:

- imediata, nas máquinas sem inércia (máquinas cujo tempo de parada seja inferior ao tempo de acesso à área perigosa)
- diferenciada, nas máquinas com inércia (máquinas cujo tempo de parada seja superior ao tempo de acesso à área perigosa).

Categoria dos circuitos de comando

Associados a um módulo de segurança PREVENTA, as chaves de segurança constituem um circuito de comando de categoria 4, segundo EN 954-1.
Utilizadas sozinhas ou empregadas em modo combinado com outro interruptor de posição, constituem um circuito de comando de categoria 1, 2 ou 3 (contatos que permitem uma redundância total).

Seguranca das pessoas

O circuito que autoriza a partida, somente será fechado após a introdução total da chave e, a retirada desta provocará a abertura dos contatos "NF" por acionamento positivo.

Segurança de funcionamento

Os interruptores de segurança são equipados com contatos à ação dependente e manobra positiva de abertura. No fechamento do protetor, a chave entra no cabeçote do interruptor, aciona o dispositivo de travamento múltiplo e permite o fechamento dos contatos "NF".

Segurança de operação

O dispositivo de segurança foi projetado para permitir uma folga da chave de alguns milímetros, obtendo assim um bom grau de insensibilidade aos distúrbios mecânicos parasitas.

Inviolabilidade

Os interruptores de segurança foram concebidos para serem operados por chaves previstas para este fim, excluindo qualquer outro meio (ferramentas comuns, hastes ou placas metálicas etc).

Na desmontagem dos parafusos de fixação para orientação do cabeçote, este permanecerá ligado ao corpo do produto, não havendo repercussão no estado dos contatos, que permanece imutável.

Um nível superior de proteção contra fraude pode ser obtido, por exemplo, por:
- uma associação embutida do invólucro que impeça a introdução de uma chave de substituição.

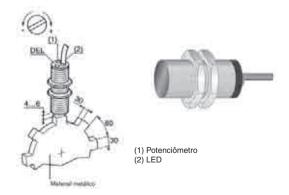
Detector de controle de rotação

Os sensores para controle de rotação permitem comparar a freqüência dos impulsos emitida por um objeto móvel a uma freqüência regulável pelo potenciômetro no sensor. Possui a particularidade de reunir em um mesmo invólucro as funções de aquisição de dados juntamente com a função de comparação de pulsos, permitindo assim a realização do controle integrado de rotação.

Econômicos, estes dispositivos são a solução para a realização de controle de deslocamento, ou problemas de acoplamentos de esteiras, com sobrecarga nas seguintes aplicações: Esteiras transportadoras, elevadores de carga, trituradores, moedores, bombas centrífugas e misturadores.

Princípio de funcionamento

O sinal de saída deste tipo de dispositivo é tratado por um comparador de pulsos integrado ao dispositivo. A freqüência dos pulsos Fc emitida pelo dispositivo a controlar, é comparada com a freqüência Fr pré-ajustada no dispositivo de controle. O circuito de comutação da saída do dispositivo de controle está desligado para Fc>Fr e em estado ligado para Fc<Fr. Os sensores XSA-V são especialmente adaptados para a detecção de baixa velocidade; um dispositivo controla os pulsos Fc inferior ao limite pré-ajustado Fr. A ocorrência de um problema com a referência provoca a abertura do dispositivo de saída abrindo o circuito.


Nota: o controle de rotação deve efetivarse em 9 segundos após a colocação da alimentação do dispositivo do controle, sob tensão, com a finalidade de permitir que o dispositivo a controlar alcance sua velocidade nominal.

Durante este tempo a saída permanecerá em estado desligado.

Ajuste do limite de freqüência do dispostivo de controle

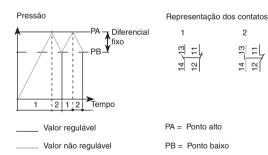
É com 15 voltas aproximadamente em um potenciômetro ou através de um botão de aprendizado.

Ajustes

8 Pressostatos e vacuostatos eletromecânicos

Transmissores de pressão e pressostatos para circuitos de controle

Função


Os pressostatos e os vacuostatos têm por função controlar ou regular uma pressão num circuito hidráulico ou pneumático. Eles transformam uma mudança de pressão em sinal elétrico "Tudo ou Nada" quando os pontos de referência fixados forem atingidos.

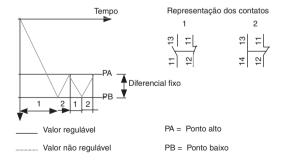
■ Produtos para circuitos auxiliares Com contatos elétricos padrão, são destinados a comandar bobinas de contatores, relés, eletroválvulas, entrada de controladores programáveis, etc.

Princípio de funcionamento de um pressostato

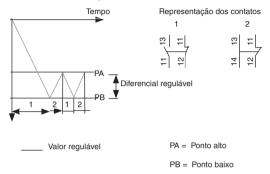
Controle de um nível

Os produtos para controle de um nível (tipo XML-A) têm somente um ponto de referência regulável (PA).

Regulagem entre 2 níveis


Os produtos para a regulagem entre 2 níveis (tipo XML-B) têm os pontos de referência alto (PA) e baixo (PB) reguláveis independentemente.

Princípio de funcionamento de um vacuostato


Controle de um nível

Os produtos para controle de um nível (tipo XML-A) têm um ponto de referência regulável (PA).

Regulagem entre 2 níveis

Os produtos para a regulagem entre 2 níveis (tipo XML-B) têm os pontos de referência alto (PA) e baixo (PB) reguláveis independentemente.

Terminologia

Faixa de regulagem

É o intervalo definido pelo valor mínimo do ponto baixo (PB) e o valor máximo do ponto alto (PA).

Calibre

- Pressostatos
 - Valor máximo da faixa de regulagem.
- Vacuostatos
 Valor mínimo da faixa de regulagem.

■ Ponto alto de regulagem (PA)

□ Pressostatos

É o valor da pressão máxima escolhida e regulada no pressostato, no qual o contato mudará de estado quando da pressão ascendente.

□ Vacuostatos

É o valor da pressão negativa mínima escolhida e regulada no vacuostato, no qual o contato retornará à sua posição de origem quando da pressão ascendente.

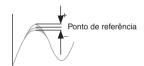
Ponto de baixo de regulagem (PB)

É o valor da pressão para o qual a saída do produto mudará de estado, quando a pressão estiver descendente.

☐ Produtos com diferencial fixo (tipo XML-A)

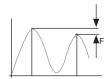
O ponto baixo (PB) é diretamente ligado ao ponto alto (PA) pelo diferencial.

☐ Produtos com diferencial regulável (tipo XML-B)

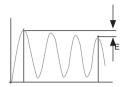

A regulagem do diferencial permite fixar o ponto baixo (PB).

Diferencial

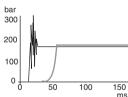
É a diferença entre o ponto de referência alto (PA) e o ponto de referência baixo (PB).


■ Precisão da visualização do ponto de referência

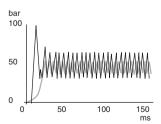
É a tolerância entre o valor visualizado da referência e o valor real da ativação do contato. Para um ponto de referência preciso (1ª instalação do produto), utilizar a referência de um dispositivo de calibração (manômetro, etc.).


Fidelidade (F)

É a variação do ponto de funcionamento entre duas manobras sucessivas (exemplo em % do valor da referência).


Erro (E)

É a variação do ponto de funcionamento sobre todo o tempo de vida do produto.



Golpe de aríete

É uma sobrepressão acidental de curtíssima duração (alguns milissegundos). Se o tempo de sobrepressão acidental for inferior a 50 milissegundos, o dispositivo de limitação de pressão do fluido, que é incorporado aos pressostatos XML de calibre superior a 10 bars, permite diminuir estes efeitos.

Exemplo1: com pico de pressão destrutiva

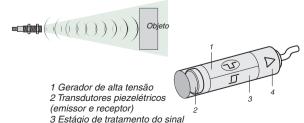
Exemplo:2 com pico de pressão destrutiva

sem dispositivo de limitação de pressão

com dispositivio de limitação de pressão

9 Detecção ultra-sônica

Princípio de funcionamento


Os sensores ultra-sônicos permitem detectar, sem contato, qualquer objeto independentemente:

- do material (metal, plástico, madeira, papelão...)
- da natureza (sólido, líquido, pó...)
- da cor
- do grau de transparência

O princípio de detecção por ultra-som se baseia na medida do tempo transcorrido entre a emissão de uma onda ultra-sônica (onda de pressão) e a recepção de seu eco (retorno da onda emitida).

Vantagens da detecção ultra-sônica

- Sem contato físico com o objeto, portanto sem desgaste e possibilidade de detectar objetos frágeis, com pintura fresca.
- Detecção de qualquer material, independentemente da cor, com o mesmo alcance, sem ajuste e nem fator de correção.
- Função de aprendizagem apenas pressionando um botão pulsante, para definir o campo de detecção efetivo. Aprendizagem do alcance mínimo e máximo.
- Excelente resistência em ambientes industriais (produtos completamente encapsulados por resina).
- Dispositivos estáticos: sem peças em movimento dentro do sensor, portanto de vida útil independente do número de ciclos de manobras.

4 Estágio de saída

10 Detecção por encoder

Princípio de funcionamento

O encoder rotativo optoeletrônico é um captador angular de posição. Seu eixo, conectado mecanicamente à árvore da máquina que o arrasta, faz girar um disco com uma sucessão de zonas opacas e transparentes.

A luz emitida por diodos eletroluminescentes chega a um dos fotodiodos cada vez que atravessa as zonas transparentes do disco. Então os diodos geram um sinal elétrico que é amplificado e é convertido em sinal quadrado, antes de ser transmitido a uma unidade de tratamento ou variador de velocidade eletrônico. A saída elétrica do codificador representa, de forma numérica, a posição angular do eixo de entrada.

Aplicações

Devido ao aumento da potência dos sistemas de tratamento bem como dos imperativos de produtividade, em todos os âmbitos da produção industrial, a necessidade de informação é contínua com relação à:

- Contagem, o posicionamento por contagem
- Posicionamento absoluto
- Controle de velocidade

Escolha do encoder

É necessário definir sete características:

- 1 Função
- 2 Diâmetro da caixa
- 3 Diâmetro do eixo
- 4 Tipo de eixo
- 5 Tipo de conexão
- 6 Resolução (é o número de pontos por giro ou número de giros)
- 7 Tipo de saída

Detecção por RFID

Princípio de funcionamento

O RFID (Radio Frequency Identification) é um termo geralmente utilizado para sistemas de identificação por radiofreguência. Estas frequências geralmente variam entre 50 kHz e 2.5 GHz. A mais utilizada é 13.56 Mhz.

O sistema de identificação Ositrack RFID possibilita o rastreamento de obietos, funções de identificação associadas e controle de acesso.

A informação é armazenada em uma memória acessível utilizando um simples link de radiofregüência. Esta memória está na forma de uma etiqueta eletrônica, que contém uma antena e um circuito integrado.

A etiqueta contém a informação associada com o objeto ao qual está fixada.

Quando a etiqueta passa através de um campo gerado pelo leitor / estação, ele detecta o sinal e efetua uma troca de informações (leitura ou escrita) entre a sua memória e o leitor / estação. As aplicações são numerosas:

- Logística: despacho, recebimento, trânsito etc
- Rastreamento e triagem de bagagens
- Pedágio automático
- Controle de acesso etc

O sistema Ositrack RFID também é adequado para operação em ambientes agressivos (umidade, temperatura, choque mecânico, vibrações, poeira...).

Descrição

Estações compactas Ositrack 13,56 MHz

As estações XGC S possibilitam a leitura e escrita de etiquetas em 13,56 MHz em conformidade às normas ISO 15693 e ISO 14443 A e B.

Estão disponíveis dois modelos de estações:

- Estação compacta formato C: estação XGC S490 ***:
- □ Dimensões (mm): 40 x 40 x 15
- □ Distância sensora nominal: 18 a 70 mm. dependendo da etiqueta associada
- Estação compacta formato D: estação XGC S890 ***:
- □ Dimensões (mm): 80 x 80 x 26
- □ Distância sensora nominal: 20 a 100 mm, dependendo da etiqueta associada.

XCK-P/S Osiswitch

Interruptores de posição/fins de curso Corpo metálico

XCK-M110

XCK-M 1NA + 1NF

3 entradas de cabos rosqueados para prensa-cabo PG11

largura x altura x profundidade: 63x64x30 mm Funcionamento dos contatos: ação brusca, contato "NF" com manobra positiva de abertura, proteção IP 66.

Características	Referências
- pistão metálico	XCK-M110
- pistão com roldana em aço	XCK-M102
- haste flexível com mola	XCK-M106
- alavanca c/ roldana em termopl.	
(2 sentidos de ataque lateral)	XCK-M115
- pistão com roldana em termo-	
plástico (1 sentido de ataque)	XCK-M121
•	

Aplicações: Indústrias em geral, máguinas de fabricação e de oficinas, transporte e máquinas de embalagem.

XCK-J 1NA + 1NF

Corpo fixo ou desconectável

1 entrada de cabo rosqueada para prensa-cabo PG13.5

Largura x altura x profundidade:

40 x 77 x 44 mm.

Funcionamento dos contatos: acão brusca. contato "NF" com manobra positiva de abertura. proteção IP66.

Características	Referências
- pistão metálico	XCK-J161
 pistão com roldana em aço 	XCK-J167

- pistão com roldana em aço

- alavanca c/ roldana em termopl. XCK-J10511 XCK-J10513

- alavanca c/ roldana em aço - alavanca de comprimento variá-

vel c/ roldana em termoplástico

 haste redonda Ø6mm poliamida L = 200 mm

XCK-J10541 XCK-J10559

Aplicações: Máquinas-ferramentas, máquinas de precisão, máquinas industriais para produção contínua.

XCK-M/J Osiswitch

Interruptores de posição/fins de curso Corpo plástico duplo isolamento

XCK-P 1NA + 1NF

1 entrada de cabo rosqueada para prensa-cabos PG11

Largura x altura x profundidade: 31x65x30 mm. Funcionamento dos contatos: ação brusca, contato "NF" com manobra positiva de abertura, proteção IP 66 e 67.

XCK-P2118G11

Características	Referências
-pistão metálico	XCKP2110G11
-pistão c/ alavanca em aço	XCKP2102G11
-pistão c/ roldana em	
termopl. (1 sentido de ataque)	XCKP2121G11
-alavanca c/ rold. em termopl.	XCKP2118G11
-alavanca do comp/ variável c/	
roldana em termopl.	XCKP2145G11
-alavanca com rold. de	
borracha Ø50 mm	XCKP2139G11
-haste flexível com mola	XCKP2106G11

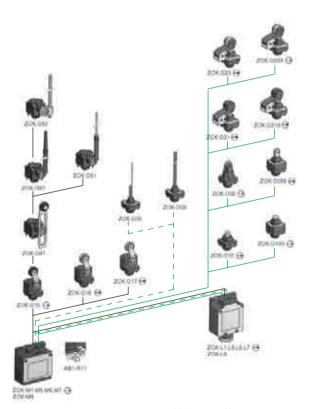
Aplicações: Máquinas para indústrias, pequenas aplicações na indústria alimentícia, instal. e máq. agrícolas.

Obs.: Para versão metálica, substituir "P" por "D" Exemplo: XCKP2110G11 forma-se XCKD2110G11

XCK-S 1NA + 1NF

1 entrada de cabo rosqueada M20 ou 1/2" NPT para prensa-cabos PG 13,5 Largura, altura, profundidade: 40x72.5x36 mm. Funcionamento dos contatos: ação brusca

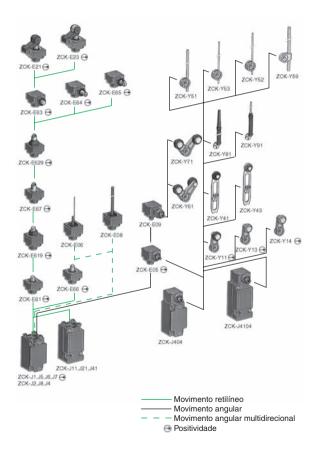
Funcionamento dos contatos: ação brusca, contato "NF" com manobra positiva de abertura, proteção IP 65.


XCK-S101

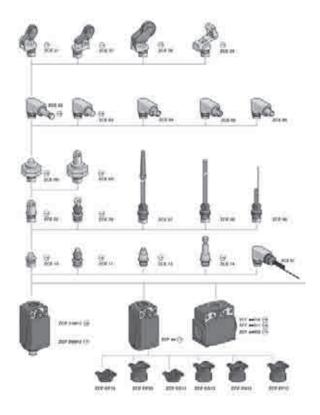
h	
Características	Referências
-pistão metálico	XCK-S101
-pistão com roldana em aço	XCK-S102
-alavanca c/rold. em termopl.	XCK-S131
-alavanca de compr. variável	XCK-S141
com roldana em termoplástico	
-alav. c/rold. borracha Ø 50 mm	XCK-S139
-haste redon. Ø6 mm pol. L = 200 mm	XCK-S159

Aplicações: Máquinas operatrizes. Indústria agroalimentícia, componentes e dispositivos de elevação e manutenção etc.

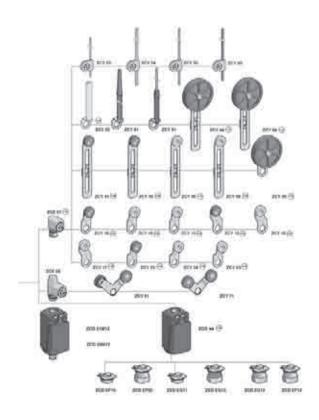
XCK-M Osiswitch


Interruptores de posição/fins de curso Composição

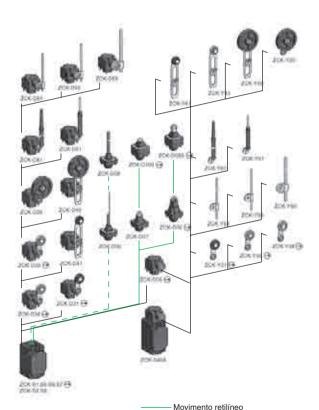
- Movimento retilíneo - Movimento angular
- Movimento angular multidirecional
 - Positividade


XCK-J Osiswitch

Interruptores de posição/fins de curso Composição


XCK D, XCK P e XCK T Osiswitch

Interruptores de posição/fins de curso Composição


XCK D, XCK P e XCK T Osiswitch

Interruptores de posição/fins de curso Composição

XCK S Osiswitch

Interruptores de posição/fins de curso Composição

- Movimento angular

Positividade

Movimento angular multidirecional

Sensores indutivos Optimum metálico - embutível

Tubular M12

Conexão: cabo L = 2 m ou conector M12		
Característica	Sn (mm)	Referências
Vcc - 3 fios PNP NA	(2) 2	XS512B1PAL2 (1)
Vcc - 3 fios NPN NA	(2) 2	XS512B1NAL2 (1)
Vcc - 2 fios NA	2	XS512B1DAL2 (1)
Vcc - 2 fios NF	2	XS512B1DBL2 (1)
Vca - 2 fios NA	2	XS112BLFAL2 (3)
Vcc - 3 fios PNP NA	2	XS112BLPAL2 (1)
Vcc - 3 fios NPN NA	2	XS112BLNAL2 (1)

XS

Tubular M18

Conexão: cabo L = 2 m ou conector M12		
Característica Sr	n (mm)	Referências
Vcc - 3 fios PNP NA (2)	5	XS518B1PAL2 (1)
Vcc - 3 fios NPN NA (2)	5	XS518B1NAL2 (1)
Vcc - 2 fios NA	5	XS518B1DAL2 (1)
Vcc - 2 fios NF	5	XS518B1DBL2 (1)
Vca - 2 fios NA	5	XS118BLFAL2 (3)
Vcc - 3 fios PNP NA	5	XS118BLPAL2 (1)
Vcc - 3 fios NPN NA	5	XS118BLNAL2 (1)

XS

Tubular M30

Tubulai Woo			
Conexão: cabo L = 2 m ou conector M12			
Característica	Sn (mm)	Referências	
Vcc - 3 fios PNP NA	A (2) 10	XS530B1PAL2 (1)	
Vcc - 3 fios NPN NA	A (2) 10	XS530B1NAL2 (1)	
Vcc - 2 fios NA	10	XS530B1DAL2 (1)	
Vcc - 2 fios NF	10	XS530B1DBL2 (1)	
Vca - 2 fios NA	10	XS130BLFAL2 (3)	
Vcc - 3 fios PNP NA	A 10	XS130BLPAL2 (1)	
Vcc - 3 fios NPN NA	A 10	XS130BLNAL2 (1)	

xs

- (1) Para conectores M8 ou M12, substituir "L2" por "M8" ou "M12" respectivamente, Exemplo: XS7E1A1PAL2 torna-se XS7E1A1PAM8 ou XS7D1A1PAL2 torna-se XS7E1DA1PAM12.
- (2) Para versões NF, substituir "A" por "B". Exemplo: XS7E1A1PAL2 torna-se XS7E1A1PBL2.
- (3) Somente na versão com cabo.

Sensores indutivos Optimum plástico - embutível

Retangular 26x26x13

Conexão: cabo L = 2 m ou conector M8		
Característica	Sn (mm)	Referências
Vcc - 3 fios PNP	NA (2) 10	XS7E1A1PAL2 (1)
Vcc - 3 fios NPN	NA (2) 10	XS7E1A1NAL2 (1)
Vcc - 2 fios NA	10	XS7E1A1DAL2 (1)
Vcc - 2 fios NF	10	XS7E1A1DBL2 (1)

Retangular 40X40X15

Conexão: cabo L = 2 m ou conector M8		
Característica	Sn (mm)	Referências
Vcc - 3 fios PNP NA	(2) 15	XS7C1A1PAL2 (1)
Vcc - 3 fios NPN NA	(2) 15	XS7C1A1NAL2 (1)
Vcc - 2 fios NA	15	XS7C1A1DAL2 (1)
Vcc - 2 fios NF	15	XS7C1A1DBL2 (1)

Retangular 80X80X26

3		
Conexão: cabo L = 2 m ou conector M12		
Característica	Sn (mm)	Referências
Vcc - 3 fios PNP N	A (2) 40	XS7D1A1PAL2 (1)
Vcc - 3 fios NPN N	A (2) 40	XS7D1A1NAL2 (1)
Vcc - 2 fios NA	40	XS7D1A1DAL2 (1)
Vcc - 2 fios NF	40	XS7D1A1DBL2 (1)

⁽¹⁾ Para conectores M8 ou M12, substituir "L2" por "M8" ou "M12" respectivamente. Exemplo: XS7E1A1PAL2 torna-se XS7E1A1PAM8 ou XS7D1A1PAL2 torna-se XS7E1DA1PAM12.

⁽²⁾ Para versões NF, substituir "A" por "B". Exemplo: XS7E1A1PAL2 torna-se XS7E1A1PBL2.

Sensores indutivos Optimum plástico - não embutível

Tubular M12

I dibdidi III I L		
Conexão: cabo L = 2 m		
Característica S	n (mm)	Referências
Vcc - 3 fios PNP NA (1)) 4	XS4P12PA340 (2)
Vcc - 3 fios NPN NA (1)) 4	XS4P12NA340 (2)
Vca - 2 fios NA	4	XS4P12MA230 (3)
Vca - 2 fios NF	4	XS4P12MB230 (3)

Tubular M18

Tabalal III IO			
Conexão: cabo L = 2 m			
Característica Sn	(mm)	Referências	
Vcc - 3 fios PNP NA (1)	8	XS4P18PA340 (2)	
Vcc - 3 fios NPN NA (1)	8	XS4P18NA340 (2)	
Vca - 2 fios NA	8	XS4P18MA230 (3)	
Vca - 2 fios NF	8	XS4P18MB230 (3)	

Tubular M30

Conexão: cabo L = 2 m				
Característica	Sn (mm)	Referências		
Vcc - 3 fios PNP N	A (1) 15	XS4P30PA340 (2)		
Vcc - 3 fios NPN N	A (1) 15	XS4P30NA340 (2)		
Vca - 2 fios NA	15	XS4P30MA230 (3)		
Vca - 2 fios NF	15	XS4P30MB230 (3)		

⁽¹⁾ Para versões NF, substituir "A" por "B". Exemplo: XS7E1A1PAL2 torna-se XS7E1A1PBL2. (2) Para conector M12 adicionar a letra "D" no final da referência. Exemplo: XS4P1212PA340 torna-se XS4P12PA340D.

(3) Para conector 1/2" - 20 UNF adicionar a letra "K" no final da referência. Exemplo: XS4P18MA230, torna-se XS4P18MA230K.

Controle de rotação XS9

Retangular 26 x 26 x 13

Tensão

Conexão: conector M12 ou 1/2" UNF Sn = 10 mm

Impulsos Referências

1011040			
	por i	minuto	
1224 Vcc	6 a 6	0006	XS9E11RPBL01M12
24240 Vca/Vcc	6 a 6	3000	XS9E11RMBL01U20
Retangular 40 x 40	x 15		
Conexão: conector	M12 (ou 1/2"	UNF Sn = 15 mm
1224 Vcc	6 a 6	000	XS9C11RPBL01M12
24240 Vca/Vcc	6 a 6	3000	XS9E11PMBL01U20

Controle de rotação XSA-V

Tubular Ø30 Sn 10	mm	
24240 Vca/Vcc	6 a 150	XSA-V11801
24240 Vca/Vcc	120 a 300	0 XSA-V12801
1248 Vcc	6 a 150	XSA-V11373
1248 Vcc	120 a 300	0 XSA-V12373

Sensores indutivos - Corpo plástico Conexão por bornes - IP 67

20 mm 20/240 Vca

Retangulares - Face orientável

Embutível LED

Alcance	Tensão	Referências
Saída N	A + NF	
15 mm	10/48 Vcc PNP	XS7-C40PC440 ⁽¹⁾
Saída pr	ogramável NA ou	NF
15 mm	10/48 Vcc	XS7-C40DP210(1)
15 mm	20/240 Vca	XS7-C40FP260 ⁽¹⁾
Não em	butível - LED	

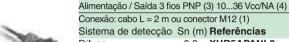
 Saída NA + NF

 40 mm
 12/48 Vcc PNP
 XS8-C40PC449(1)

 20 mm
 12/48 Vcc PNP
 XS8-C40PC440(1)

 Saída programável NA ou NF

XS8-C40FP260⁽¹⁾


XS7/8

14 XU Osiris

Sensores fotoelétricos

Modelo 18 plástico

XUB5APANL2

Modelo 18 metálico

Alimentação / Saída 3 fios	PNP (3) 1036 Vcc/NA (4)
Conexão: cabo L = 2 m ou	conec	tor M12 (1)
Sistema de detecção	Sn (m)	Referências
Difuso	0,8	XUB5BPANL2
Reflex polarizado	3	XUB9BPANL2
Reflex	5,5	XUB1BPANL2
Barreira	20	XUB2BPANL2R
Emissor p/sist. barreira	20	XUB2BKSNL2T

XUB5BPANL2

Modelo miniatura

Alimentação / Saída 3 fios PNP (3) 1036 Vcc/NA (4)				
Conexão: cabo L = 2 m ou	Conexão: cabo L = 2 m ou conector M8 (2)			
Sistema de detecção Sn (m) Referências				
Difuso	0,6	XUM5APANL2		
Reflex polarizado	3	XUM9APANL2		
Reflex	6	XUM1APANL2		
Barreira	12	XUM2APANL2R		
Emissor p/sist barroira	12	ALIMOVK GNII 3L		

XUM5APANL2

- (1) Para conector M12, substituir "L2" ou "T16" por "M12" Exemplo:
- XUB5APANL2 torna-se XUB5APANM12
- (2) Para conector M8, substituir "L2" por "M8" Exemplo: XUM5APANL2 torna-se XUM5APANM8
- (3) Para versões com com saída NPN, substituir "P" por "N". Exemplo : XUB5APANL2 torna-se XUB5ANANL2
- (4) Para as versões com saída NF, substituir "A" por "B", Exemplo: XUB5APANL2 torna-se XUB5APBNL2

XU Osiris

Sensores fotoelétricos

Modelo compacto 50 x 50

XUK5APANI 2

Alimentação/Saída: 3 fios PNP (3) 10...36 Vcc/NA (4)

Conexão: cabo L = 2 m ou conector M12 (1) Sistema de detecção Sn (m) Referências Difuso 1.5 XUK5APANL2 Reflex polarizado 7.5 XUK9APANL2 Reflex 15 XUK1APANL2

Rarreira

45 XIIK2APANI 2R

200		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Emissor p/sist. barreira	45	XUK2AKSNL2T
Alimentação/Saída: 202	64 Vc	a/1036 Vcc/ NA+NF
Difuso	1,5	XUK5ARCNL2
Reflex polarizado	6	XUK9ARCNL2
Reflex	10	XUK1ARCNL2
Barreira	30	XUK2ARCNL2R
Emissor p/sist, barreira	30	XUK2ARCNL2T

Modelo compacto

Alimentação/Saída: 3 fios PNP (3) 10...36 Vcc/NA (4) Conexão: bornes ou conector M12 (1)

Sistema de detecção Sn (m) Referências XUX5APANT16 Difuso 3 Reflex polarizado XUX9APANT16 15 Reflex XUX1APANT16 20 Barreira XUX2APANT16R 60

XUX5APANT16

Ε	missor p/sist. barreira	60	XUX0AKSAT16T
Α	limentação/Saída: 202	64 V	Vca/1036 Vcc/ NA+NF
D	ifuso	3	XUX5ARCNT16
R	leflex polarizado	15	XUX9ARCNT16
R	leflex	20	XUX1ARCNT16
В	arreira	60	XUX2ARCNT16R
Ε	missor p/sist. barreira	60	XUX0ARCTT16T

⁽¹⁾ Para conector M12, substituir "L2" ou "T16" por "M12" Exemplo: XUB5APANL2 torna-se XUB5APANM12

⁽³⁾ Para versões com com saída NPN, substituir "P" por "N", Exemplo : XUB5APANL2 torna-se XUB5ANANL2

⁽⁴⁾ Para as versões com saída NF, substituir "A" por "B". Exemplo: XUB5APANL2 torna-se XUB5APBNL2

XII Osiris

Sensores fotoelétricos

Sensor de etiquetas

Série embalagem

Referências OgiT Alcance 2 mm. 3 fios

PNP/NPN12/24 Vcc NA ou NF prog. c/conector

infravermelho 10 kHz XUV-K0252S

Idem anterior com feixe vis. verm./verde de10 kHz XUV-K0252VS

Leitores de marcas

Sistema Proximidade Alcance 9 mm. regulável multifuncional 3 fios PNP/NPN NA ou NF

Feixe vermelho ou verde XUR-K0955D programável 10 kHz

Idem anterior com feixe

XURK1KSMM12

com botão aprendizado Forquilha ótica com

amplificador integrado Sistema Barreira

Abertura de 30 mm. Feixe infravermelho

3 fios PNP 12/24 Vcc 1 kHz XUV-H0312

XUV-H0312

XU Osiris

Sensores fotoelétricos Cabeçotes e Fibras óticas

Amplificadores para fibras óticas

Fibras óticas plásticas	
Alcance 200 mm	
sistema barreira	XUF-N12301
Idem c/prolong. metálica	
Alcance 180 mm	XUF-N12311
Alcance 70 mm	
sistema proximidade	XUF-N05321
Idem c/prolong. metálica	
Alcance 60 mm	XUF-N05331

XU Osiris

Sensores fotoelétricos Acessórios

XUZ-C...

Refletores	
Tipo	Referências
Alta reflexão retangular	
24 x 24 mm	XUZ-C24
Refletor retangular	
50 x 50 mm	XUZ-C50
Refletor Ø80 mm	XUZ-C80
25 mm x 1m x 0,2 mm	XUZ-B01
25 mm x 5m x 0,2 mm	XUZ-B05

Fusível

Conectores com cabo de 2 m

conector M8	XZ-CP0941L2 (1)
conector M12 (reto)	XZ-CP1141L2 (1)
conector M12 (90°)	XZ-CP1241L2 (1)

⁽¹⁾ Para cabos com comprimento de 5 e 10 metros, substituir o final L2 por L5 (5 metros) ou L10 (10 metros).

Nota: Para sensores reflex cuja aplicação é a detecção de objetos com menos de 50% de seu Sn, é recomendável utilizar o espelho XUZ-C24.

15 XML Nautilus

Transmissores de pressão e pressostatos Eletromecânicos

Para controle, com escala. Funcionamento por membrana de 45 mbar a 35 bar e a pistão de 70 bar até 500 bar. Conexão hidráulica 1/4" gás . Contato unipolar "NANF"

10A (Ith). 500 Vca 50/60 Hz.

XML-A

XML-B

De limite simples - IP 66 - Diferencial fixo

Óleos hidráulicos, água doce, água do mar, ar, +70°C

Faixa de pressão Referências De 0,15 a 2,5 bar XML-A002A2S11 De 0,4 a 4 bar XML-A004A2S11 De 0,6 a 10 bar XMI - 401042511 XML-A020A2S11 De 0.7 a 20 bar Óleos hidráulicos + 160°C

De 5 a 70 bar XML-A070D2S11 De 10 a 160 bar XMI - A160D2S11

XML-A300D2S11 De 20 a 300 bar

De duplo limite - IP 66 - Diferencial regulável

Óleos hidráulicos, água doce, água do mar, ar, +70°C

Faixa de pressão		Referências
De 0,3 a 2,5 bar		XML-B002A2S11
De 0,25 a 4 bar		XML-B004A2S11
De 0,7 a 10 bar		XML-B010A2S11
De 1,3 a 20 bar		XML-B020A2S11
De 3,5 a 35 bar		XML-B035A2S11
Óleos hidráulicos	_ 160°C	

Oleos hidráulicos + 160°C

De 5 a 70 bar XML-B070D2S11

Óleos hidráulicos, ar, +160°C

De 45 a 350 mbar XML-BL35R2S11

Água doce, água do mar, fluidos corrosivos, +160°C De 45 a 350 mbar XML-BL35S2S11

Nota: Pressostatos para outros valores de pressão, para outros tipos de fluidos ou gases para +70 e +160°C, e pressostatos com conexão elétrica por conector

DIN, consultar documentação específica Schneider Electric. Nota: 1 bar = 14,5 psi

XML-E Nautilus

Transmissores de pressão e pressostatos

XML-EM01U1C41

Para controle, com visualização. Conexão hidráulica 1/4" gás. Conexão elétrica por conector DIN. Temperatura -15 + 80°C - IP65. (1)

Pressostatos - Saída estática PNP - 11/33 Vcc

Óleos hidráulicos, água doce, do mar, ar, fluidos corrosivos + 80°C

Faixa de pressão	Referências
De -1 a 0,25 bar	XML-EM01U1C41
De 0,5 a 10 bar	XML-E010U1C41
De 5 a 100 bar	XML-E100U1C41

XML-E001U1C21

Conexão hidráulica 1/4" gás. Conexão elétrica por conector DIN. Temperatura -15 + 80°C - IP 65.

Transmissores de pressão Saída analógica 4...20 mA técnica 2 fios

Óleos hidráulicos, água doce, do mar, ar, fluidos corrosivos + 80°C

Faixa de pressão	Referências
De 0 a 1 bar	XML-E001U1C21
De 0 a 10 bar	XML-E010U1C21
De 0 a 60 bar	XML-E060U1C21
De 0 a 100 bar	XML-E100U1C21
De 0 a 250 bar	XML-E250U1C21

Nota: Pressostatos com conexão elétrica por conector M12, consultar documentação específica Schneider Electric.

(1) Pressostatos eletrônicos com saída NPN, consultar, documentação específica Schneider Electric.

Nota: 1 bar = 14,5 psi

XML-E Nautilus

Transmissores de pressão e pressostatos Acessórios

Características Referências
Conector fêmea
DIN 43650 A XZCC43FCP40B

Displays digitais para sensores analógicos de pressão XMLE-Z...(1)

XMLE-Z

⁽¹⁾ Os três pontos devem ser substituídos com o valor máximo de pressão desejado entre 001 e 600 bar, consultar documentação específica Schneider Electric.

XML-F Nautilus

Transmissores de pressão com display e pressostatos

Benefícios

Transmissores de pressão e pressostatos completamente programáveis com 10 milhões de ciclos de operação.

Visualização direta da pressão em bar ou PSI

- CONFIGURÁVEL através de suas teclas frontais e um display de 4 dígitos que simplificam a configuração e os ajustes.
- RESISTENTES aos picos de pressão e sobrepressão: invóluco metálico com proteção IP 67.
- PROTEGIDOS contra curto-circuito e inversão de polaridade.
- MEMORIZA e mostra os valores dos picos de pressão que ocorrem na instalação.
- DIAGNOSTICA o bom funcionamento do sensor.

Conforme as normas IEC, UL, CSA Entrada de fluido em aço inoxidável Tensão de alimentação 24 Vcc

Os transmissores de pressão XML-F•••D2•1• dispõem de uma saída analógica 4...20 mA ou 0...10V, assim como de uma entrada digital, além da função remota de diagnóstico.

Os sensores universais XML-F•••D2•2• são pressostatos reguláveis para

controlar 2 estágios com uma saída estática (configuráveis em NPN o PNP, de abertura "NA" ou fechamento "NF"), e com uma saída analógica 4...20 mA ou 0...10 V. Dispõem da função manual de diagnóstico.

Os pressostatos XML-F•••D2•3• são pressostatos de 2 estágios reguláveis, constituídos de 2 saídas estáticas (configuráveis em NPN ou PNP, de abertura NA ou fechamento NF) independentes.

Guia de escolha XML-F

					Faixa de regulagem	gem				^
Configuração BAR		0.08 a 1	0.2 a 2.5	0.8 a 10	1.28 a 16	2 a 25	3.2 a 40	5.6 a 70	8 a 100	ao
Configuração PSI		1.16 a 14.5	2.9 a 36.25	11.6 a 145	18.56 a 232	29 a 362.5	46.4 a 580	81.2 a 1450	116 a 1450	0
Tensão de alimentação (V)	(V)			•	24 Vcc (17 a 33 Vcc)	(2)				,
Conexão fluido				1/4" B	1/4" BSP, 1/4" NPT, SAE 7/16"	. 1/16"				٠.,
Conexão elétrica					Conector M12					٠.
Sensor universal	4 a 20 mA	XMLFM01D202e	XMLF002D202	XMLFM01D202* XMLF002D202* XMLF010D202* XMLF016D202* XMLF025D202* XMLF040D202* XMLF070D202* XMLF100D202*	XMLF016D202•	XMLF025D202•	XMLF040D202•	XMLF070D202•	XMLF100D202•	•
Saída analógica e										
Saída de estado	0 a 10 V	XMLFM01D212e	XMLF002D212e	XMLFM01D212• XMLF002D212• XMLF010D212• XMLF016D212• XMLF025D212• XMLF040D212• XMLF070D212• XMLF100D212•	XMLF016D212•	XMLF025D212•	XMLF040D212•	XMLF070D212•	XMLF100D212e	
sólido 200 mA										
Pressostato com duplo estágio	estágio	XMLFM01D203	XMLF002D203e	XMLFM01D2036 XMLF002D2036 XMLF010D2036 XMLF016D2036 XMLF025D2036 XMLF040D2036 XMLF070D2036 XMLF100D2036	XMLF016D203	XMLF025D203	XMLF040D203	XMLF070D203	XMLF100D203e	
2 saídas de estado										
sólido 200 mA independentes	entes									
Transmissor de	4 a 20 mA	XMLFM01D201	XMLF002D201e	XMLFM01D201• XMLF002D201• XMLF010D201• XMLF016D201• XMLF025D201• XMLF0240D201• XMLF070D201• XMLF070D201•	XMLF016D201●	XMLF025D201	XMLF040D201•	XMLF070D201•	XMLF100D201e	
pressão	0 a 10 V	XMLFM01D211e	XMLF002D211e	XMLFM01D211• XMLF002D211• XMLF010D211• XMLF016D211• XMLF025D211• XMLF040D211• XMLF070D211• XMLF100D211•	XMLF016D211e	XMLF025D211•	XMLF040D211•	XMLF070D211•	XMLF100D211●	
Completar a referência, substituindo o e pelo № segundo o tipo de conexão do fluido: 1/4" BSP ⇒ 5 / 1/4" NPT ⇒ 6 / SAE 7/16" ⇒ 9	, substituindo	o ∙ pelo N° segur	ndo o tipo de con	exão do fluido: 1	/4" BSP ⇒ 5 / 1/	/4" NPT ⇒ 6 / S	AE 7/16" ⇒ 9			

16 Osisonic

Sensores ultra-sônicos - XX

Deleoşão de todos os materiais					
Sensores para aplica		em c	ircuite	com	alimentação
em corrente contínu	a CC				
Saída PNP/NPN/Anal.	Dimens	são	Faixa d	le	Referências
Função NA/NF			funcion	amento	
Cabo ou conector	C (com	ıpr.)	(mm)		
"PNP - NA	100		M12 x 5	50mm	XX512A2PAM8
Conector M8"					
"NPN - NA	500		M18 x 6	65mm	XX518A3NAM12
Conector M12"					
"PNP - NA+NF	1000		M30 x 8	35mm	XX630A1PCM12
Conector M12"					
"PNP - NA+NF	8000		M30 x 1	106mm	XX630A3PCM12
Conector M12"					
"Analógico 010V	8000		M30 x 1	106mm	XX930A3A1M12
Conector M12"					
"Analógico 420mA	8000		M30 x 1	106mm	XX930A3A2M12
Conector M12"					
Faixa de tensão min./máx	.(V)	10	28V		
ondulação compreendida	` ,				
Corrente comutada		<100	/ 420	mA: ca	rga resistiva
máx. (mA)					010 V: carga
					a infinito
Proteção contra curtos-cir	cuitos	*			
e sobrecargas (★)					
Tensão residual no estado)	<1			
fechado (V) com I nomina	ıl				

Osisonic

Sensores ultra-sônicos Acessórios

Prolongadores e conectores tipo fêmea

encaixáveis e adaptáveis

Prolongadores com cabo em cotovelo reto

C =	C = 5 m (sem LED)				
	Para				
M8	XX512A1	XZCP1041L5	XZCP0941L5		
	XX512A2	XZCP0666L5	XZCP0566L5		
M12	XX7, XX518e XX630	XZCP1241L5	XZCP1141L5		

Conectores	
borneira	Snap-C

	Para		
M8	XX512A1	XZCC8FCM40V	XZCC8FDM40V
	XX512A2	XZCC8FCM30V	XZCC8FDM30V
M12	XX7, XX518e XX630	XZCC12FCM40B	XZCC12FDM40B

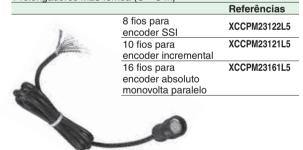
Osicoder

Encoders incrementais e absolutos

Encoders Rotativos						
Incrementais, Absolutos e com Comunicação						
Encoders para aplicações em circuito com						
	e۲	n corrente con	tínua C	С		
Referências						
Incremental, Absolu	ıtc	o ou Comunicação	Resolução (pontos)	Eixo Pleno Sólido (Ø)	Saída	Ligação
XCC1406PR05R	-	Incremental	500	Pleno 6 mm	5V, RS 422	Cabo radial 2 m
XCC1406PR05K	-	Incremental	500	Pleno 6 mm	Push-Pull	Cabo radial 2 m
XCC1506PS11X	-	Incremental	1024	Pleno 6 mm	5V, RS422	Conec. radial M23 macho
XCC1506PS11Y	-	Incremental	1024	Pleno 6 mm	Push-Pull	Conec. radial M23 macho
XCC1514TSM02X	-	Incremental	256 4096	Passante 14 mm	5V, RS422	Conec. radial M23 macho
XCC1514TSM02Y	-	Incremental	256 4096	Passante 14 mm	Push-Pull	Conec. radial M23 macho
XCC2506PS81KB	-	Absoluto (Binário)	8192	Pleno 6 mm	Push-Pull	Conec. radial M23 macho
XCC3510PS48SGN	-	Absoluto (Gray)	4096	Pleno 10 mm	SSI, 25 bits	Conec. radial M23 macho
XCC3510PS84CB	-	Absoluto com comunicação	8192	Pleno 10 mm	25 bits	Conec. radial M23 macho

Tensão de Alimentação	5V, RS 422	4,7530V
	Push-Pull	1130V
Grau de Proteção	XCC14 - IP 54	
(conforme IEC 60529)	Demais IP 65	

CANopen (Binário)


Osicoder

Encoders incrementais e absolutos Acessórios

Acoplamento			
	F:	E4	D-42
com mola	Eixo	Eixo	Referências
	encoder	máquina	
	6 mm	6 mm	XCCRAR0606
- 1111111111111111111111111111111111111	6 mm	8 mm	XCCRAR0608
	6 mm	10 mm	XCCRAR0610
Million	10 mm	10 mm	XCCRAR1010
	10 mm	12 mm	XCCRAR1012
elástico			
	6 mm	6 mm	XCCRAE0606

Prolongadores e conectores encaixáveis (tipo fêmea) Prolongadores M23 fêmea (C = 5 m)

18 Ositrack

Sensores de RFID Sensores de identificação

Sensores para aplicações em circuito com alimentação em corrente contínua CC

Referências XGCS4901201

(estação compacta formato C 13.56MHz)

XGCS8901201 (estação compacta formato D 13,56MHz) XGHB444345 com estação XGCS49 XGHB444345 com estação XGCS89 XGHR445345 com estação XGCS49 XGHB445345 com estação XGCS89 XGHB90E340 com estação XGCS49 XGHB90E340 com estação XGCS89 XGHB320345 com estação XGCS49 XGHB320345 com estação XGCS89 XGSZ33ETH (caixa de conexão Ethernet)

XGSTP401 (terminal de diagnóstico portátil 13.56MHz RFID)

IP 65

TIPO	HO 485
Protocolo	Modbus RTU / Uni-Telway
Veloc. (Bauds)	9600115.200
	(detecção automática)

Acessórios Acessórios de conexão para rede Modbus

L = 2 m

Descrição Cabo de conexão Modbus conectores M12 macho/fêmea Aplicação Conexão RS485 entre uma estação compacta e uma caixa Modbus ou entre 2 caixas

Modbus

M12 macho cabo nu

Conector com cabo Cabo de conexão Modbus Mas macho Mini-DIN 8

rede Modbus Uni-Telway

TCSMCN1F2

Conexão entre uma Conexão entre caixa Modbus e uma uma caixa Modbus e um controlador programável

TCSMCN1F9M2P

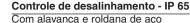
 $I = 5 \, \text{m}$ TCSMCN1M1F5 TCSMCN1F5

TCSMCN1M1F2

Sensores de identificação por radiofrequência - RFID 13,56 MHz

Faixa de	Dimensão	Capacidade	Etiquetas
funcionamento	LxAxP	de memória	eletrônicas
(mm)	(mm)	(bytes)	
1870	40 x 40 x 15		
20100	80 x 80 x 26		
33	40 x 40 x 15	3.048	Formato C
48	40 x 40 x 15	3.048	Formato C
30	40 x 40 x 15	13.632	Formato C
40	40 x 40 x 15	13.632	Formato C
70	54 x 85,5 x 0,8	256	Crachá ISO
100	54 x 85,5 x 0,8	256	Crachá ISO
112	Ø 30 x 3	112	Disco
48	Ø 30 x 3	112	Disco
130 x 80 x 51	•	•	

para Ethernet


Cabo de conexão Ethernet ConneXium M12 macho / RJ45	Conector "T" ! rede M12 1 macho / 2 fêmea	Conector com cabo M12 fêmea
Conexão entre uma caixa Modbus e uma rede Ethernet	Para rede RS485	Fonte 24 Vcc para conexão das caixas
TCSECL1M3M3S2	TCSCTN011M11F	XGSZ08L2
TCSECL1M3M5S2		XGSZ08L5

conector "T"

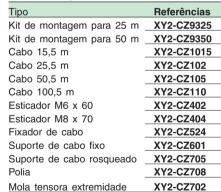
conector com cabo

Controle de desalinhamento e parada de emergência por cabo

Contato	Caixa	Referências
2(NA+NF)	Metálica	XCR-T115
2(NA+NF)	Poliéster p/a	ımbientes

corrosivos

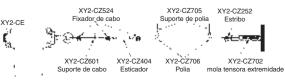
XCR-T315


XY2

Parada de emergência por cabo IP 65 - até 50 m

Contato	Encaixe	Referências
1NA + 1NF	A direita	XY2-CE1A250
1NA + 1NF	A esquerda	XY2-CE2A250

Acessórios para XY2



XY2-C7524

XY2-CZ702

Fins de curso de segurança XCS

Gama Plástica

XCS-PA/TA Máquinas sem inércia (sem travamento ou chave de comando) XCS-TE Máquinas com inércia (travamento e destravamento por eletroíma)

Gama Metálica

XCS-A Máquinas sem inércia (sem travamento ou chave de comando)

XCS-B Máquinas sem inércia (travamento do comando manualmente)

XCS-E Máquinas com inércia (travamento e destravamento por eletroíma)

Características e benefícios

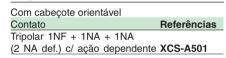
- Conforme as normas de segurança:
 - EN 292 e EN 1088
 - IEC/EN 60 947-1
- Corpo plástico ou metálico
- Facilidade de montagem: Cabeçote orientável
- 8 tipos de travamento
- Grau de proteção IP67
- Contatos de abertura positiva
- 8 posibilidades de ataque de comando (segundo orientação)
- Sistema triplo de contatos:
 - Blocos de contato triplos
 - Redundância e sinalização
- Travamentos: Manual ou elétrico

Fins de curso de segurança XCS

Corpo plástico XCS-P Chave dunla de isolação

Oriavo dapia do lociação	
Contato	Referências
Bipolar 1NA + 1NF	
ação dependente	XCS-PA591

XCS-PA591



Acessórios para XCS-P

Chave reta	XCS-Z11
Chave tipo T	XCS-Z12
Chave tipo I	XCS-714

XCS-Z12

Corpo metálico XCS-A

XCS-A501

XCS-Z01

Acessórios	para	XCS-A

Chave reta	XCS-Z01
Chave tipo T	XCS-Z02

XCS-Z02

Relés de Parada de Emergência e Interruptores de Posição

XPSAF5130

Categoria 4 Norma NBR14153 (EN954-1)

Nº de circuitos de segurança

Nº de circuitos adicionais

Largura do relé

Tensão de alimentação

24 Vcc/Vca

XPSAK311144

Tensão de alimentação

Categoria 4 Norma NBR14153 (EN954-1)

Nº de circuitos de segurança

Nº de circuitos adicionais

1 NF + 4 de
estado sólido

Largura do relé

45 mm

24 Vcc/Vca

Relés para Controle Bimanual

XPSBC1110

Categoria 4 Norma NBR14153 (EN954-1)

Nº de circuitos de segurança

2 NA

Nº de circuitos adicionais

1 NF

Largura do relé

45 mm

Tensão de alimentação

24 Vcc

XPSBF1132

Categoria 4 Norma NBR14153 (EN954-1)

Nº de circuitos de segurança
2 NA

Nº de circuitos adicionais
2 de estado
sólido

Largura do relé
22,5 mm

Tensão de alimentação
24 Vcc

Controlador Programável de Segurança - Aplicação Global

XPSMC16Z / XPSMC16ZC / XPSMC16ZP Categoria 4 Norma NBR14153

(EN954-1/ISO 13849-1), SIL 3 (IEC 61508)

 N° de circuitos de segurança $6 + 2 \times 2 \text{ NA}$ N° de entradas 16

Comunicação:

Modbus, Profibus, CanOpen todos escravos
Largura do relé 74 mm

Tensão de alimentação

74 mm 24 Vcc

XPSMC32Z / XPSMC32ZC / XPSMC32ZP

Categoria 4 Norma NBR14153

(EN954-1/ISO 13849-1), SIL 3 (IEC 61508)

Nº de circuitos de segurança 6 + 2 x 2 NA Nº de entradas 32

Comunicação:

Modbus, Profibus, CanOpen todos escravos Largura do relé 74 mm

Tensão de alimentação 24 Vcc

Cortina de Luz - Aplicação Global

Cortina de Luz - Categoria 4 XUSLTQ6A•••• - (Cortina de "Dedo")

 Capacidade de detecção mín.
 14 mm

 Área de proteção
 260...1390 mm

 Tempo de resposta
 20...40 ms

 Distância sensora (Sn)
 0,3...7,5 m

Tensão de alimentação 24 Vcc

Cortina de Luz - Categoria 4

XUSLTR5A•••• - (Cortina de "Mão")

Capacidade de detecção mín. 30 mm 350...2095 mm

Tempo de resposta 20...35 ms
Distância sensora (Sn) 0,3...9 m ou

Tensão de alimentação 24 Vcc

Visite nosso site:

www.schneider-electric.com.br wap.schneider.com.br

Para mais informações sobre produtos:

Call Center 0800 7289 110 / (11) 3468-5791

call.center.br@br.schneider-electric.com

Automação

Índice

Generalidades

1	O conceito automação	6/4

2 Campos de aplicação 6/5

	Produtos	
3	Conectores (bornes) AB1	6/6
4	Relés plug-in Zelio Relay	6/12
5	Conversores analógicos Zelio Analog	6/20
6	Temporizadores eletrônicos Zelio Time	6/22
7	Relés de medição e controle Zelio Control	6/27
8	Módulos lógicos Zelio Logic	6/30
9	Controladores programáveis Twido Expert BF A1 MPC6006 Modicon M340 Modicon Premium Modicon Quantum Unity	6/34 6/40 6/42 6/43 6/46 6/64 6/68 6/72
10	E/S distribuídas Advantys OTB/FTB Advantys STB	6/78
11	Interfaces Homem-máquina Magelis / Arion	6/82
12	Fontes chaveadas Phaseo	6/92

O conceito automação

Seja na indústria ou em aplicações residenciais (aquecimento, iluminação...), a necessidade da automação se faz constantemente presente, com o objetivo de melhorar a eficiência de máquinas e de instalações elétricas, bem como, a qualidade dos produtos e serviços fornecidos e prestados.

Através dos atributos da automação industrial, homologados por normas nacionais e internacionais, é possível empregar produtos de fácil disponibilidade no mercado para resolver as necessidades de controle e automação que se apresentam.

Descrição de um dispositivo de automação

Pode-se definir um dispositivo central de automação, comumente conhecido como controlador programável, basicamente como um equipamento eletrônico composto de:

- Microprocessador.
- Interface de Entradas/Saídas.

Na memória reside o programa da aplicação desenvolvido pelo usuário ou pelo

Memória.

programador responsável pelo mesmo.
O programa da aplicação é desenvolvido através de uma ferramenta de software desenvolvido para microcomputador.
A linguagem empregada deve ser escolhida de forma a ser compreendida por todos os profissionais envolvidos. As linguagens podem ser: Diagrama Ladder (LD) (linguagem de contatos), Lista de Instruções (IL), Texto Estruturado (ST), Blocos Lógicos de Funções (FBD) e Diagrama Seqüencial de Função (SFC, popularmente conhecido como Grafcet), empregados de acordo com

Atualmente todos os recursos da ferramenta de programação são definidos pelo padrão IEC 61131.

o tipo de aplicação.

Quando a aplicação exige uma maior complexibilidade devido aos sinais que se deseja trabalhar, é possível adicionar entradas ou saídas, tanto digitais quanto analógicas.

Com tudo isto é recomendável também conhecer e aplicar corretamente as opções de comunicação entre dispositivos de campo e o correto emprego de sistemas supervisórios, agregando módulos de comunicação e softwares específicos.

Campos de aplicação

Para pequenas aplicações, como dosadores, alimentadores de máquinas, transportadores, lavadoras industriais e de automóveis, controle de acesso. aquecimento, etc. Em aplicações de médio porte onde a complexibilidade necessita do emprego de sinais analógicos e de comunicação como máquinas injetoras. paletizadoras, correias transportadoras. Nas automações que necessitam grande quantidade de entradas e saídas de diversos tipos (analógicos, termopares, pulsos de 40 KHz etc) e de um programa de controle, se projetam linhas modulares de automação. A supervisão deve ser fácil de se realizar em dois níveis de diálogos:

dois níveis de diálogos:

De operação, empregando interfaces homem-máquina.

De planta, empregando um microcomputador PC com o software de supervisão.

Neste capítulo, desenvolveremos a oferta de aplicações cotidianas e mencionaremos as características principais das automatizações modulares e produtos a serem empregados.

Para mais informações sobre outros produtos de automação **Schneider Electric**, consultar a documentação específica.

Como complemento ao manual, a Schneider Electric através de seu Centro deTreinamento, oferece formação técnica dos controladores programáveis e softwares, para os programadores e usuários.

Referências Descrição BORNES DE LIGAÇÃO PARAFUSO-PARAFUSO P/ PERFIS ÔMEGA E DIN AB1-VV235U 2,5 mm² / passo 5 mm AB1-VV435U 4,0 mm² / passo 6 mm AB1-VV35SU 6,0 mm² / passo 10 mm AB1-VV103SU 10 mm² / passo 10 mm AB1-VVN103SU 16 mm² / passo 10 mm AB1-VVN103SU 16 mm² / passo 12 mm AB1-VVN103SU 70 mm² / passo 16 mm AB1-VVN703SU 70 mm² / passo 24 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS3 conector (borne) 2,5 e 4 mm² AB1-AS6 conector (borne) 10 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN35 conector (borne) 16 mm² AB1-ASN36 conector (borne) 70 mm² AB1-ASN370 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 35 mm² AB1-AC34 conector (borne) 10 mm² AB1-AC04 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-AL2 conector (borne) 10 mm² AB1-AL2 conector (borne) 10 mm² AB1-AL1 conector (borne) 10 mm² AB1-AL2 conector (borne) 10 mm² AB1-AL2 conector (borne) 10 mm² AB1-AL35 conector (borne) 10 mm² AB1-AL4 conector (borne) 10 mm² - para 80 pólos AB1-AL10 conector (borne) 10 mm² - para 20 pólos AB1-AL101 conector (borne) 10 mm² - para 20 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN10 conector (borne) 2,5 mm² AB1-ALN10 conector (borne) 35 mm² - para 20 pólos AB1-ALN10 conector (borne) 35 mm² - para 20 pólos AB1-ALN12 conector (borne) 4 mm² AB1-ALN2 conector (borne) 2,5 mm² AB1-ALN10 conector (borne) 35 mm² AB1-ALN10 conector (borne) 10 mm² AB1-ALN10 conector (borne) 2,5 mm² AB1-ALN10 conector (borne) 35 mm² AB1-ALN10 conector (borne) 4 mm² AB1-ALN10 conector (borne) 10 mm² AB1-ALN10 conector (borne) 2,5 mm² AB1-ALN10 conector (borne) 35 mm² AB1-ALN10 conector (borne) 10 mm²		
AB1-VV235U 2,5 mm² / passo 5 mm AB1-VV435U 4,0 mm² / passo 8 mm AB1-VV635U 6,0 mm² / passo 10 mm AB1-VVN1035U 10 mm² / passo 10 mm AB1-VVN1035U 10 mm² / passo 10 mm AB1-VVN1035U 70 mm² / passo 16 mm AB1-VVN1035U 70 mm² / passo 16 mm AB1-VVN7035U 70 mm² / passo 16 mm AB1-VVN7035U 70 mm² / passo 24 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-AS810 conector (borne) 6 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN16 conector (borne) 35 mm² AB1-ASN35 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 10 mm² AB1-AC04 conector (borne) 10 mm² AB1-AC04 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-AL2 conector (borne) 10 mm² AB1-AL3 conector (borne) 10 mm² AB1-AL4 conector (borne) 10 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-ALN3 conector (borne) 10 mm² - para 40 pólos AB1-ALN3 conector (borne) 10 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN3 conector (borne) 35 mm² - para 20 pólos AB1-ALN3 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN2 conector (borne) 35 mm² - para 20 pólos AB1-ALN3 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² AB1-ALN16 conector (borne) 35 mm² AB1-ALN16 conector (borne) 4 mm² AB1-ALN16 conector (borne) 55 mm² AB1-ALN16 conector (borne) 6 mm² AB1-ALN3 conector (borne) 10 mm² AB1-ALN3 con		
AB1-VV435U 4,0 mm² / passo 6 mm AB1-VVN1035U 10 mm² / passo 10 mm AB1-VVN1035U 10 mm² / passo 12 mm AB1-VVN1635U 35 mm² / passo 12 mm AB1-VVN1635U 35 mm² / passo 12 mm AB1-VVN3535U 35 mm² / passo 24 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN10 conector (borne) 35 mm² AB1-ASN16 conector (borne) 35 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN35 conector (borne) 70 mm² Placa de extremidade AB1-AC4 conector (borne) 16 mm² AB1-AC7 conector (borne) 16 mm² AB1-AC8 conector (borne) 16 mm² AB1-AC8 conector (borne) 16 mm² AB1-AC8 conector (borne) 16 mm² AB1-AC9 conector (borne) 16 mm² AB1-AC9 conector (borne) 16 mm² AB1-AL2 conector (borne) 16 mm² AB1-AL4 conector (borne) 16 mm² AB1-AL5 conector (borne) 10 mm² AB1-AL6 conector (borne) 10 mm² AB1-AL7 conector (borne) 10 mm² AB1-AL8 conector (borne) 10 mm² - para 80 pólos AB1-AL8 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 2,5 mm² AB1-ALN10 conector (borne) 6 mm² AB1-ALN10 conector (borne) 10 mm² AB1-ALN10 conector (borne) 2,5 mm² AB1-ALN10 conector (borne) 16 mm² AB1-ALN10 conector (borne) 2,5 mm² AB1-AC9 conector (borne) 2,5 mm² AB1-AC9 conector (borne) 2,5 mm² AB1-AC9 conector (borne) 10 mm² AB1-C94 conector (borne) 10 mm² AB1-C95 conector (borne) 10 mm² AB1-C95 conector (borne) 10 mm² AB1-C95 conector		
AB1-VV035U		
AB1-VVN1035U 10 mm² / passo 10 mm AB1-VVN1035U 16 mm² / passo 12 mm AB1-VVN3535U 35 mm² / passo 16 mm AB1-VVN3535U 70 mm² / passo 24 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-AS46 conector (borne) 6 mm² AB1-ASN10 conector (borne) 16 mm² AB1-ASN16 conector (borne) 18 mm² AB1-ASN70 conector (borne) 35 mm² AB1-ASN70 conector (borne) 2,5 e 4 mm² AB1-AC44 conector (borne) 2,5 e 4 mm² AB1-AC54 conector (borne) 10 mm² AB1-AC6 conector (borne) 16 mm² AB1-AC74 conector (borne) 16 mm² AB1-AC8 conector (borne) 16 mm² AB1-AC8 conector (borne) 16 mm² AB1-AC8 conector (borne) 10 mm² AB1-AC9 conector (borne) 10 mm² - para 40 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-AL5 conector (borne) 10 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN10 conector (borne) 35 mm² - para 20 pólos AB1-ALN10 conector (borne) 35 mm² - para 20 pólos AB1-ALN10 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN36 conector (borne) 35 mm² - para 20 pólos AB1-ALN36 conector (borne) 35 mm² - para 20 pólos AB1-ALN102 conector (borne) 35 mm² - para 20 pólos AB1-ALN102 conector (borne) 6 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN164 conector (borne) 10 mm² AB1-ALN165 conector (borne) 10 mm² AB1-ALN166 conector (borne) 2,5 mm² AB1-ALN167 conector (borne) 2,5 mm² AB1-ALN168 conector (borne) 35 mm² AB1-ALN169 conector (borne) 2,5 mm² AB1-ALN160 conector (borne) 2,5 mm² AB1-ACN160 conector (borne) 2,5 mm² AB1-ACN160 conector (borne) 35 mm² AB1-ACN160 conector (borne) 4 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm²		
AB1-VVN1635U 16 mm² / passo 12 mm AB1-VVN353SU 35 mm² / passo 16 mm AB1-VVN353SU 35 mm² / passo 16 mm AB1-VVN353SU 35 mm² / passo 16 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 6 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN16 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 2,5 e 4 mm² AB1-ACN10 conector (borne) 6 mm² AB1-ACC4 conector (borne) 16 mm² AB1-ACC5 conector (borne) 16 mm² AB1-ACN16 conector (borne) 16 mm² AB1-ACN16 conector (borne) 16 mm² AB1-ALACN16 conector (borne) 16 mm² AB1-ALACN16 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-ALA conector (borne) 10 mm² - para 70 pólos AB1-ALA conector (borne) 10 mm² - para 40 pólos AB1-ALA conector (borne) 10 mm² - para 40 pólos AB1-ALA conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN32 conector (borne) 4 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN32 conector (borne) 2,5 mm² AB1-ALN32 conector (borne) 6 mm² AB1-ALN32 conector (borne) 6 mm² AB1-ALN32 conector (borne) 6 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN35 conector (borne) 10 mm² AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS9 conector (borne) 10 mm²		
AB1-VVN3535U 35 mm² / passo 24 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-AS6 conector (borne) 10 mm² AB1-ASN10 conector (borne) 16 mm² AB1-ASN16 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 10 mm² AB1-AC81 conector (borne) 10 mm² AB1-AC81 conector (borne) 10 mm² AB1-AC94 conector (borne) 10 mm² AB1-AC95 conector (borne) 10 mm² AB1-AC96 conector (borne) 10 mm² AB1-AC97 conector (borne) 10 mm² AB1-AC98 conector (borne) 10 mm² AB1-AC99 conector (borne) 10 mm² AB1-AC99 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL12 conector (borne) 10 mm² - para 70 pólos AB1-AL14 conector (borne) 10 mm² - para 40 pólos AB1-AL16 conector (borne) 10 mm² - para 40 pólos AB1-AL16 conector (borne) 10 mm² - para 40 pólos AB1-AL16 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN62 conector (borne) 35 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN35 conector (borne) 35 mm² AB1-ALN35 conector (borne) 4 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 35 mm² AB1-ALN162 conector (borne) 4 mm² AB1-ALN162 conector (borne) 4 mm² AB1-ALN162 conector (borne) 2,5 mm² AB1-ALN162 conector (borne) 35 mm² AB1-ALN163 conector (borne) 4 mm² AB1-ACN164 conector (borne) 2,5 mm² AB1-ACN165 conector (borne) 35 mm² AB1-ACN165 conector (borne) 10 mm² AB1-ACN165 conector (borne) 10 mm² AB1-ACN165 conector (borne) 2,5 mm² AB1-ACN165 conector (borne) 4 mm² AB1-CS2 conector (borne) 4 mm² AB1-CS2 conector (borne) 4 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN16 conector (borne) 2,5 mm²		
AB1-VVN7035U 70 mm² / passo 24 mm BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN16 conector (borne) 16 mm² AB1-ASN16 conector (borne) 35 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC81 conector (borne) 10 mm² AB1-AC81 conector (borne) 10 mm² AB1-AC81 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN16 conector (borne) 10 mm² - para 20 pólos AB1-ALN15 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN36 conector (borne) 35 mm² - para 20 pólos AB1-ALN22 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN352 conector (borne) 2,5 mm² AB1-ALN352 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ACS2 conector (borne) 16 mm² AB1-CS2 conector (borne) 2,5 mm² AB1-CS2 conector (borne) 16 mm² AB1-CS2 conector (borne) 16 mm² AB1-CS2 conector (borne) 16 mm² AB1-CS3 conector (borne) 16 mm² AB1-CS4 conector (borne) 16 mm² AB1-CSN16 conector (borne) 16 mm² AB1		
BORNES P/ CONECTORES (BORNES) DE LIGAÇÃO PARAFUSO-PARAFUSO Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-AS6 conector (borne) 10 mm² AB1-ASN10 conector (borne) 16 mm² AB1-ASN16 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN35 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 10 mm² AB1-AC6 conector (borne) 10 mm² AB1-AC76 conector (borne) 10 mm² AB1-AC80 conector (borne) 10 mm² AB1-AC90 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL12 conector (borne) 4 mm² - para 70 pólos AB1-AL2 conector (borne) 10 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 2,5 mm² - para 20 pólos AB1-ALN16 conector (borne) 4 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN22 conector (borne) 4 mm² AB1-ALN22 conector (borne) 6 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN164 conector (borne) 10 mm² AB1-ALN165 conector (borne) 10 mm² AB1-ALN166 conector (borne) 2,5 mm² AN1-ALN166 conector (borne) 2,5 mm² AN1-ALN166 conector (borne) 6 mm² AN1-ALN166 conector (borne) 2,5 mm² AN1-ALN166 conector (borne) 10 mm² AN1-ALN166 conector (borne) 2,5 mm² AN1-ALN166 conector (borne) 4 mm² AN1-ALN166 conector (borne) 10 mm² AN1-ALN166 conector (borne) 10 mm² AN1-ALN166 conector (borne) 35 mm² AN1-ALN166 conector (borne) 4 mm² AN1-		
Separador de circuitos AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-AS6 conector (borne) 6 mm² AB1-ASN10 conector (borne) 10 mm² AB1-ASN16 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN370 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC6 conector (borne) 10 mm² AB1-AC70 conector (borne) 10 mm² AB1-AC810 conector (borne) 10 mm² AB1-AC810 conector (borne) 10 mm² AB1-AC910 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL10 conector (borne) 4 mm² - para 70 pólos AB1-AL10 conector (borne) 10 mm² - para 40 pólos AB1-AL10 conector (borne) 10 mm² - para 40 pólos AB1-AL10 conector (borne) 10 mm² - para 40 pólos AB1-AL10 conector (borne) 10 mm² - para 20 pólos AB1-AL10 conector (borne) 10 mm² - para 20 pólos AB1-AL10 conector (borne) 35 mm² - para 20 pólos AB1-AL10 conector (borne) 2,5 mm² AB1-AL10 conector (borne) 4 mm² AB1-AL10 conector (borne) 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS3 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS50 conector (borne) 10 mm² AB1-CS6 conector (borne) 10 mm² AB1-CS70 conector (borne) 10 mm² AB1-CS90 conector (borne) 10 mm² AB1-CS90 c		
AB1-AS24 conector (borne) 2,5 e 4 mm² AB1-AS61 conector (borne) 6 mm² AB1-ASN10 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-ACS70 conector (borne) 2,5 e 4 mm² AB1-ACS70 conector (borne) 2,5 e 4 mm² AB1-ACS70 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 10 mm² AB1-ACN16 conector (borne) 10 mm² AB1-AL conector (borne) 10 mm² - para 80 pólos AB1-AL2 conector (borne) 10 mm² - para 40 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-AL5 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN15 conector (borne) 16 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN185 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 6 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN362 conector (borne) 10 mm² AB1-ALN352 conector (borne) 10 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN164 conector (borne) 16 mm² AB1-ALN165 conector (borne) 16 mm² AB1-ALN165 conector (borne) 16 mm² AB1-ALN166 conector (borne) 2,5 mm² AB1-ACS2 conector (borne) 2,5 mm² AB1-ACS4 conector (borne) 6, 10, 16 e 35 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS3 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS54 conector (borne) 10 mm² AB1-CS755 conector (borne) 10 mm² AB1-CS76 conector (borne) 10 mm² AB1-CS770 conector (bo		
AB1-AS6 conector (borne) 6 mm² AB1-ASN16 conector (borne) 10 mm² AB1-ASN16 conector (borne) 35 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 6 mm² AB1-AC24 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 4 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN135 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 6 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN352 conector (borne) 10 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN10352 conector (borne) 10 mm² AB1-ALN104 conector (borne) 10 mm² AB1-ALN1050 conector (borne) 10 mm² AB1-ALN1050 conector (borne) 10 mm² AB1-ALN1060 para teste AB1-CS2 conector (borne) 2,5 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSA10 conector (borne) 10 mm² AB1-CSA2 c		
AB1-ASN10 conector (borne) 10 mm² AB1-ASN16 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC6 conector (borne) 10 mm² AB1-AC76 conector (borne) 10 mm² AB1-AC81 conector (borne) 10 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 4 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN16 conector (borne) 35 mm² - para 20 pólos AB1-ALN16 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN164 conector (borne) 2,5 mm² AN1-ALN165 conector (borne) 4 mm² AB1-AC conector (borne) 6, 10, 16 e 35 mm² AN1-ACS conector (borne) 6 mm² AB1-ACS conector (borne) 10 mm² AB1-CS conector (borne) 10 mm² AB1-CS conector (borne) 2,5 mm² AB1-CS conector (borne) 10 mm² AB1-CS conector (borne) 10 mm² AB1-CS conector (borne) 2,5 mm² AB1-CS conector (borne) 10 mm² AB1-CS conector (borne) 2,5 mm² AB1-CS conector (borne) 4 mm² AB1-CS conector (borne) 10 mm² AB1-CS conector (born		
AB1-ASN16 conector (borne) 16 mm² AB1-ASN35 conector (borne) 35 mm² AB1-ASN370 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC810 conector (borne) 16 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 4 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-ALA conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 2,5 mm² AB1-ALN52 conector (borne) 6 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 4 mm² AB1-ALN352 conector (borne) 6 mm² AB1-ALN352 conector (borne) 10 mm² AB1-ALN352 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN164 conector (borne) 10 mm² AB1-ACS conector (borne) 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN2 conector (borne) 10 mm² AB1-CSN35 conector (
AB1-ASN35 conector (borne) 35 mm² AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 16 mm² AB1-AL4 conector (borne) 10 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 70 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 20 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 25,5 mm² - para 20 pólos AB1-ALN22 conector (borne) 2,5 mm² - para 20 pólos AB1-ALN22 conector (borne) 6 mm² - para 20 pólos AB1-ALN35 conector (borne) 10 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN35 conector (borne) 35 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN35 conector (borne) 16 mm² AB1-ALN35 conector (borne) 15 mm² AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN35 conector (borne) 6, 10, 16 e 35 mm² AB1-AC conector (borne) 6, 10, 16 e 35 mm² AB1-AC conector (borne) 2,5 mm² AB1-AC conector (borne) 2,5 mm² AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 16 mm² AB1-CS4 conector (borne) 16 mm² AB1-CS4 conector (borne) 16 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN35 conector (borne) 13 mm² AB1-CSN35 conector (borne) 15 mm² AB1-CSN35 conector (borne) 15 mm² AB1-CSN35 conector (borne) 15 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN36 conector (borne) 1		
AB1-ASN70 conector (borne) 70 mm² Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC6 conector (borne) 10 mm² AB1-ACN10 conector (borne) 16 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN15 conector (borne) 35 mm² - para 20 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN35 conector (borne) 10 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN35 conector (borne) 4 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN352 conector (borne) 10 mm² AB1-ALN352 conector (borne) 2,5 mm² AB1-AC conector (borne) 4 mm² AB1-AC conector (borne) 6 mm² AB1-AC conector (borne) 6 mm² AB1-AC conector (borne) 10 mm² AB1-AC conector (borne) 2,5 mm² AB1-AC conector (borne) 10 mm² AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 10 mm² AB1-CSN10 conector (borne) 35 mm² AB1-CSN10 conector (borne) 35 mm² AB1-CSN20 conector (borne) 35 mm² AB1-CSN30 conector (borne) 35 mm² AB1-CSN40 conector (borne) 35 mm² AB1-CSN40 conector (borne) 35 mm² AB1-CSN40 conector (borne) 4 mm² AB1-CSN40 conector (borne) 35 mm² AB1-CSN40 conector (borne) 4 mm²		
Placa de extremidade AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC6 conector (borne) 6 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² AB1-ACN16 conector (borne) 16 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 4 mm² - para 80 pólos AB1-AL4 conector (borne) 4 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN32 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 4 mm² AB1-A4 conector (borne) 4 mm² AB1-A6 conector (borne) 4 mm² AB1-A7 conector (borne) 4 mm² AB1-A7 conector (borne) 6 mm² AB1-A7 conector (borne) 6 mm² AB1-A7 conector (borne) 6 mm² AB1-A10 conector (borne) 6 mm² AB1-A5 conector (borne) 6 mm² AB1-A5 conector (borne) 6 mm² AB1-CS2 conector (borne) 6, 10, 16 e 35 mm² AB1-CS2 conector (borne) 6 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 16 mm² AB1-CSN10 conector (borne) 35 mm² AB1-CSN20 conector (borne) 35 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN40 conector (borne) 4 mm²		
AB1-AC24 conector (borne) 2,5 e 4 mm² AB1-AC81 conector (borne) 6 mm² AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 40 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² - para 20 pólos AB1-ALN35 conector (borne) 2,5 mm² - para 20 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN32 conector (borne) 4 mm² AB1-ALN32 conector (borne) 6 mm² AB1-ALN35 conector (borne) 16 mm² AB1-ALN362 conector (borne) 16 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 2,5 mm² AB1-A5 conector (borne) 4 mm² AB1-A6 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 6, 10, 16 e 35 mm² AB1-CS4 conector (borne) 6 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN10 conector (borne) 16 mm² AB1-CSN20 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN35 conector (borne) 2,5 mm²		
AB1-AC61 conector (borne) 6 mm² AB1-ACN16 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 10 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN102 conector (borne) 18 mm² AB1-ALN162 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 2,5 mm² AB1-AA conector (borne) 2,5 mm² AB1-AA conector (borne) 4 mm² AB1-AB1-AC conector (borne) 4 mm² AB1-AC conector (borne) 6, 10, 16 e 35 mm² Impa com indicação perigo AB1-CS2 conector (borne) 2,5 e 4 mm² AB1-CS4 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 2,5 mm² AB1-CS5 conector (borne) 6, 10, 16 e 35 mm² AB1-CS1 conector (borne) 10 mm² AB1-CS2 conector (borne) 2,5 mm² AB1-CS3 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS5 conector (borne) 10 mm² AB1-CSN10 conector (borne) 16 mm² AB1-CSN2 conector (borne) 35 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN40 conector (borne) 35 mm² AB1-CSN40 conector (borne) 4 mm²		
AB1-ACN10 conector (borne) 10 mm² AB1-ACN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 4 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN15 conector (borne) 35 mm² - para 20 pólos AB1-ALN25 conector (borne) 2,5 mm² - para 20 pólos AB1-ALN20 conector (borne) 4 mm² AB1-ALN20 conector (borne) 4 mm² AB1-ALN40 conector (borne) 6 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 6 mm² AB1-ALN164 conector (borne) 6 mm² AB1-ACN164 conector (borne) 6 mm² AB1-ACN165 conector (borne) 10 mm² AB1-CSA conector (borne) 10 mm² AB1-CSA conector (borne) 10 mm² AB1-CSN16 conector (borne) 35 mm² AB1-CSN20 conector (borne) 35 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN40 conector (borne) 35 mm² AB1-CSN40 conector (borne) 4 mm² AB1-CSN40 conector (borne) 35 mm² AB1-CSN40 conector (borne) 4 mm² AB1-CSN40 conector (borne) 4 mm²		
AB1-ALN16 conector (borne) 16 mm² Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 4 mm² - para 80 pólos AB1-AL4 conector (borne) 4 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN352 conector (borne) 10 mm² AB1-ALN352 conector (borne) 16 mm² AB1-ALN352 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 2,5 mm² AB1-A6 conector (borne) 4 mm² AB1-A6 conector (borne) 6 mm² AB1-AT1 conector (borne) 6 mm² AB1-AT2 conector (borne) 6 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 6 mm² AB1-CS56 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN15 conector (borne) 10 mm² AB1-CSN16 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN35 conector (borne) 35 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm²		
Barra de ligação com parafuso não isolada AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 4 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN32 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN352 conector (borne) 16 mm² AB1-ALN352 conector (borne) 16 mm² AB1-A2 conector (borne) 2,5 mm² AB1-A4 conector (borne) 4 mm² AB1-A4 conector (borne) 6 mr² AB1-A5 conector (borne) 2,5 e 4 mm² AB1-A7 conector (borne) 2,5 e 4 mm² AB1-A72 conector (borne) 6, 10, 16 e 35 mm² AB1-CS2 conector (borne) 16 mm² AB1-C		
AB1-AL2 conector (borne) 2,5 e 4 mm² - para 80 pólos AB1-AL4 conector (borne) 4 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN102 conector (borne) 18 mm² AB1-ALN162 conector (borne) 35 mm² AB1-ALN162 conector (borne) 18 mm² AB1-ALN162 conector (borne) 2,5 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 e 4 mm² AB1-CS4 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 6, 10, 16 e 35 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm²		
AB1-AL4 conector (borne) 4 mm² - para 70 pólos AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 16 mm² - para 20 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos Ba1-ALN22 conector (borne) 2,5 mm² AB1-ALN22 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² AIVeólo para teste AB1-ALN352 AB1-A2 conector (borne) 4 mm² AB1-A3 conector (borne) 4 mm² AB1-A4 conector (borne) 6 mm² Pino para teste AB1-A1 AB1-A5 conector (borne) 6, 10, 16 e 35 mm² AB1-A71 conector (borne) 6, 10, 16 e 35 mm² AB1-A8 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm		
AB1-AL6 conector (borne) 10 mm² - para 40 pólos AB1-ALN10 conector (borne) 16 mm² - para 40 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN402 conector (borne) 6 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN352 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 AB1-A2 conector (borne) 4 mm² AB1-A4 conector (borne) 6 mm² Pino para teste AB1-A5 AB1-A6 conector (borne) 6, 10, 16 e 35 mm² AB1-A72 conector (borne) 6, 10, 16 e 35 mm² AB1-A8 conector (borne) 6, 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS2 conector (borne) 10 mm² AB1-CS4 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 16 mm²		
AB1-ALN10 conector (borne) 10 mm² - para 40 pólos AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN42 conector (borne) 6 mm² AB1-ALN402 conector (borne) 10 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 2,5 mm² AB1-AA conector (borne) 4 mm² AB1-AA conector (borne) 6 mm² Pino para teste AB1-A71 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 2,5 mm² AB1-CS5 conector (borne) 4 mm² AB1-CS6 conector (borne) 6, 10, 16 e 35 mm² AB1-CS1 conector (borne) 10 mm² AB1-CS1 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN15 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm²		
AB1-ALN16 conector (borne) 16 mm² - para 20 pólos AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 AB1-A4 conector (borne) 4 mm² AB1-A6 conector (borne) 6 mm² Pino para teste AB1-A6 AB1-A71 conector (borne) 2,5 e 4 mm² AB1-A72 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS4 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN70 conector (borne) 35 mm² AB1-CSA conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm²		
AB1-ALN35 conector (borne) 35 mm² - para 20 pólos Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN162 conector (borne) 16 mm² AB1-ALN162 conector (borne) 15 mm² AB1-ALN162 conector (borne) 35 mm² AVeólo para teste AB1-AL Conector (borne) 2,5 mm² AB1-AL CONECTO (borne) 4 mm² AB1-AL CONECTO (borne) 4 mm² AB1-AL CONECTO (borne) 5 mm² AB1-AL CONECTO (borne) 6 mm² AB1-AL CONECTO (borne) 6 mm² AB1-AL CONECTO (borne) 2,5 e 4 mm² AB1-AL CONECTO (borne) 6, 10, 16 e 35 mm² AB1-AL CONECTO (borne) 2,5 mm² AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 6 mm² AB1-CSN10 conector (borne) 16 mm² AB1-CSN10 conector (borne) 35 mm² AB1-CSN10 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CSA conector (borne) 2,5 mm² AB1-CSA conector (borne) 4 mm²		
Barra de ligação com parafuso isolado para 2 pólos AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN62 conector (borne) 10 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN352 conector (borne) 35 mm² AB1-ALN352 conector (borne) 2,5 mm² Alvéolo para teste AB1-A2 AB1-A4 conector (borne) 4 mm² AB1-A5 conector (borne) 6 mm² Pino para teste AB1-AT1 AB1-AT2 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 10 mm² AB1-CSN10 conector (borne) 16 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne		
AB1-ALN22 conector (borne) 2,5 mm² AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN102 conector (borne) 10 mm² AB1-ALN352 conector (borne) 35 mm² AB1-ALN352 conector (borne) 2,5 mm² AB1-A2 conector (borne) 4 mm² AB1-A4 conector (borne) 6 mm² Pino para teste AB1-A5 AB1-A71 conector (borne) 2,5 e 4 mm² AB1-A72 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS4 conector (borne) 4 mm² AB1-CS4 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
AB1-ALN42 conector (borne) 4 mm² AB1-ALN62 conector (borne) 6 mm² AB1-ALN102 conector (borne) 16 mm² AB1-ALN162 conector (borne) 35 mm² AB1-ALN352 conector (borne) 2,5 mm² AB1-A2 conector (borne) 4 mm² AB1-A4 conector (borne) 6 mm² Pino para teste AB1-A6 AB1-A71 conector (borne) 2,5 e 4 mm² AB1-A72 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 4 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
AB1-ALN62 conector (borne) 6 mm² AB1-ALN162 conector (borne) 10 mm² AB1-ALN162 conector (borne) 35 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 AB1-A4 conector (borne) 4 mm² AB1-A6 conector (borne) 6 mm² Pino para teste AB1-AT1 AB1-AT2 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 10 mm² AB1-CSN10 conector (borne) 16 mm² AB1-CSN15 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 4 mm²		
AB1-ALN162 conector (borne) 16 mm² AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 2,5 mm² AB1-A4 conector (borne) 4 mm² AB1-A5 conector (borne) 6 mm² Pino para teste AB1-AT1 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 4 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	AB1-ALN62	conector (borne) 6 mm ²
AB1-ALN352 conector (borne) 35 mm² Alvéolo para teste AB1-A2 conector (borne) 2,5 mm² AB1-A4 conector (borne) 4 mm² AB1-A6 conector (borne) 6 mm² Pino para teste AB1-AT1 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN15 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	AB1-ALN102	conector (borne) 10 mm ²
Alvéolo para teste AB1-A2	AB1-ALN162	conector (borne) 16 mm ²
AB1-A2 conector (borne) 2,5 mm² AB1-A4 conector (borne) 4 mm² AB1-A6 conector (borne) 6 mm² Pino para teste AB1-AT1 AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 AB1-CS4 conector (borne) 2,5 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 AB1-CA4 conector (borne) 4 mm²	AB1-ALN352	conector (borne) 35 mm ²
AB1-A4 conector (borne) 4 mm² AB1-A6 conector (borne) 6 mm² Pino para teste AB1-AT1 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	Alvéolo para teste	
AB1-A6 conector (borne) 6 mm² Pino para teste AB1-AT1 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	AB1-A2	conector (borne) 2,5 mm ²
Pino para teste AB1-AT1 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN35 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	AB1-A4	conector (borne) 4 mm ²
AB1-AT1 conector (borne) 2,5 e 4 mm² AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 AB1-CS4 conector (borne) 2,5 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 AB1-CA4 conector (borne) 4 mm²	AB1-A6	conector (borne) 6 mm ²
AB1-AT2 conector (borne) 6, 10, 16 e 35 mm² Tampa com indicação perigo AB1-CS2 AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	Pino para teste	
Tampa com indicação perigo AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN35 conector (borne) 16 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 4 mm²	AB1-AT1	conector (borne) 2,5 e 4 mm ²
AB1-CS2 conector (borne) 2,5 mm² AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² AB1-CSN2 conector (borne) 2,5 mm² AB1-CA2 conector (borne) 4 mm²	AB1-AT2	conector (borne) 6, 10, 16 e 35 mm ²
AB1-CS4 conector (borne) 4 mm² AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	Tampa com indicaç	ão perigo
AB1-CS6 conector (borne) 6 mm² AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	AB1-CS2	conector (borne) 2,5 mm ²
AB1-CSN10 conector (borne) 10 mm² AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²	AB1-CS4	conector (borne) 4 mm ²
AB1-CSN16 conector (borne) 16 mm² AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
AB1-CSN35 conector (borne) 35 mm² AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
AB1-CSN70 conector (borne) 70 mm² Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
Tampa amarela para barra de ligação AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
AB1-CA2 conector (borne) 2,5 mm² AB1-CA4 conector (borne) 4 mm²		
AB1-CA4 conector (borne) 4 mm ²		
AB1-CA6 conector (borne) 6 mm ²		
	AB1-CA6	conector (borne) 6 mm ²

Referências	Descrição
Separador amarelo	entre barra de ligação
AB1-CJ2	conector (borne) 2,5 mm ²
AB1-CJ4	conector (borne) 4 mm ²
AB1-CJ6	conector (borne) 6 mm ²
AB1-CJN10	conector (borne) 10 mm ²
AB1-CJN16	conector (borne) 16 mm ²
Barra de ligação se	ccionável para 2 blocos
AB1-BL2	conector (borne) 2,5 mm ²
AB1-BL4	conector (borne) 4 mm ²
AB1-BL6	conector (borne) 6 mm ²
	RNES) DE POTÊNCIA "PARAFUSO PASSANTE"
AB1-BB9535	95 mm² / passo 32 mm perfil Ômega
AB1-BB18535	150 mm² / passo 42 mm perfil Ômega
AB1-BB24035	240 mm² / passo 42 mm perili Ômega
	RNES) DE POTÊNCIA "PARAFUSO CONECTOR"
AB1-BC9535	95 mm ² / passo 32 mm perfil Ômega
AB1-BC9535 AB1-BC15035	150 mm² / passo 42 mm perfil Ômega
AB1-BC24035	240 mm² / passo 42 mm perfil Ômega
	CONECTORES (BORNES) DE POTÊNCIA "AB1-BB E AB1-BC"
	CONECTORES (BURNES) DE PUTENCIA ABT-BB E ABT-BC
Tampa de proteção	. (1) 05 0
AB1-CP1	conector (borne) 95 mm ²
AB1-CP2	conector (borne) 150, 185 e 240 mm²
Separação de circu	
AB1-CT1	conector (borne) 95 mm ²
AB1-CT2	conector (borne) 150, 185 e 240 mm ²
CONECTORES (BO	
AB1-TP435U	4,0 mm² / passo 6 mm perfil Ômega/DIN
AB1-TP635U	6,0 mm² / passo 8 mm perfil Ômega/DIN
AB1-TP1035U	10 mm² / passo 10 mm perfil Ômega/DIN
AB1-TP1635U	16 mm² / passo 12 mm perfil Ômega/DIN
AB1-TP3535U	35 mm² / passo 16 mm perfil Ômega/DIN
CONECTORES (BO	
AB1-NEN435U	4,0 e 6 mm² / passo 6 mm perfil Ômega/DIN
AB1-NEN1035U	10 e 16 mm² / passo 10 mm perfil Ômega/DIN
AB1-NEN1635U	16 e 25 mm² / passo 12 mm perfil Ômega/DIN
ACESSORIOS PARA	A CONECTORES (BORNES) DE NEUTRO AB1-NE
Placa de extremidad	de
AB1-TNN4	conector (borne) 4 e 6 mm ²
AB1-TNN10	conector (borne) 10 e 16 mm ²
AB1-TNN16	conector (borne) 16 e 25 mm ²
Suporte para barra	
AB1-SBN	conector (borne) 4, 10, 16 e 25 mm ²
Barra de cobre	
AB1-PC3	10 x 3 comprimento 1000 mm
Estribo para barra 1	·
AB1-EBN16	16 mm² / passo 8,5 mm
AB1-EBN35	35 mm² / passo 14,3 mm

AB1-FUSE435U5X

Conectores (bornes) AB1

Referências	Descrição
CONECTOR (BORNE	E) FIXO PARA DIODO
AB1-DD11435U	4 mm ² / passo 12 mm
CONECTOR (BORNE	E) FIXO PARA FUSÍVEL, 5 X 20
AB1-FU10135U	10 mm ² / passo 6 mm
CONECTOR (BORNE	E) FIXO PARA FUSÍVEL, 5 X 25
AB1-FU10235U	10 mm ² / passo 12 mm
ACESSÓRIOS PARA	CONECTOR (BORNE) FUSÍVEL
Placa de extremidad	e ` ´
AB1-TF	conector (borne) 10 mm ²
Barra de ligação	
AB1-BF	30 pólos
AB1-BF2	2 pólos
CONECTORES (BORNE)	EXTRAÍVEL PARA FUSÍVEL, DIODO OU RESISTOR
AB1-SF435U	parte fixa 4 mm / passo 6 mm
AB1-SF520	parte móvel para fusível
AB1-SV1	parte móvel para diodo ou fusível
ACESSÓRIOS PARA	CONECTOR (BORNE) FUSÍVEL
Placa de extremidad	e
AB1-PS4	para AB1-SF435U
CONECTOR (BORNE	S) SECCIONÁVEL SEM FUSÍVEL

parte fixa 4 mm / passo 6 mm (Ômega/DIN)

Referências	Descrição
CONECTORES (BOR	NES) PARA DETECTORES DE PROXIMIDADE
AB1-DDP235U	sem terra s/LED 2,5 mm² / passo 6 mm
AB1-DDP235ULP	sem terra s/LED "+" 2,5 mm² / passo 6 mm
AB1-DDP235ULM	sem terra s/LED "-" 2,5 mm² / passo 6 mm
AB1-DDP235T	com terra s/LED "-" 2,5 mm² / passo 6 mm
AB1-DDP235TLP	com terra s/LED "+" 2,5 mm² / passo 6 mm
AB1-DDP235TLM	com terra s/LED "-" 2,5 mm² / passo 6 mm
ACESSÓRIOS PARA	CONECTOR (BORNE) DETECTORES AB1-DDP
Separador de circuit	tos ´
AB1-ACD2	borne 2,5mm ²
Barra de ligação	
AB1-ALD12R	vermelho
AB1-ALD12B	azul
CONECTORES (BOR	RNES) DUPLOS
AB1-ET435U	4 mm² / passo 6 mm (Ômega/DIN)
ACESSÓRIOS PARA CONE	ECTOR (BORNE) SECCIONÁVEIS AB1-SC E DUPLOS AB1-E
Placa de extremidad	le .
AB1-PS4	para conector (borne) AB1-SC435U
AB1-TE	para conector (borne) AB1-ET435U
Barra de ligação con	m parafuso não isolada
AB1-BE	para conector (borne) AB1-ET435U - 70 pólos
AB1-BE2	para conector (borne) AB1-ET435U - 2 pólos
AB1-L2ET	entre 2 estágios AB1-ET435U
CONECTORES (BOR	RNES) TRIPLOS
AB1-ET3235U	4 mm² / passo 6 mm (Ômega/DIN)
ACESSÓRIOS PARA	CONECTORES (BORNES) TRIPLOS AB1-ET
Barra de ligação - co	omprimento 600 mm

vermelha 70 pontos de ligação

AB1-ALD100R

AB1-ALD100B

DENTE COM 10	ALGARISMOS SUCESSIVOS PARA AB1
	ALGANISMOS SUCESSIVOS PARA ADT
Passo 5 mm	. to a second
AB1-BV5	virgem
AB1-B510	(1 a 10)
AB1-B520	(11 a 20)
AB1-B530	(21 a 30)
AB1-B540	(31 a 40)
AB1-B550	(41 a 50)
AB1-B560	(51 a 60)
AB1-B570	(61 a 70)
AB1-B580	(71 a 80)
AB1-B590	(1 a 90)
AB1-B5100	(91 a 100)
Passo 6 mm	
AB1-BV6	virgem
AB1-B610	(1 a 10)
AB1-B620	(11 a 20)
AB1-B630	(21 a 30)
AB1-B640	(31 a 40)
AB1-B650	(41 a 50)
AB1-B660	(51 a 60)
AB1-B670	(61 a 70)
AB1-B680	(71 a 80)
AB1-B690	(1 a 90)
AB1-B6100	(91 a 100)
Passo 8 mm	
AB1-BV8	virgem
AB1-B810	(1 a 10)
AB1-B820	(11 a 20)
AB1-B830	(21 a 30)
AB1-B840	(31 a 40)
AB1-B850	(41 a 50)
AB1-B860	(51 a 60)
AB1-B870	(61 a 70)
AB1-B880	(71 a 80)
AB1-B890	(1 a 90)
AB1-B8100	(91 a 100)
Pente com 10 car	racteres passo 6 mm
AB1-B6L1	L1
AB1-B6L2	L2
AB1-B6L3	L3
Identificadores-u	nitários
AB1-RT	Ť
AB1-R12	+
AB1-R13	-

PENTE COM 10 NÚ	IMEROS OU SINAIS IDÊNTICOS
AB1-RV	virgem
AB1-R1	1
AB1-R2	2
AB1-R3	3
AB1-R4	4
AB1-R5	5
AB1-R6	6
AB1-R7	7
AB1-R8	8
AB1-R9	9
AB1-R0	0
PENTE COM 10 NÚ	IMEROS DE 0 A 9
AB1-R11	09
PENTE COM 10 LE	TRAS MAIÚSCULAS IDÊNTICAS
AB1-G●	AaZ
Obs. Substituir o po	nto (●) da referência pela letra escolhida (A a Z).
SUPORTE PARA 6	CARACTERES
AB1-SR6	
POSTE DE EXTREI	MIDADES PARA AB1
AB1-AB8P35	plástico p/perfil ômega
AB1-AB8M35	metálico p/perfil ômega
AB1-AB7P32	plástico p/perfil DIN assimétr.
AB1-AB10M32	metálico p/perfil DIN assimétr.
PERFIS PARA AB1	
AM1-DP 200	perfil simétrico 15 x 7,5 mm
D75-MR 201	trilbo DINLC

O relé foi essencialmente projetado para adaptação, amplificação, multiplicação e comandos auxiliares em sistemas de automação. O relé permite:

- A adaptação de tensão e corrente de entradas e saídas
- Multiplicação de informações pela escolha e número de contatos

Relés interface e miniatura

Tipo de relé		Relé interface RSB			
Características de	os contatos				
Corr. térm. Ith A (te	mp. ≤ 55°C)	8	12	16	
Nº de contatos		2 "NANF"	1 "NANF"	1 "NANF"	
Materiais dos conta	atos	AgNi	AgNi	AgNi	
Tensão comutação	mín./máx.	5/250 Vca/cc			
Capac. comut. mín (mA/VA)	./máx.	5/2000	5/3000	5/4000	
Conformidade às n	ormas	IEC/EN 61810-1	, UL 508, CSA C2	2-2 nº14	
Certificações dos p	rodutos	UL, CSA			
Características da	as bobinas				
Consumo médio na	a retenção	0,75 VA/0,45 W			
Tensão admissível		0,8/0,851,1 Un (50 / 60 Hz ou ===)			
Referências		(1)	(1)	(1)	
Tensão alim.	6 Vcc	RSB2A080RD	RSB1A120RD	RSB1A160RD	
bobina	12 Vcc	RSB2A080JD	RSB1A120JD	RSB1A160JD	
em corr. contínua	24 Vcc	RSB2A080BD	RSB1A120BD	RSB1A160BD	
CC	48 Vcc	RSB2A080ED	RSB1A120ED	RSB1A160ED	
	60 Vcc	RSB2A080ND	RSB1A120ND	RSB1A160ND	
	110 Vcc	RSB2A080FD	RSB1A120FD	RSB1A160FD	
	125 Vcc	_	_	-	
Tensão alim.	24 Vca	RSB2A080B7	RSB1A120B7	RSB1A160B7	
bobina	48 Vca	RSB2A080E7	RSB1A120E7	RSB1A160E7	
em corr. altern. CA	120 Vca	RSB2A080F7	RSB1A120F7	RSB1A160F7	
	220 Vca	RSB2A080M7	RSB1A120M7	RSB1A160M7	
	230 Vca	RSB2A080P7	RSB1A120P7	RSB1A160P7	
	240 Vca	RSB2A080U7	RSB1A120U7	RSB1A160U7	

Referências para relé sem base; para relé com base, acrescentar S no final da referências escolhida (exemplo: RSB2A080B7 + base RSZE1S48M torna-se RSB2A080B7S).

Relé miniatura RXM

- Amplificação da saída de corrente do controlador programável
- Comandos auxiliares de circuitos não controlados pelo controlador programável 4 famílias de produtos:

relé de interface RS:

relé miniatura **RX**; relé universal **RU**; relés de potência **RPM/RPF**

12	10	6	3		
2 "NANF"	3 "NANF"	4 "NANF"	4 "NANF"		
AgNi	AgNi	AgNi	AgAu		
12/250 Vca/cc					
10/3000	10/2500	10/1500	2/1500		
IEC/EN 61810-1 (ed.	2), UL 508, CSA C22	-2 nº14			
UL, CSA (em curso)					
1,2 VA/0,9 W					
0,81,1 Un (50 / 60	OHz ou ===)				
(2)	(2)	(2)			
_	_	_	_		
RXM2AB2JD	RXM3AB2JD	RXM4AB2JD	RXM4GB2JD		
RXM2AB2BD	RXM3AB2BD	RXM4AB2BD	RXM4GB2BD		
RXM2AB2ED	RXM3AB2ED	RXM4AB2ED	RXM4GB2ED		
_	_	-	_		
RXM2AB2FD	RXM3AB2FD	RXM4AB2FD	RXM4GB2FD		
_	_	RXM4AB2GD	_		
RXM2AB2B7	RXM3AB2B7	RXM4AB2B7	RXM4GB2B7		
RXM2AB2E7	RXM3AB2E7	RXM4AB2E7	RXM4GB2E7		
RXM2AB2F7	RXM3AB2F7	RXM4AB2F7	RXM4GB2F7		
_	_	_	_		
RXM2AB2P7	RXM3AB2P7	RXM4AB2P7	RXM4GB2P7		
_	_	_	RXM4GB2U7		
(2) Referências para relá com LED: para relá com LED substituir 2 por 1					

(2) Referências para relé com LED; para relé sem LED, substituir 2 por 1 (exemplo: RXM2AB2JD torna-se RXM2AB1JD).

Relés universais e de potência

Tipo de relé	Tipo de relé Relé universal RUM					
Característic	ísticas Octal Undecal		Faston			
dos contatos	3	(8 pinos) (11 pinos)				
Corr. térm. Ith	ı A	10	10	3	10	10
(temp. ≤ 55°)	C)					
Nº de contato	S	2 "NANF"	3 "NANF"	3 "NANF"	2 "NANF"	3 "NANF"
Materiais dos contatos	;	AgNi	AgNi	AgAu	AgNi	AgNi
Tensão comu	taaãa	12 / 250 Vc	0/00			
mín./máx.	layau	12 / 230 VC	d/UU			
Capac. comu	t.	10/2500	10/2500	3/750	10/2500	10/2500
mín./máx. (m	A/VA)					
Conformidade	е	IEC/EN 618	10-1 (ed. 2),	UL 508, CSA	C22-2 nº 1	4
às normas						
Certificações		UL, CSA (en	n curso)			
dos produtos						
Característic	as das					
Consumo mé	dio	23VA/1,4	W			
na retenção						
Tensão admis	ssível					
Referências		(1)	(1)	_	(1)	(1)
Tensão	6 Vcc	-	-	-	-	-
alim. bobina	12 Vcc	RUMC2AB2JD	RUMC3AB2JD	-	RUMF2AB2JD	RUMF3AB2JD
em corr.	24 Vcc	RUMC2AB2BD	RUMC3AB2BD	RUMC3GB2BD	RUMF2AB2BD	RUMF3AB2BD
contínua CC	48 Vcc	RUMC2AB2ED	RUMC3AB2ED	RUMC3GB2ED	RUMF2AB2ED	RUMF3AB2ED
	60 Vcc	-	-	-	-	_
	110 Vcc	RUMC2AB2FD	RUMC3AB2FD	-	RUMF2AB2FD	RUMF3AB2FD
	125 Vcc	-	RUMC3AB2GD	-	-	-
Tensão	24 Vca	RUMC2AB2B7	RUMC3AB2B7	RUMC3GB2B7	RUMF2AB2B7	RUMF3AB2B7
alim. bobina	48 Vca	RUMC2AB2E7	RUMC3AB2E7	RUMC3GB2E7	RUMF2AB2E7	RUMF3AB2E7
em corr.	120 Vca	RUMC2AB2F7	RUMC3AB2F7	RUMC3GB2F7	RUMF2AB2F7	RUMF3AB2F7
altern. CA	220 Vca	-	-	-	-	_
	230 Vca	RUMC2AB2P7	RUMC3AB2P7	RUMC3GB2P7	RUMF2AB2P7	RUMF3AB2P7
	240 Vca		_	-	_	-

⁽¹⁾ Referências para relé com LED; para relé sem LED, substituir 2 por 1 (exemplo: RXM2AB2JD torna-se RXM2AB1JD).

Relé de potê	ncia RPM			RPF	
Faston					
15	15	15	15	30 (2)	30 (4)
1 "NANF"	2 "NANF"	3 "NANF"	4 "NANF"	2 "NA"	2 "NANF"
AgNi	AgNi	AgNi	AgNi	AgSnO ₂	AgSnO ₂
12 / 250 Vca/	CC			12 / 250 Vca/	CC
100/3750	100/3750	100/3750	100/3750	100/7200	100/7200
IEC/EN 61810)-1 (ed. 2), UL	508, CSA C22	-2 nº 14		
UL, CSA (em o	curso)				
0,9VA/0,7W	1,2VA/0,9W	1,5VA/1,7W	1,5VA/2W	4VA/1,7W	
(1)	(1)	(1)	(1)	-	
-	-	-	-	-	-
RPM12JD	RPM22JD	RPM32JD	RPM42JD	RPF2AJD	RPF2BJD
RPM12BD	RPM22BD	RPM32BD	RPM42BD	RPF2ABD	RPF2BBD
RPM12ED	RPM22ED	RPM32ED	RPM42ED	-	-
_	-	_	-	_	_
RPM12FD	RPM22FD	RPM32FD	RPM42FD	RPF2AFD	RPF2BFD
-	-	-	-	-	-
RPM12B7	RPM22B7	RPM32B7	RPM42B7	RPF2AB7	RPF2BB7
RPM12E7	RPM22E7	RPM32E7	RPM42E7	-	-
RPM12F7	RPM22F7	RPM32F7	RPM42F7	RPF2AF7	RPF2BF7
-	-	-	-	-	-
RPM12P7	RPM22P7	RPM32P7	RPM42P7	RPF2AP7	RPF2BP7
-	-	-	-	-	-

(2) 30 A p/montagem c/espaço de 13 mm entre 2 relés e 25 A para montagem lado a lado.

Bases e acessórios para relés plug-in

ripo de base	;	Para rele illiteri	ace nob	
Certificações	do produto	UL, CSA		
Base separa	da: alimentação de	um lado e entra	da e saída do	lado oposto
		RSZE1S48M	RSZE1S35M	RSZE1S48M (1)
Dimensões e	m mm (A x L x P)	79x16x61	79x16x61	79x16x61
Base mista:	alimentação e entra	da de um lado (e saída do lado	o oposto
Conexão por	parafuso	_	_	_
Dimensões e	m mm (A x L x P)	_	_	_
Conexão por	conector	_	_	_
Dimensões e	m mm (A x L x P)	_	_	_
Módulos de	proteção			
Diodo	6230 Vcc	RZM040W		
Diodo +	624 Vcc	RZM031RB		
LED verde	2460 Vcc	RZM031BN		
	110230 Vcc	RZM031FDP		
Circuito RC	2460 Vca	RZM041BN7		
	110240 Vca	RZM041FU7		
Varistor	624 Vcc ou ca	RZM021RB (3)		
	2460 Vcc ou ca	RZM021BN (3)		
	110230 Vcc ou ca	RZM021FP (3)		
	24 Vcc ou ca	_		
	240 Vcc ou ca	_		
Módulo temp		_		
multifunção	24230 Vcc ou ca			
Acessórios				
Clips plástico extração	s de retenção e	RSZR215		
	os de retenção			
Etiqueta para		RSZL300		
	gação, 2 pólos	_		
	mont. trilho DIN	_		
	nt. c/sup.fix. painel	_		
Auupt. p/11101	it. 0/3up.iin. pailiei	I.		

(1) Para utilização do relé RSB 1A160 •• com a base RSZ E1S48M, é necessário fazer uma ligação entre bornes. Ligar terminais 11 com 21, 14 com 24 e 12 com 22.

Para rele miniatur	a KXM		
UL, CSA			
RXZE2S108M	RXZE2S111M	RXZE2S114M	RXZE2S114M
79x27x61	79x27x61	80x27x43	80x27x43
RXZE2M114 (2)	_	RXZE2M114	RXZE2M114
79x30x40	_	79x30x40	79x30x40
RXZE2M114M (2)	_	RXZE2M114M	RXZE2M114M
80x27x43	_	80x27x43	80x27x43
RXM040W			
-			
_			
-			
RXM041BN7			
RXM041FU7			
RXM021RB			
RXM021BN			
RXM021FP			
_			
-			
-			
RXZR335			
RXZ400			
RXZL420 (exceto R	XZE2M114)		
RXZS2			
RXZE2DA			
RXZE2FA			

(2) Limitada a 10 A em operação.

(3) Com LED

Bases e acessórios para relés plug-in

Tipo de ba	se	Para relé	universal	RUM		
Certificaçõ	es do produto	UL, CSA				
Base sepa	rada: alimentação	de um lad	lo e entrad	da e saída	do lado d	posto
		RUZSC2M	RUZSC3M	RUZSC3M	RUZSF3M	RUZSF3M
Dimensões	em mm (A x L x P)	92x36x45	92x36x63	92x36x3	92x36x63	92x36x63
Base mist	a: alimentação e en	trada de	um lado e	saída do	lado opos	to
Conexão po	or parafuso	RUZC2M	RUZC3M	RUZC3M	-	_
Dimensões	em mm (A x L x P)	75x38x27	75x38x27	75x38x27	_	_
Conexão po	or conector	-	-	-	-	_
Dimensões	em mm (A x L x P)	-	_	-	_	_
Módulos d	le proteção					
Diodo	6230 Vcc	RUW240E	3D			
Diodo +	6230 Vcc	_				
LED verde		_				
		-				
Circuito RC	2460 Vca	-				
	110240 Vca	RUW241F	77			
Varistor	624 Vcc ou ca	-				
	2460 Vcc ou ca	-				
	110	-				
	230 Vcc ou ca					
	24 Vcc ou ca	RUW242E				
	240 Vcc ou ca	RUW242F	-			
Mód. temp	orizador multifunção	RUW1011	ИW			
	24230 Vcc ou ca					
Acessório	-					
	cos de retenção e	-				
extração	~					
	licos de retenção	RUZC200				
Etiqueta pa		RUZL420				
	ligação, 2 pólos	RUZS2				
	p/mont. trilho DIN	_				
Adapt. p/m	ont. c/sup.fix. painel	-				

i ara reie ue	potentia nei	IVI		raia i ele de potelicia ne i
UL, CSA				
-	-	-	-	_
-	-	_	-	_
				·
RPZF1	RPZF2	RPZF3	RPZF4	-
80x21x31	80x30x30	80x40x30	80x50x30	_
-	-	-	-	_
-	-	_	-	_
1 e 2 pólos		3 e 4 pólos		
RXM040W		RUW240BD		-
-		-		-
-		-		_
-		-		-
RXM041BN7		-		_
RXM041FU7		RUW241P7		-
RXM021RB		-		_
RXM021BN		_		_
RXM021FP		-		-
RUW242B7		-		-
-		RUW242P7		-
-		RUW101MW		-
_				_
RPZF1 (para re	elés de 1 pólo)			_
_ (para :	polo)			_
-				_
RPZ1DA	RXZE2DA	RPZ3DA	RPZ4DA	_
RPZ1FA	RXZE2FA	RPZ3FA	RPZ4FA	_
				1

5 Zelio Analog

Conversores analógicos

Conversores de sinais analógicos

A família de conversores Zelio Analog é utilizada para a conversão de sinais emitidos por termopares e sondas PT 100, em sinais elétricos padronizados.

Esta família complementa a oferta de conversores de tensão em corrente ou vice-versa.

Fácil de utilizar devido à pré-calibração das faixas de entrada e de saída

- Saídas protegidas contra:
- ☐ Inversão de polaridade
- ☐ Curto-circutio e sobretensão
- Detecção de interrupção de malha
- Tampa de proteção lacrável
- Montagem em trilho DIN ou fixação por parafuso no painel

Zelio Analog

Conversores analógicos

Termopar Universal

Tormopar omre					
Tipo	Termopar tipo	J		Termopar tipo	K
Faixa de temperatura	0150°C	0300°C	0600°C	0600°C	01200°C
	32302°F	32572°F	321112°F	321112°F	322192°F
Faixa de saída	010 V / 0	20 mA - 420 m	A comutável		-
Dimensões A x L x P	80 x 22,5 x 80	mm			-
Tensão	24 Vcc - Não is	solada			-
Conformidade às normas	IEC 947-1, IEC	584-1			-
Certificações do produto	UL, CSA, GL, C	€			-
Referências	RMTJ40BD	RMTJ60BD	RMTJ80BD	RMTK80BD	RMTK90BD

PT 100 Universal

Tipo	PT 100				
Faixa de temperatura	-4040°C	-100100°C	0100°C	0250°C	0500°C
	-40104°F	-148212°F	32212°F	32482°F	32932°F
Faixa de saída	010 V / 0	20 mA - 420 mA	l comutável		
Dimensões A x L x P	80 x 22,5 x 80	mm			
Tensão	24 Vcc - Não is	solada			
Conformidade às normas	IEC 751, DIN 4	3 760			
Certificações do produto	UL, CSA, GL, C	€			
Referências	RMPT10BD	RMPT20BD	RMPT30BD	RMPT50BD	RMPT70BD

PT 100 Optimum

Tipo	PT 100				
Faixa de temperatura	-4040°C	-100100°C	0100°C	0250°C	0500°C
	-40104°F	-148212°F	32212°F	32482°F	32932°F
Faixa de saída	010 V				
Dimensões A x L x P	80 x 22,5 x 80	mm			
Tensão	24 Vcc - Não is	olada			
Conformidade às normas	IEC 751, DIN 43	3 760			
Certificações do produto	UL, CSA, GL, C				
Referências	RMPT13BD	RMPT23BD	RMPT33BD	RMPT53BD	RMPT73BD

Conversor Analógico Universal

Tipo	Conversor de tensão	<=> corrente		
Faixa de entrada	010 V ou 420 mA	010 V/-10+10 V	050 V/0300 V	01,5 A/05 A
		020 mA	0500 V	015 A
		420 mA		
Faixa de saída	010 V ou 420 mA	010 V/-10+10 V	010 V	010 V ou 020 mA
		020 mA	020 mA	ou 420 mA
		420 mA comutável	420 mA comutável	
Dimensões A x L x P	80 x 22,5 x 80 mm			45 x 80 x 80 mm
Tensão	24 Vcc, não isolada	24 Vcc, isolada	24 Vcc, não isolada	24 Vcc, não isolada
Conformidade às normas	IEC 947-1			
Certificações do produto	UL, CSA, GL, C€			
Referências	RMCN22BD	RMCL55BD	RMCV60BD	RMCA61BD

Temporizadores eletrônicos

Saída a relés 8 A - RE7, RE8 Saída estática 0.7 A - RE9

Instalações simplificadas

Zelio Time possibilita uma instalação rápida, devido à simplicidade e precisão das regulagens de tempo, dupla identificação, com uma marcação nítida das tensões diretamente nos bornes, esquema de fiação e diagrama de funcionamento na lateral do produto.

Universal

RF7

- Multifaixas de temporização
- Multitensão
- 3 referências multifunções
- Possibilidades de comando a distância
- 1 ou 2 "NANF" (instantâneo ou temporizado)

Optimum

RF8

- Uma faixa de temporização
- Mono ou bitensão
- 1 contato "NANF"

RF9

- 1 ou 2 faixas de temporização
- Multitensão
- 1 referência multifunção

Temporizadores eletrônicos

Referências	Regulagem		Alimentação	OBS.
RE8 - ZELIO TIME	OPTIMUM (S/	AIDA A R	ELE)	
AO TRABALHO				
RE8TA61BU	0,1s3s	_1	24 Vca/cc,110240 Vca	
RE8TA61BUTQ	0,1s3s	_1	24 Vca/cc,110240 Vca	
RE8TA11BU	0,1s10s	1	24 Vca/cc,110240 Vca	
RE8TA11BUTQ	0,1s10s	1	24 Vca/cc,110240 Vca	
RE8TA31BU	0,3s30s	1	24 Vca/cc,110240 Vca	
RE8TA31BUTQ	0,3s30s	1	24 Vca/cc,110240 Vca	
RE8TA21BUTQ	3s300s	_1	24 Vca/cc,110240 Vca	
RE8TA21BUTQ	3s300s	1	24 Vca/cc,110240 Vca	
RE8TA41BU	20s30min	1	24 Vca/cc,110240 Vca	
RE8TA41BUTQ	20s30min	_1	24 Vca/cc,110240 Vca	a
AO REPOUSO				
RE8RA11B	0,1s10s	1	24 Vca/cc	c/ cont. de com
RE8RA11BTQ	0,1s10s	1	24 Vca/cc	c/ cont. de com
RE8RA31B	0,3s30s	1	24 Vca/cc	c/ cont. de com
RE8RA31BTQ	0,3s30s	1	24 Vca/cc	c/ cont. de com
RE8RA21B	3s300s	1	24 Vca/cc	c/ cont. de com
RE8RA21BTQ	3s300s	1	24 Vca/cc	c/ cont. de com
RE8RA11FU	0,1s10s	1	110240 Vca	c/ cont. de com
RE8RA11FUTQ	0,1s10s	1	110240 Vca	c/ cont. de com
RE8RA31FU	0,3s30s	1	110240 Vca	c/ cont. de com
RE8RA31FUTQ	0,3s30s	1	110240 Vca	c/ cont. de com
RE8RA21FU	3s300s	1	110240 Vca	c/ cont. de com
RE8RA21FUTQ	3s300s	1	110240 Vca	c/ cont. de com
RE8RA41FU	20s30min	1	110240 Vca	c/ cont. de com
RE8RA41FUTQ	20s30min	1	110240 Vca	c/ cont. de com
RE8RB51BU	0,05s0,5s	1	24 Vca/cc,110240 Vca	a auto-aliment.
RE8RB51BUTQ	0,05s0,5s	1	24 Vca/cc,110240 Vca	a auto-aliment.
RE8RB11BU	0,1s10s	1	24 Vca/cc,110240 Vca	
RE8RB11BUTQ	0,1s10s	1	24 Vca/cc,110240 Vca	a auto-aliment.
RE8RB31BU	0,3s30s	1	24 Vca/cc,110240 Vca	
RE8RB31BUTQ	0,3s30s	1	24 Vca/cc,110240 Vca	a auto-aliment.
CÍCLICO				
RE8CL11BU	0,1s10s	1	24 Vca/cc,110240 Vca	a simétrico
RE8CL11BUTQ	0,1s10s	1	24 Vca/cc,110240 Vca	a simétrico
	Ohe · As ro	forâncias	BE8 com final "TO" sã	

Obs.: As referências RE8 com final "TQ" são vendidas em múltiplos de 10 unidades.

Temporizadores eletrônicos

Referências	Regulagem	NANE	Alimentação	OBS.
RE8 - ZELIO TIME				050.
COM CONTATO DE		NIDA A NE	LL)	
RE8-PE11BU	0,1s10s	1	24 Vca/cc,1102	10 \/oo
RE8-PE11BUTQ	0,1s10s	1	24 Vca/cc,1102	
RE8-PE31BU	0,3s30s	1	24 Vca/cc,1102	
RE8-PE31BUTQ	0,3s30s	1	24 Vca/cc,1102	
RE8-PE21BU	3s300s	1	24 Vca/cc,1102	
RE8-PE21BUTQ	3s300s	1	24 Vca/cc,1102	
RE8-PD11B	0,1s10s	1	24 Vca/cc	c/ cont. externo
RE8-PD11BTQ	0,1s10s	1	24 Vca/cc	c/ cont. externo
RE8-PD31B	0,3s30s	1	24 Vca/cc	c/ cont. externo
RE8-PD31BTQ	0,3s30s	1	24 Vca/cc	c/ cont. externo
RE8-PD21B	3s300s	1	24 Vca/cc	c/ cont. externo
RE8-PD21BTQ	3s300s	1	24 Vca/cc	c/ cont. externo
RE8-PD11FU	0,1s10s	1	110240 Vca	c/ cont. externo
RE8-PD11FUTQ	0,1s10s	1	110240 Vca	c/ cont. externo
RE8-PD31FU	0,3s30s	1	110240 Vca	c/ cont. externo
RE8-PD31FUTQ	0,3s30s	1	110240 Vca	c/ cont. externo
RE8-PD21FU	3s300s	1	110240 Vca	c/ cont. externo
RE8-PD21FUTQ	3s300s	1	110240 Vca	c/ cont. externo
RE8-PT01BU	0,05s0,5s	1	24 Vca/cc	corte de tensão
RE8-PT01BUTQ	0,05s0,5s	1	24 Vca/cc	corte de tensão
ESTRELA-TRIÂNG	ULO			
RE8-YG11BU	0,1s10s	1	24 Vca/cc,1102	40 Vca
RE8-YG11BUTQ	0,1s10s	1	24 Vca/cc,1102-	40 Vca
RE8-YG31BU	0,3s30s	1	24 Vca/cc,1102-	40 Vca
RE8-YG31BUTQ	0,3s30s	1	24 Vca/cc,1102	40 Vca
RE8-YG21BU	3s300s	1	24 Vca/cc,1102	40 Vca
RE8-YG21BUTQ	3s300s	1	24 Vca/cc,1102	40 Vca
RE8-YA32B	0,3s30s	1NA+1NF	24 Vca/cc	
RE8-YA32BTQ	0,3s30s	1NA+1NF	24 Vca/cc	
RE8-YA32FU	0,3s30s	1NA+1NF	110240 Vca	
RE8-YA32FUTQ	0,3s30s	1NA+1NF	110240 Vca	
RE8-YA32Q	0,3s30s	1NA+1NF	380410 Vca	
RE8-YA32QTQ	0,3s30s	1NA+1NF	380410 Vca	

Obs.: As referências RE8 com final "TQ" são vendidas em múltiplos de 10 unidades.

Temporizadores eletrônicos

Referências	Regulagem	NANF	Alimentação	OBS.
· ZELIO TIME	RE7 - ZELIO TIME UNIVERSAL (SAÍDA A RELÉ)			
AOTRABALHO				
RE7-TL11BU	0,05s a 300h (10 escalas)	1	24 Vcc, 110240 Vca	
RE7-TM11BU	0,05s a 300h (10 escalas)	1	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
RE7-TP13BU	0,05s a 300h (10 escalas)	2	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
AO REPOUSO				
-RA11BU	RE7-RA11BU 0,05s300h (10 escalas)	1	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
RE7-RM11BU	0,05s300h (10 escalas)	1	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
RE7-RL13BU	0,05s300h (10 escalas)	2	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
RE7-RB11MW	0,5s10min (7 escalas)	-	24240 Vcc/Vca	
-RB13MW	RE7-RB13MW 0,5s10min (7 escalas)	2	24240 Vcc/Vca	
RABALHO E	AO TRABALHO E AO REPOUSO			
MA11BU	RE7-MA11BU 0,05s300h (10 escalas)	1	24 Vcc, 4248 Vcc/Vca, 110240 Vca	simétrico
MA13BU	RE7-MA13BU 0,05s300h (10 escalas)	2	24 Vcc, 4248 Vcc/Vca, 110240 Vca	simétrico
MV11BU	RE7-MV11BU 0,05s300h (10 escalas)	-	24 Vcc, 4248 Vcc/Vca, 110240 Vca	assimétrico
CONTATO D	COM CONTATO DE PASSAGEM NA ENERGIZAÇÃO	0		
PE11BU	RE7-PE11BU 0,05s300h (10 escalas)	1	24 Vcc/Vca, 110240Vca	
-PP13BU	RE7-PP13BU 0,05s300h (10 escalas)	2	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
CONTATO D	COM CONTATO DE PASSAGEM NA ABERTURA DO CONT. DE COM. EXTERNO	O CONT. DE CO!	M. EXTERNO	
RE7-PM11BU	0,05s300h (10 escalas)	-	24 Vcc, 4248 Vcc/Vca, 110240 Vca	
RE7-PD13BU	0.05s300h (10 escalas)	2	24 Vcc. 4248 Vcc/Vca. 110240 Vca	

Temporizadores eletrônicos

Zelio Control

Relés de medição e controle RM4

RM4-T...

Função controle de rede:

- Proteção de pessoas e equipamentos contra a inversão do sentido de rotação,
- Controle de rede.
- Proteção contra falta de fases.
- Comutação entre redes e grupos geradores.

RM4-JA, UA e UB...

Função medição de corrente:

- Controle da corrente absorvida por um motor trifásico.
- Supervisão de circuitos de aquecimento e de iluminação,
- Controle de parada de bombas,
- Controle de sobreconjugado,
- Supervisão de freio/embreagens eletromecânicos.

Função medição de tensão:

- Controle de sobrevelocidade de motores de corrente contínua,
- Supervisão de baterias,
- Supervisão de redes e alimentações,
- Supervisão de velocidade.

Função medição controle de nível:

- Regulagem do nível de líquido condutor,
- Proteção de bombas e da resistência de aquecimento, contra o funcionamento em vazio,
- Detecção da ultrapassagem de nível.

Zelio Control

Relés de medição e controle RM4

Referências	Descrição	NANF
CONTROLE DE SO	BRECORRENTE	
RM4-JA01●	330mA/10100mA/0,11A	1
CONTROLE DE SU	IBCORRENTE E SOBRECORRENTE	
RM4-JA31F	330mA/10100mA/0,11A	2
RM4-JA31M	330mA/10100mA/0,11A	2
RM4-JA31Q	330mA/10100mA/0,11A	2
RM4-JA31MW	330mA/10100mA/0,11A	2
RM4-JA32F	0,31,5A/15A/315A	2
RM4-JA32M	0,31,5A/15A/315A	2
RM4-JA32Q	0,31,5A/15A/315A	2
RM4-JA32MW	0,31,5A/15A/315A	2
CONTROLE DE SO	BRETENSÃO	
RM4-UA01●	0,050,5V/0,33V/0,55V	1
RM4-UA02●	110V/550V/10100V	1
RM4-UA03●	30300V/50500V	1
CONTROLE DE SU	IBTENSÃO E SOBRETENSÃO	
RM4-UA31F	0,050,5V/0,33V/0,55V	2
RM4-UA31M	0,050,5V/0,33V/0,55V	2
RM4-UA31Q	0,050,5V/0,33V/0,55V	2
RM4-UA31MW	0,050,5V/0,33V/0,55V	2
RM4-UA32F	110V/550V/10100V	2
RM4-UA32M	110V/550V/10100V	2
RM4-UA32Q	110V/550V/10100V	2
RM4-UA32MW	110V/550V/10100V	2
RM4-UA33F	30300V/50500V	2
RM4-UA33M	30300V/50500V	2
RM4-UA33Q	30300V/50500V	2
RM4-UA33MW	30300V/50500V	2

Obs.: Substituir (●) pela letra da tensão de alimentação correspondente							
RM4-JA01●	Tensão (V)	24	110130	220240			
RM4-UA0●	50/60Hz	В	F	M			
RM4-JA31 e							
RM4-JA32	Tensão (V)	24240	110130	220240	380415		
RM4-UA33	50/60Hz	MW	F	M	Q		
	C.C.	MW	-	-	-		

Zelio Control

Relé de medição e controle RM4

neierencias	rensao nomina da rede	INAINE
SEQÜÊNCIA E PR	ESENÇA DE FASES	
RM4-TG20	220440V - 50/60HZ	2
SEQÜÊNCIA E PI	RESENÇA DE FASES + SUBTENS	SÃO
RM4-TU01	220240V - 50/60HZ	2
RM4-TU02	380440V - 50/60HZ	2
SEQÜÊNCIA E PI	RESENÇA DE FASES + SUBTENS	SÃO E SOBRETENSÃO
RM4-TR33	220V - 50/60HZ	2
RM4-TR34	400V - 50/60HZ	2
RM4-TR31	220240V - 50/60HZ	2
RM4-TR32	380440V - 50/60HZ	2
SEQÜÊNCIA E PI	RESENÇA DE FASES + ASSIMET	RIA DE FASES
RM4-TA01	220240V - 50/60HZ	1
RM4-TA02	380440V - 50/60HZ	1
RM4-TA31	220240V - 50/60HZ	2
RM4-TA32	380440V - 50/60HZ	2
SUBTENSÃO E S	OBRETENSÃO (MONOFÁSICO)	
RM4-UB34	100200V - 50/60HZ	2
RM4-UB35	180270V - 50/60HZ	2
NÍVEL DE LÍQUID	O SEM TEMPORIZAÇÃO	
RM4-LG01●	•	1
NÍVEL DE LÍQUID	O COM TEMPORIZAÇÃO	
RM4-LA32B	· · · · · · · · · · · · · · · · · · ·	2
RM4-LA32F		2
RM4-LA32M		2
RM4-LA32Q		2
RM4-LA32MW		2
SONDA		
LA9-RM201		

Obs.: Substituir () pela letra da tensão de alimentação correspondente

RM4-LG01●	Tensão (V)	24	110130	220240	380415
	50/60HZ	В	F	M	Q
RM4-LA32	Tensão (V)	24240	110130	220240	380415
	50/60Hz	MW	F	M	Q
	C.C.	MW	-	-	-

Módulos lógicos Compactos e modulares

Módulos Compactos e modulares

Os módulos compactos possuem opções com e sem display, teclas e relógio, já nos modulares estes já são integrados e também suportam até um módulo de expansão digital/analógica e um módulo de comunicação.

Programação

A programação pode ser realizada:

- De maneira autônoma, diretamente no módulo utilizando seu teclado e display (linguagem Ladder)
- Através do software de programação ZelioSoft.

Funções integradas

- Blocos de texto
- Blocos temporizadores
- Blocos contadores up/down
- Contador rápido
- Comparadores analógicos
- Relógio RTC
- Bobinas auxiliares
- Comparadores e contadores

Display LCD e teclas integradas

A oferta do Zelio Logic oferece módulos com display LCD com retroiluminação programável e 4 teclas que podem ser utilizadas como interface.

Módulos de comunicação

O módulo Zelio Logic oferece conectividade com:

- Rede Modbus (escravo)
- Rede Ethernet (servidor)
- Modem GSM ou modem analógico, via interface de comunicação.

Módulos lógicos - Software de programação Zelio Soft para PC

Tornando possível à supervisão e/ou controle a distância de máquinas ou instalações que operam sem a presença física do operador.

Oneñas de Dragramacão es

Software de programação Zelio Soft para PC

Opçues de Flugialilação culti ou selli liu
☐ Programação sem fio via Bluetooth ou
Modem GSM
☐ Programação com fio via porta serial ou
USB
Até 4 linguagens de programação
disponíveis
□ Linguagem de contatos elétricos
□LADDER
□ Blocos de funções (FBD)
☐ Grafcet
Editoração, Simulação, Monitoração e
Supervisão
■ Simulação
Através da simulação pode-se:
☐ Ativar as entradas digitais
□ Visualizar o estado das saídas
□ Variar a tensão das entradas analógicas
☐ Ativar as teclas de programação
☐ Simular o programa aplicativo em tempo
real ou em tempo acelerado.

Atualização de Firmware

É possível atualizar o Firmware, sistema operacional do módulo, o qual permite acompanhar as futuras evoluções do produto sem a necessidade de substituição.

Módulos lógicos SR2 e SR3

Zelio Logic Compacto com ou sem display

Referências	Alimen- tação	Nº de E/S	Entr. digitais	Config. como entrada ana- lógica 0-10 V	Saídas	Relógio
COM DISPLAY						
SR2B121JD	12 Vcc	12	8	4	4 S a relé	Sim
SR2B201JD	12 Vcc	20	12	6	8 S a relé	Sim
SR2A101BD(1)	24 Vcc	10	6	-	4 S a relé	Não
SR2B121BD(2)	24 Vcc	12	8	4	4 S a relé	Sim
SR2B122BD	24 Vcc	12	8	4	4 S a trans.	Sim
SR2A201BD(1)	24 Vcc	20	12	2	8 S a relé	Não
SR2B201BD(2)	24 Vcc	20	12	6	8 S a relé	Sim
SR2B202BD	24 Vcc	20	12	6	8 S a trans.	Sim
SR2B121B(2)	24 Vca	12	8	-	4 S a relé	Sim
SR2B201B(2)	24 Vca	20	12	-	8 S a relé	Sim
SR2A101FU(1)	100/240 Vca	10	6	-	4 S a relé	Não
SR2B121FU(2)	100/240 Vca	12	8	-	4 S a relé	Sim
SR2A201FU(1)	100/240 Vca	20	12	-	8 S a relé	Não
SR2B201FU(2)	100/240 Vca	20	12	-	8 S a relé	Sim

Obs.: programação somente em linguagem Ladder para os módulos sem relógio. (1) substituir a letra A pela letra D para obter um Zelio Logic Compacto sem display (ex.: SR2D1018D)

(2) substituir a letra **B** pela letra **E** para obter um Zelio Logic Compacto sem display (ex.: SR2**E**121BD)

Zelio Logic Modular

Referências	Alimen- tação	№ de E/S	Entr. digitais	Config. como entrada ana- lógica 0-10V	Saídas	Relógio
SR3B261JD	12 Vcc	26	16	6	10 S a relé	Sim
SR3B101BD	24 Vcc	10	6	4	4 S a relé	Sim
SR3B102BD	24 Vcc	10	6	4	4 S trans.	Sim
SR3B261BD	24 Vcc	26	16	6	10 S a relé	Sim
SR3B262BD	24 Vcc	26	16	6	10 S trans.	Sim
SR3B101B	24 Vca	10	6	-	4 S a relé	Sim
SR3B261B	24 Vca	26	16	-	10 S a relé	Sim
SR3B101FU	100/240 Vca	10	6	-	4 S a relé	Sim
SR3B261FU	100/240 Vca	26	16	-	10 S a relé	Sim

Obs.: Cada base modular pode receber um módulo de comunicação e um módulo de expansão de E/S.

Módulos lógicos SR2 e SR3

Módulos de expansão de E/S e comunicação

Referências	Alimentação	Nº de E/S	Entradas digitais	Saídas a relé				
MODULARES								
SR3XT61JD	12 Vcc	6	4	2				
SR3XT101JD	12 Vcc	10	6	4				
SR3XT141JD	12 Vcc	14	8	6				
SR3XT61BD	24 Vcc	6	4	2				
SR3XT101BD	24 Vcc	10	6	4				
SR3XT141BD	24 Vcc	14	8	6				
SR3XT61B	24 Vca	6	4	2				
SR3XT101B	24 Vca	10	6	4				
SR3XT141B	24 Vca	14	8	6				
SR3XT61FU	100/240 Vca	6	4	2				
SR3XT101FU	100/240 Vca	10	6	4				
SR3XT141FU	100/240 Vca	14	8	6				
Referências	Alimentação	№ de E/S	Entr. analógicas	Saídas analógicas				
SR3XT43BD (3)	24 Vcc	4	2	2				
		Tipo						
SR3MBU01BD	24 Vcc	Rede Modbus (escravo)						
SR3NET01BD	24 Vcc	Rede Ethernet (servidor)						
SR2MOD01	24 Vcc	Modem R	TC	·				
SR2MOD02	24 Vcc	Modem G	Modem GSM					
SR2COM01	24 Vcc	Interface of	le comunicação	Interface de comunicação				

Obs.: A alimentação dos módulos de expansão é feita pelos módulos Zelio Logic modulares. (3) 2 entradas (0...10 V, 0...20 mA, 1 entrada PT100 no máx.) + 2 saídas (0...10 V, 0...20 mA)

Kite	dρ	anrendizagem	

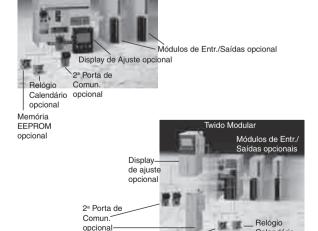
(b) 2 on addo (om 10 1, om 20 m), 1 on add 1 1100 no man) 1 2 od add (om 10 1, om 20 m)						
Kits de aprendizagem						
Referências	Alimentação	Nº de E/S	Composição (módulo+cabo+software)			
Compactos						
SR2PACKBD	24 Vcc	12	SR2B121BD + SR2USB01 + SR2SFT01			
SR2PACK2BD	24 Vcc	20	SR2B201BD + SR2USB01 + SR2SFT01			
SR2PACKFU	100/240 Vca	12	SR2B121FU + SR2USB01 + SR2SFT01			
SR2PACK2FU	100/240 Vca	20	SR2B201FU + SR2USB01 + SR2SFT01			
Modulares						
SR3PACKBD	24 Vcc	10	SR3B101BD + SR2USB01 + SR2SFT01			
SR3PACKBD	24 Vcc	26	SR3B261BD + SR2USB01 + SR2SFT01			
SR3PACKFU	100/240 Vca	10	SR3B101FU + SR2USB01 + SR2SFT01			
SR3PACK2FU	100/240 Vca	26	SR3B261FU + SR2USB01 + SR2SFT01			
Referências	Descrição					
SR2MEM02	Memória EEPROM (compatível com firmware ≥ 3.0)					

SR2MAN01 • (4) Manual de operação Zelio p/ prog. direta no módulo lógico (4) Para encomendar o manual do usuário no idioma escolhido, substituir ●● por FR p/ francês,

EN p/inglês, DE p/alemão, SP p/espanhol, IT p/italiano, PO p/ português (Portugal).				
Referência	Descrição			
SR2SFT01	Software de programação Zelio Soft para PC			
SR2CBL01	Cabo de programação: serial RS 232 (Comprimento = 3m)			
SR2USB01	Cabo de programação USB			
SR2CBL06	Interface para porta USB (utilizar com o cabo SR2CBL01)			
SR2BTC01	Interface Bluetooth para programação Wireless			

Twido

Desenvolvido para automação industrial simples e de máquinas pequenas, o Twido apresenta-se em duas versões: Compacto e Modular que compartilham as opções comuns: os módulos de expansão de E/S e o software de programação, proporcionando maior simplicidade e flexibilidade.


TWIDO Modular

■ Para soluções sob medida, maximizando a eficiência de suas máquinas.

TWIDO Compacto

Twido Compacto

Para otimizar tempo e custos na instalação.

Memória EEPROM opcional

Calendário

opcional

Twido

Mais possibilidades de aiustes de parâmetros

- O display de 4 teclas permite realizar regulagens diretamente no controlador
- Até 2 potenciômetros para ajuste de parâmetros

Major capacidade

- Suporta até 7 módulos de expansão digital/analógica
- Memórias adicionais de 32 kB para backup e 64 kB para backup e expansão
- Relógio calendário (RTC) opcional
- Blocos de funções integradas
- ☐ 64 a 128 temporizadores
- 128 contadores
- ☐ Contadores rápidos (5 e 20 kHz).
- ☐ Funções posicionamento com funções PLS (gerador de pulsos) e PWM (modulação por largura de pulso)
- □ Blocos PID
- ☐ Operações matemáticas e trigonométricas.

Mais opções para a programação

- O TwidoSuite permite a programação do Twido via porta serial RS232, USB, Bluetooth. Modem GSM/RTC e Ethernet
- Programação em Ladder, Lista de instruções e Grafcet
- Além da programação, o TwidoSuite permite simulação, monitoração e atualização de firmware.

Maior conectividade para os dispositivos de campo

■ Conectividade com rede CANopen, Ethernet, Modbus e AS-i.

Twido

Referências	Descrição
CPUs COMPACTAS	COM ALIMENTAÇÃO EM 100240 Vca
TWDLCAA10DRF	6 entr. digitais 24 Vcc/4 saídas a relé 2 A
TWDLCAA16DRF	9 entr. digitais 24 Vcc/7 saídas a relé 2 A
TWDLCAA24DRF	14 entr. digitais 24 Vcc/10 saídas a relé 2 A
TWDLCAA40DRF	24 entr. digitais 24 Vcc/14 saídas a relé 2 A e
	2 saídas a transistor 1 A (PNP)
TWDLCAE40DRF	24 entr. digitais 24 Vcc/ 14 saídas a relé 2 A e
	2 saídas a transistor 1 A (PNP) e porta Ethernet incorporada
CPUs COMPACTAS	S COM ALIMENTAÇÃO EM 24 Vcc
TWDLCDA10DRF	6 entr. digitais 24 Vcc/4 saídas a relé 2 A
TWDLCDA16DRF	9 entr. digitais 24 Vcc/7 saídas a relé 2 A
TWDLCDA24DRF	14 entr. digitais 24 Vcc/10 saídas a relé 2 A
CPUs MODULARE	S (ALIMENTAÇÃO EM 24 Vcc)
TWDLMDA20DUK	12 ent. digitais 24 Vcc/8 saídas Vcc a transistor 0,3 A (NPN)
	E/S pré-cabeamento via conector
TWDLMDA20DTK	12 ent. digitais 24 Vcc/8 saídas Vcc a transistor 0,3 A (PNP)
	E/S pré-cabeamento via conector
TWDLMDA20DRT	12 ent. digitais 24 Vcc/6 saídas a relé (240 Vca/30 Vcc/2 A) +
	2 saídas Vcc a transistor 0,3 A (PNP) E/S pré-cabeamento
	via borneira convencional
TWDLMDA40DUK	24 ent. digitais 24 Vcc/16 saídas 24 Vcc a transistor 0,3 A (NPN)
	E/S pré-cabeamento via conector
TWDLMDA40DTK	24 ent. digitais 24 Vcc/16 saídas 24 Vcc a transistor 0,3 A (PNP)
	E/S pré-cabeamento via conector
TWDLCAA40DRF	24 entr. digitais 24 Vcc/14 saídas a relé 2 A e
TWDLCAE40DRF	2 saídas a transistor 1 A (PNP)
TWDLCAE40DRF	24 entr. digitais 24 Vcc/ 14 saídas a relé 2 A e 2 saídas a
EXPANSÕES DE E	transistor 1 A (PNP) e porta Ethernet incorporada
Entradas por conec	
TWDDDI16DK	Cartão 16 entr. digitais 24 Vcc - pré-cabeamento via conector
TWDDDI32DK	Cartão 32 entr. digitais 24 Vcc - pré-cabeamento via conector
Entradas por borne	
TWDDDI8DT	Cartão 8 entr. digitais 24 Vcc - borneira convencional
TWDDDI16DT	Cartão 16 entr. digitais 24 Vcc - borneira convencional
TWDDDAI8DT	Cartão 8 entr. digitais 120 Vca - borneira convencional
	combinadas por borneiras
TWDDMM24DRF	Cartão 16 entr. digitais 24 Vcc/8 saídas a relé-born. mola

As CPUs TWLCA 40DRF possuem relógio de tempo real incorporado e possibilidade de uso da bateria externa para prolongar o tempo de backup (3 anos).

Cartão 8 entr. digitais 24 Vcc/4 saídas a relé-born. removível

Twido

Referências	Descrição	
Saídas digitais por	conector	
TWDDDO16UK	Cartão 16 saídas digitais 24 Vcc (NPN) - pré-cabeamento via conector	
TWDDDO16TK	Cartão 16 saídas digitais 24 Vcc (PNP) - pré-cabeamento via conector	
TWDDDO32UK	Cartão 32 saídas digitais 24 Vcc (NPN) - pré-cabeamento via conector	
TWDDDO32TK	Cartão 32 saídas digitais 24 Vcc (PNP) - pré-cabeamento via conector	
Saídas por borneira	as	
TWDDRA8RT	Cartão 8 saídas digitais a relé (2 A) - borneira convencional	
TWDDRA16RT	Cartão 16 saídas digitais a relé (2 A) - borneira convencional	
TWDDRO8UT	Cartão 8 saídas digitais 24Vcc (NPN)-borneira convencional	
TWDDD08TT	Cartão 8 saídas digitais 24Vcc (PNP)-borneira convencional	
KITS DE CABEAME	ENTO	
Obs.:	1 - Destinam-se aos cartões e CPUs com conectores (TWDLMDA20DUK/20DTK/40DUK/40DTK). 2 - Os conectores das CPUs diferem dos conectores do cartão, portanto, utilizam kits específicos	

Cabos livre (conec	tor padrão em extremidade e condutores livres na outra)
TWDFCW30M	3m de cabo p/conectores de E/S incorp. às CPUs Modulares
TWDFCW50M	5m de cabo p/conectores de E/S incorp. às CPUs Modulares
TWDFCW30K	3m de cabo p/cartões com conectores
TWDFCW50K	5m de cabo p/cartões com conectores
Conjunto de cabean	nento (conector padrão em uma extremidade e borneira na outra)
TWDFST16D10	Conj. (cabo de 1 m + borneira) p/ 16 entradas, compatível
	c/ cartões TWDDDI16DK/32DK
TWDFST16D20	Conj. (cabo de 2 m + borneira) p/ 16 entradas, compatível
	c/ cartões TWDDDI16DK/32DK
TWDFST16R10	Conj. (cabo de 1 m + born. c/conversão p/relés) p/ 16 saídas,
	compatível c/ cartões de S TWDDDO16TK/32TK
TWDFST16R20	Conj. (cabo de 2 m + born. c/conversão p/relés) p/ 16 saídas,
	compatível c/ cartões de S TWDDDO16TK/32TK
TWDFST20DR10	Conj. (cabo de 1 m+born. de entr.+de saída c/conver. p/relés)
	para E/S das CPUs Modulares 20/40DTK (requer 2 conj.)
TWDFST20DR20	Conj. (cabo de 2 m+born. de entr.+de saída c/conver. p/relés)
	para E/S das CPUs Modulares 20/40DTK (requer 2 conj.)

Twido

Referências	Descrição		
CARTÕES DAS ENTRADAS/SAÍDAS ANALÓGICAS			
Entradas analógica	S		
TWDAMI2HT	Cartão 2 entradas analógicas 0-10 V/4-20 mA, 12 bits		
TWDAMI8HT	Cartão 8 entradas analógicas 0-10 V/0-20 mA, 10 bits		
TWDARI8HT	Cartão 8 entradas analógicas PTC/NTC, 10 bits		
TWDAMI4LT	Cartão 4 entr. analóg. 0-10 V/0-20 mA e temperatura, 12 bits		
Saídas analógicas			
TWDAMO1HT	Cartão 1 saída analógica 0-10 V/4-20 mA, 12 bits		
TWDAVO2HT	Cartão 2 saídas de tensão 10 V, 11 bits + sinal		
Entradas / saídas a	analógicas		
TWDAMM3HT	Cartão 2 entradas e 1 saída analógica		
	0-10 V/4-20 mA, 12 bits		
TWDALM3LT	Cartão 2 entradas analógicas		
	PTC/Termopar K, J e T e 1 saída 0-10 V/4-20 mA, 12 bits		
TWDAMM6HT	Cartão 4 entradas e 2 saídas analógicas		
	0-10 V/4-20 mA, 12 bits		

	ourido i oriridado o E ouridad uridrogidad	
	0-10 V/4-20 mA, 12 bits	
COMUNICAÇÃO		
Módulos de comu	nicação serial (TWIDO Modular)	
TWDNOZ485D	Módulo de comunicação adicional RS485 miniDIN	
TWDNOZ232D	Módulo de comunicação adicional RS232 miniDIN	
TWDNOZ485T	Módulo de comunicação adicional RS485 Borneira	
Cartucho de comu	n. serial (TWIDO Compacto e TWIDO Modular c/mód. display)	
TWDNAC485T	Cartucho de comunicação adicional RS485 Borneira	
TWDNAC485D	Cartucho de comunicação adicional RS485 miniDIN	
TWDNAC232D	Cartucho de comunicação adicional RS232 miniDIN	
TWDNOI10M3	Módulo mestre ASI V2.11	
TWDNCO1M	Módulo mestre CANopen	
499TWD01100	Bridge Modbus Ethernet	
Cabeamento de co	omunicação	
TWDXCARJ030	Cabo miniDIN para RJ45 - 3 metros	
TWDXCARJ03P	Cabo miniDIN RS485 - RJ45, Modbus - 0,3 metros	
OPCIONAIS		
TWDXCPMFK32	Memória EEPROM 32 K	
TWDXCPMFK64	Memória EEPROM 64 K	

Calendário

Display TWIDO Compacto

Módulo display - TWIDO Modular

TWDXCPRTC

TWDXCPODC

TWDXCPODM

Descrição

Twido

Referências

Referencias	Descrição	
ACESSÓRIOS		
TWDXMT5	Kit de montagem - para placa de montagem em painel	
	(lote de 5)	
TWDXCA2A10M	Cabos p/entradas analógicas (tensão) - 2 cabos (1 m)	
TWDFTB2T10	Borneiras (lotes de 2) - 10 posições	
TWDFTB2T11	Borneiras (lotes de 2) - 11 posições	
TWDFTB2T13	Borneiras (lotes de 2) - 13 posições	
TWDFTB2T16	Borneiras (lotes de 2) - 16 posições	
TWDFCN2K20	Adaptador p/cartões de E/S c/ conector (lotes de 2):	
	permite a confecção do cabo pelo usuário	
TWDFCN2K26	Adaptador p/CPU c/ conector (lotes de 2):	
	permite a confecção do cabo pelo usuário	
TWDXSM6	Simulador 6 entradas	
TWDXSM9	Simulador 9 entradas	
TWDXSM14	Simulador 14 entradas	
SOFTWARE DE PROC	GRAMAÇÃO	
TWDSPU1001V10M	Pacote de programação CD + Cabo serial + Documentação	
TWDSPU1002V10M	Pacote de programação CD + Documentação	
TWDSPU1003V10M	Pacote de programação CD + Cabo USB +	
	Documentação	
TWDSPU1004V10M Pacote de programação CD + Bluetooth + Documentação		
		ACESSÓRIOS DE PR
TWDBTFU10M	TwidoSuite software pack (todas as linguagens)	
VW3A8114	Adaptador Modbus - Bluetooth	
VW3A8115	Adaptador USB - Bluetooth para PC	
TSXPCX1031	Cabo de programação serial	
TSXCUSB485	Kit de programação USB	
TSXCRJM025		
KITS		
TWDXDPPAK6M	(TWDLCAA10DRF + TWDXCPRTC + TWDXSM6 +	
	TSXCUSB485 + TSXCRJMD25 + TWDBTFU10M)	
TWDXDPPAK1E	CPU compacta (TWDLCAA10DRF + TWDXCPRTC +	
	TWDXSM6 + TWDSPU1001V10M	
TWDXDPPAK2E	CPU modular (TWDLMDA20DTK + TWDXCPRTC +	
	TWDXCPODM + TWDNAC485T + TWDFCW30M +	
	TWDSPU1001V10M	

Expert BF

A série Expert-BF com processadores Blackfin, representa mais um grande passo na oferta Schneider Electric, nascido da união de forças com a Atos.

SÉRIE EXI	PERT-BF
2850.00	Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED NPN e 10SD NPN 24 Vcc transistorizadas (2A máx. por saída), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM.
2850.00/S	Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED NPN e 10SD NPN 24 Vcc transistorizadas (2A máx. por saída), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM, sem policarbonato
2850.10	Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED PNP e 10SD PNP 24 Vcc transistorizadas (2A máx. por saída), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM.
2850.10/S	Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED PNP e 10SD PNP 24 Vcc transistorizadas (2A máx. por saída), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM, sem policarbonato

Expert BF

Além da otimização de recursos, obtidos com a arquitetura Combo, o produto oferece alta performance e programação baseada na norma IEC61131-3, sendo ideal para automação de pequenas máquinas de alta performance.

SÉRIE EXPERT-BF

2850.20

Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED NPN e 10SD NPN 24 Vcc transistorizadas (2A máx. por saída), + 2EA (0-10Vcc ou 0-20mA) e 2SA (0-10Vcc ou 0-20mA), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM.

2850.20/S

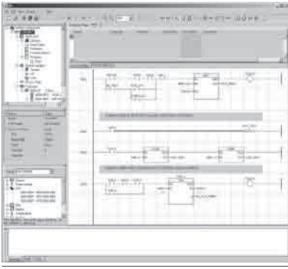
Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED NPN e 10SD NPN 24 Vcc transistorizadas (2A máx. por saída), + 2EA (0-10Vcc ou 0-20mA), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM, sem policarbonato

2850.30

Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED PNP e 10SD PNP 24 Vcc transistorizadas (2A máx. por saída), + 2EA (0-10Vcc ou 0-20mA) e 2SA (0-10Vcc ou 0-20mA), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM.

2850.30/S

Controlador Programável 400Mhz, IEC61131-3, IHM incorporada, 2x20 caracteres, 4 teclas de função, 14ED PNP e 10SD PNP 24 Vcc transistorizadas (2A máx. por saída), + 2EA (0-10Vcc ou 0-20mA) e 2SA (0-10Vcc ou 0-20mA), 2 seriais isoladas (RS232 e 485), 2 entradas para encoder bidirecional ou unidirecional, saídas PTO e PWM, sem policarbonato


Ferramenta de programação A1 (Automation 1)

A1 - Automation 1

A ferramenta de programação A1, segue o padrão IEC61131-3 e transforma o seu computador em um poderoso ambiente de desenvolvimento para aplicações complexas e avançadas.

- Permite o desenvolvimento de aplicações de tempo real
- Monitora variáveis
- Simulador
- Gerenciador de POUs (Program Organization Units)
- Download e Upload de arquivos
- Gerenciador de projetos
- Configura a IHM
- Configura o controlador programável remotamente
- IFC61131-3

MPC6006

CPUs PARA O MPC6006

Novo controlador programável da linha Atos, desenvolvido especialmente para quem busca alta performance, muita capacidade de programação, aliado à simplicidade de toda a linha Atos. Associado à ferramenta de programação A1, totalmente compatível com a norma IEC61131-3, tornam o desenvolvimento de suas aplicações em uma atividade extremamente simples e produtiva.

0. 00 . 7	17 C IIII CCCCC
6006.05	CPU 32 bits RISC, 16Mbyte SDRAM, 400Mhz de clock interno e 133Mhz de clock externo, relógio e calendário, 2 seriais (RS232 e RS485 isoladas), saída para IHM paralela, 8ES NPN e 8SD NPN, 2 entrada para encoder de 20Khz bidirecional.
6006.06	CPU 32 bits RISC, 16Mbyte SDRAM, 400Mhz de clock interno e 133Mhz de clock externo, relógio e calendário, 2 seriais (RS232 e RS485 isoladas), saída para IHM paralela, 8ES PNP e 8SD PNP, 2 entrada para encoder de 20Khz bidirecional
6006.05L	CPU 32 bits RISC, 16Mbyte SDRAM, 400Mhz de clock interno e 133Mhz de clock externo, relógio e calendário, 2 seriais (RS232 e RS485 isoladas), saída para IHM paralela, 8ES NPN e 8SD NPN, 2 entrada para encoder de 20Khz bidirecional.
6006.06L	CPU 32 bits RISC, 16Mbyte SDRAM, 400Mhz de clock interno e 133Mhz de clock externo, relógio e calendário, 2 seriais (RS232 e RS485 isoladas), saída para IHM paralela, 8ES PNP e 8SD PNP, 2 entrada para encoder de 20Khz bidirecional

MPC6006

BASTIDORE	S PARA O MPC6006
6006.21	Bastidor de 01 passo 6006
6006.22	Bastidor de 02 passos 6006
6006.23	Bastidor de 03 passos 6006
6006.24	Bastidor de 04 passos 6006
6006.24T	Bastidor de 04 passos para trilho DIN 6006
6006.26	Bastidor de 06 passos 6006
6006.26T	Bastidor de 06 passos para trilho DIN 6006
6006.28	Bastidor de 08 passos 6006
6006.28T	Bastidor de 08 passos para trilho DIN 6006
6006.2A	Bastidor de 10 passos 6006
6006.2AT	Bastidor de 10 passos para trilho DIN 6006
6006.2C	Bastidor de 12 passos 6006
6006.2CT	Bastidor de 12 passos para trilho DIN 6006
6006.26R	Bastidor de 06 passos 6006 expandível
6006.26RT	Bastidor de 06 passos para trilho DIN 6006 expandível
6006.28R	Bastidor de 08 passos 6006 expandível
6006.28RT	Bastidor de 08 passos para trilho DIN 6006 expandível
6006.2AR	Bastidor de 10 passos 6006 expandível
6006.2ART	Bastidor de 10 passos para trilho DIN 6006 expandível
6006.2CR	Bastidor de 12 passos 6006 expandível
6006.2CRT	Bastidor de 12 passos para trilho DIN 6006 expandível
MÓDULOS E	ESPECIAIS PARA MPC6006
FR6006.0U	Frontal plástico de fechamento da série MPC6006
6006.40	fonte chaveada 90/260Vca p/ 6006

EXPANSÕES	ANALÓGICAS PARA O MPC6006
6006.60	Módulo 6006 de expansão com 2E/2S analogica
6006.61	Módulo 6006 de expansão com 4E/4S analogica
6006.62	Módulo 6006 de expansão com 8E analógica (MAC)
6006.62/M	Módulo 6006 de expansão com 4E analogica (MAC)
6006.63	Módulo 6006 de expansão com 8S analógica (MAC)
6006.63/M	Módulo 6006 de expansão com 4S analogica (MAC)

MPC6006

EXPANSÕES	DIGITAIS PARA O MPC6006
6006.31	Módulo 6006 de expansão com 16SD NPN 24 Vcc
	transistorizadas (2Å máx. por saída)
6006.32	Módulo 6006 de expansão com 16SD PNP 24Vcc
	transistorizadas (2Å máx. por saída)
6006.33	Módulo 6006 de expansão com 16ED NPN 24 Vcc
	transistorizadas
6006.34	Módulo 6006 de expansão com 16ED PNP 24 Vcc
	transistorizadas
6006.41	Módulo 6006 de expansão com 08SD NPN 24 Vcc
	transistorizadas (2A máx. por saída)
6006.42	Módulo 6006 de expansão com 08SD PNP 24 Vcc
	transistorizadas (2A máx. por saída)
6006.43	Módulo 6006 de expansão com 08ED NPN 24 Vcc
	transistorizados
6006.44	Módulo 6006 de expansão com 08ED PNP 24 Vcc
	transistorizados
6006.51	Módulo 6006 de expansão com 08ED NPN e 08SD
	NPN 24 Vcc transistorizadas (2ª máx. por saída)
6006.52	Módulo 6006 de expansão com 08ED PNP e 08SD
	PNP 24 Vcc transistorizadas (2ª máx. por saída)
6006.53	Módulo 6006 de expansão com 16ED NPN e 16SD
	NPN 24Vcc transistorizadas (2A máx. por saída)
6006.54	Módulo 6006 de expansão com 16ED PNP e 16SD
	PNP 24 Vcc transistorizadas (2A máx por saída)
6006.55	Módulo 6006 de expansão com 32ED NPN 24 Vcc
	transistorizadas
6006.56	Módulo 6006 de expansão com 32ED PNP 24 Vcc
	transistorizadas
EVDANÇÕEG	DADA TERMODAD DADA O MDOCCOC
	S PARA TERMOPAR PARA O MPC6006
6006.65	Módulo expansão 6006 Expansão 4E termopar J,K,S
6006.66	Módulo expansão 6006 Expansão 8E termopar J,K,S
EVDANÇÕEC	DADA DT100 DADA O MDC6006
	PARA PT100 PARA O MPC6006
6006.75	Módulo expansão 6006 4E PT100
6006.76	Módulo expansão 6006 8E PT100
6006.85	Módulo expansão 6006 4E PT100 4E 0-10V

Plataforma de automação Modicon M340

Modicon M340

A família Modicon M340 é uma nova oferta de controladores programáveis com alta performance de processamento e capacidade de memória

O mais poderoso "midrange" de mercado para fabricantes de máquinas

- Até 1024 E/S digitais e 256 E/S analógicas em rack
- Multiprocessamento
- Modelos disponíveis com as seguintes portas de comunicação: USB, Ethernet, CANopen e Modbus (até 3 portas de comunicação, dependendo do modelo da CPU)
- Memória interna de programa de até 4 Mbvtes
- Programável pelo UNITY
- Sague a quente de módulos de E/S
- Varredura de até 7 Kinstruções/ms

Nova plataforma Modicon M340

Dotado de memória e performance de alta capacidade, este controlador programável vai dar um novo impulso às suas aplicações. Concebido para funcionar em total sinergia com os outros produtos da Schneider Electric, o Modicon M340 é a fonte de eficiência.

Performance

- 7 K instruções/ms.
- 4 Mbytes de memória de programa.
- 256 Kbytes de dados.

Design compacto

- 3 portas de comunicação integradas ao processador.
- \blacksquare A x L x P = 100 x 32 x 93 mm.
- Módulos de entradas/saídas digitais de alta densidade com 64 canais em apenas 32 mm de largura.

Modicon M340 Hardware

Comunicativo, com suas portas integradas

- Rede para máquina CANopen.
- Rede Ethernet TCP/IP Transparent Ready.
- Canal serial Modbus ou ASCII.
- Acesso remoto via RTC, GSM, Rádio ou ADSL.

Especializado

- Módulos de contagem com funções prontas para o uso.
- Biblioteca de blocos de funções dedicada para controle de movimento. MFB (Motion Function Blocks) para o standard PLCopen.
- Biblioteca de blocos de regulação avançada orientada para controle de máquinas.

Inovador

- Porta USB standard.
- Servidor Web integrado.
- Gerenciamento de arquivo de receitas via protocolo FTP.
- Cartão de memória SD Card "Plug and Load".
- Sem pilha ou bateria.

Robusto

- Arquitetura com racks, que possibilita encaixar e extrair os módulos energizados e em operação (Hot-Swap).
- Atende e supera as normas relativas a choques, vibrações, temperatura, altitude e suportabilidade aos distúrbios elétricos.

De fábrica, o Modicon M340 dispõe de serviços exclusivos, reservados normalmente para controladores programáveis de categoria superior.

Modicon M340 Módulos processadores

Processadores Modicon M340 BMX P34

Capacidade Capacidade da memória das E/S (1) Standard BMX P340 10 2048 Kbytes integrada

512 E/S digitais

128 E/S analógicas 20 canais para aplicações específicas

Performance BMX P340 20

1024 E/S digitais 4096 Kbytes integrada

256 E/S analógicas

36 canais para aplicações

específicas

Cartão de memória		
Designação	Utilização	
Cartão de memória 16 Mbytes	Para substituição do cartão de memória. Fornecido de fábrica com cada processador, permite: - Backup do programa, constantes, símbolos e dados - Armazenamento de arquivos, 16 Mbytes - Ativação do servidor Web, classe B10	
Elementos separados		
Designação	Utilização De	
Cabos terminal / porta USB	Porta USB tipo mini B do processador Modicon M340	
Elementos de reposição		
Designação	Utilização	
Cartão de memória 8 Mbytes	Fornecido de fábrica com cada processador, permite: - Backup do programa, constantes, símbolos e dados - Ativação do servidor Web, classe B10	

(1) Capacidade para entradas/saídas na configuração monorack.

1 rede Ethernet TCP/IP	Canal serial Modbus	BMX P34 1000
1 rede Ethernet TCP/IP	Canal serial Modbus Rede CANopen	BMX P34 2010
	Canal serial Modbus Rede Ethernet TCP/IP	BMX P34 2020
	Rede Ethernet TCP/IP Rede CANopen	BMX P34 2030
	Compatibilidade do processador	Referência
	BMX P34 20•0	BMX RMS 008MPF

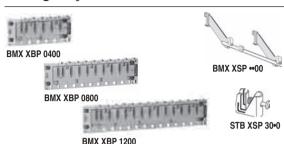
	Comprimento	Referência
Para		
Porta USB tipo A	1,8 m	BMX XCA USB018
terminal PC	4,5 m	BMX XCA USB045
	Compatibilidade	Referência
	do processador	
	BMX P34 1000 / 20•0	BMX RMS 008MP

Modicon M340 Módulos de alimentação

BMX CPS 2010 / 3020

Módulos de alimentação					
Rede de alimentação	Potências disponíveis (1)			Referência	
	3,3 V	== 24 V rack	== 24 V sensores	Total	
= 24 V isolada	8,3 W	16,5 W	-	16,5 W	BMX CPS 2010
2448 V isolada	15 W	31,2 W	-	31,2 W	BMX CPS 3020
\sim 100240 V	8,3 W	16,5 W	10,8 W	20 W	BMX CPS 2000
	15 W	31,2 W	21,6 W	36 W	BMX CPS 3500

Elementos separados			
Designação	Composição	Tipo	Referência
Kit com 2	Uma borneira com	Parafuso	BMX XTS CPS10
conectores	5 pinos e 1 borneira	Mola	BMX XTS CPS20
extraíveis	com 2 pinos		


⁽¹⁾ A soma das potências absorvidas em cada tensão

^{(= 3,3} V e = 24 V) não deve ultrapassar a potência total do módulo..

⁽²⁾ Tensões — 3,3 V e — 24 V rack para alimentação dos módulos do controlador programável Modicon M340.

⁽³⁾ Tensão ... 24 V sensores para alimentação dos sensores de entradas (tensão disponível no conector extraível 2 pinos no painel frontal).

Modicon M340 Configuração monorack

Racks			
	ão Tipo de módulo a implantar	Nº de slots (1)	Referência
Racks	Alimentação BMX CPS, processador BMX P34, módulos de E/S e módulos de aplicações específicas (contagem, comunicação)	4 6 8 12	BMX XBP 0400 BMX XBP 0600 BMX XBP 0800 BMX XBP 1200

Acessorios		
Designação	Utilização com unitária	a Referência
Kit de conexão da blindagem	Rack BMX XBP 0400	BMX XSP 0400
contendo:	Rack BMX XBP 0600	BMX XSP 0600
-uma barra metálica	Rack BMX XBP 0800	BMX XSP 0800
- duas bases	Rack BMX XBP 1200	BMX XSP 1200
- um conjunto de anéis		
de aperto com mola		
Anéis de aperto com mola	Cabos de secção	STB XSP 3010
(emb. c/10)	1,56 mm ²	
,	Cabos de secção	STB XSP 3020
	511 mm ²	
Tampas de proteção	Slots não ocupados	BMX XEM 010
(emb. c/5)	em rack	
,	BMX XBP ••00	

⁽¹⁾ Número de slots que recebe o módulo processador, os módulos de E/Se os módulos de aplicações específicas (exceto o módulo de alimentação).

Modicon M340 Módulos de entradas/saídas digitais

Módulos	Módulos de entradas digitais				
Natureza	Tensão de entrada	Conexão por (1)			
da corrent	е	,			
=	24 V	Borneira extraível 20 pinos			
	(lógica positiva)	de parafuso ou mola			
		1 conector 40 pinos			
		2 conectores 40 pinos			
	24 V	Borneira extraível 20 pinos			
	(lógica negativa)	de parafuso ou mola			
	48 V	Borneira extraível 20 pinos			
	(lógica positiva)	de parafuso ou mola			
\sim	24 V	Borneira extraível 20 pinos			
		de parafuso ou mola			
	48V	Borneira extraível 20 pinos			
		de parafuso ou mola			
	100120 V	Borneira extraível 20 pinos			
		de parafuso ou mola			

de parafuso ou mola		
		•
Módulos	de saídas digitais	
Natureza	Tensão de saída	Conexão por (1)
da corrent	e	
=	24 V/0,5 A	Borneira extraível 20 pinos
estado	(lógica positiva)	•
sólido	24 V/0,5 A	Borneira extraível 20 pinos
	(lógica negativa)	de parafuso ou mola
	24 V/0,1 A	1 conector 40 pinos
	(lógica positiva)	2 conectores 40 pinos
a triac	100240 V	Borneira extraível 20 pinos
		de parafuso ou mola
0U ∼	1224 V/3 A,	Borneira extraível 20 pinos
relé		de parafuso ou mola
	== 24 V/2 A,	Borneira extraível 20 pinos
	\sim 240 V/2 Å	de parafuso ou mola
(1) 5	. (11.6	. ()

(1) Por conector, módulo fornecido com tampa(s).

Referência

Modularidade

Conformidade

Sim

Sim

IEC 1131-2	(nº de canais)	
Tipo 3	16 entradas isoladas	BMX DDI 1602
Tipo 3	32 entradas isoladas	BMX DDI 3202K
Não IEC	64 entradas isoladas	BMX DDI 6402K
Não IEC	16 entradas isoladas	BMX DAI 1602
Tipo 1	16 entradas isoladas	BMX DDI 1603
Tipo 1	16 entradas isoladas	BMX DAI 1602
Tipo 3	16 entradas isoladas	BMX DAI 1603
Tipo 3	16 entradas isoladas	BMX DAI 1604
Conformidade IEC 1131-2	Modularidade (nº de canais)	Referência
Sim	16 saídas protegidas	BMX DDO 1602
Não IEC	16 saídas protegidas	BMX DDO 1612
Sim	32 saídas protegidas	BMX DDO3202K
Sim	64 saídas protegidas	BMX DDO6402K
-	16 saídas	BMX DAO 1605

8 saídas não protegidas

16 saídas não protegidas

BMX DRA 0805

BMXDRA1605

Modicon M340 Módulos de entradas/saídas digitais

Módulos mistos de entradas/saídas digitais				
Nº de	Conexão por	Nº e tipo		
E/S	(1)	de entradas		
16	Borneira extraível 20 pinos de parafuso ou mola	8 (lógica positiva)		
32	1 conector 40 pinos	16 (lógica positiva)		
			П	

32 1 conector 4	0 pinos	16 (lógica positiva)
Borneiras de con	exão extraíveis	
Designação		
Borneiras extraíveis	De parafuso, tipo gaiol	la
20 pinos	De parafuso estribo	
	Mola	

Cabos de liga	çao pre-equipados
para módulos	de E/S com borneira extraível
Designação	Composição

Cabos pré-equipados 1 borneira 20 pinos com 1 extremidade com fios livres codificados com fios livres

Cabos de ligação pré-equipados para módulos de E/S com conectores 40 pinos Designação № de revest.

Cabos pré-equipados 1 com 1 extremidade com fios livres

1 x 20 fios (16 canais)

2 x 20 fios (32 canais)

Cabos pré-equipados para bases Advantys Telefast ABE 7 1 x 20 fios (16 canais)

2 x 20 fios (32 canais)

Nº e tipo	Conformidade	Referência
de saídas	IEC 1131 2	
8, estáticas 24 V / 0,5 A	E, tipo 3	BMX DDM 16022
8, relé <u> </u>	E, tipo 3	BMX DDM 16025
16, estáticas — 24 V / 0,1 A	E, tipo 3	BMX DDM 3202K

Utilização	Referência
Para módulo com borneira extraível 20 pinos	BMX FTB 2000
Para módulo com borneira extraível 20 pinos	BMX FTB 2010
Para módulo com borneira extraível 20 pinos	BMX FTB 2020

Comprimento	Referência
3 m	BMX FTW 301
5 m	BMX FTW 501
10 m	BMX FTW 1001

Composição	Secção	Compr.	Referência
1 conector 40 pinos	0,324 mm ²	3 m	BMX FCW 301
1 extremidade com fios		5 m	BMX FCW 501
livres codificados		10 m	BMX FCW 1001
1 conector 40 pinos	0,324 mm ²	3 m	BMX FCW 303
2 extremidades com fios		5 m	BMX FCW 503
livres codificados		10 m	BMX FCW 1003
1 conector 40 pinos	0,324 mm ²	0,5 m	BMX FCC 051
1 conector tipo HE 10		1 m	BMX FCC 101
		2 m	BMX FCC 201
		3 m	BMX FCC 301
		5 m	BMX FCC 501
		10 m	BMX FCC 1001
1 conector 40 pinos	0,324 mm ²	0,5 m	BMX FCC 053
2 conectores tipo HE 10		1 m	BMX FCC 103
·		2 m	BMX FCC 203
		3 m	BMX FCC 303
		5 m	BMX FCC 503
		10 m	BMX FCC 1003

Modicon M340 Módulos de entradas/saídas analógicas

Modulos de entradas analogicas		
Tipos de entradas	Faixa do sinal de entrada	
Entradas de alto	± 10 V, 010 V; 05 V, 15 V, ± 5 V	
nível isoladas	020 mA, 420 mA, ± 20 mA	
Entradas de baixo	Sonda térmica, termopar	

± 640 mV, ± 1,28 V; 0...400 W, 0...4000 W

Módulo de saídas analógicas Tipos de saídas Faixa do sinal de saída Saídas de alto nível ± 10 V. isoladas 0...20 mA, 4...20 mA

Módulo misto de e	ntradas/saídas analógicas
Tipos de saídas	Faixa do sinal
Entradas/saídas mistas	± 10 V, 010 V,
não isoladas	0 5 V 1 5 V

não isoladas	05 V, 15 V,
	020 mA, 420 mA

Acessorios de coriexão para modulos analógicos "				
Designação	Utilização com módulos			
Borneiras extraíveis	BMX AMI 0410			
20 pinos	BMX AMO 0210			
	BMX AMM 0600			
Cabos pré-equipados	BMX AMI 0410			
	BMX AMO 0210			
	BMX AMM 0600			
	BMX ART 0414			
	BMX ART 0814 (2)			

Sistema de pré-fiação Advantys Telefast ABE 7 Bases Advantys BMX AMI 0410

Telefast ABE 7

BMX ART 0414	
BMX ART 0814	
BMX AMI 0410	

para bases Advantvs

Cabos pré-equipados Telefast ABF 7CPA41.

BMX ART 0414 BMX ART 0814

⁽¹⁾ A blindagem dos cabos que transmitem os sinais analógicos deve ser obrigatoriamente conectada ao kit de conexão da blindagem BMX XSP••00, montado na parte inferior do rack que suporta os módulos analógicos.

	Danalua" -	0	NO de servi	- Defenência
	Resolução 16 bits	Conexão	Nº de canai	
	16 DITS	Por borneira extraível	4 canais	BMX AMI 0410
		de parafuso tipo gaiola,	rápidos	
	45 50-	parafuso estribo ou mola	4	DMV ADT 0444
	15 bits +	Conector 40 pinos	4 canais	BMX ART 0414
	sinal		8 canais	BMX ART 0814
_				
	D b ~ .	0	NO de const	- D-(21-
_	Resolução	Conexão	Nº de canai	
	16 bits	Por borneira extraível	2 canais	BMX AMO 0210
		de parafuso tipo gaiola,		
		parafuso estribo ou mola		
		• "		- · · ·
	Resolução	Conexão	Nº de canai	
	12 bits ou	Por borneira extraível	E: 4 canais	BMX AMM 0600
	10 bits	de parafuso tipo gaiola,	S: 2 canais	
	segundo	parafuso estribo ou		
	a faixa	mola tipo gaiola		
	Tipo, compo		Compr	
	Parafuso tipo		_	BMX FTB 2000
	Parafuso est	ribo		BMX FTB 2010
	Mola		-	BMX FTB 2020
	1 borneira ex	raível 20 pinos,	<u>3 m</u>	BMX FTW 301S
	1 extremidad	le com	<u>5 m</u>	BMX FTW 501S
	fios livres co			
	1 conector 4	0 pinos, 1 extremidade	3 m	BMX FCW 301S
		es codificados	5 m	BMX FCW 501S
	Distribuição d	e alimentações isoladas.	_	ABE 7CPA410
		nentações isoladas e protegida	as	
		mA. Conexão direta das 4 E.		
		nec. da compensação de junç	ão a —	ABE 7CPA412
		res. Conexão direta das 4 E.		· · · · · · · · · · · · · · · · · ·
		traível 20 pinos e	1.5 m	BMX FCA150
		po SUB-D 25 pinos	3 m	BMX FCA300
		BE 7CPA410	5 m	BMX FCA500
		0 pinos e 1 conector tipo SI		BMX FCA152
		a base ABE 7CPA412	3 m	BMX FCA302
	20 pillos pai	a base ADL 101 A412	5 m	BMX FCA502
			O III	DIVIA FUADUZ

⁽²⁾ O módulo 8 canais BMX ART 0814 requer 2 bases ABE 7CPA412 e 2 cabos BMX FCA **2.

com saídas push-pull

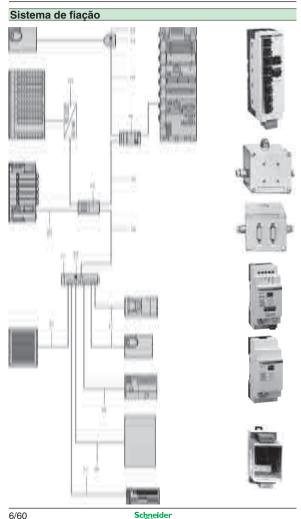
Controladores programáveis

Modicon M340 - Módulos de contagem BMX EHC 0200/0800

Módulos de contagem BMX EHC 0200/0800				
Designação	Nº de	Características	Referência (1)	
	canais			
Módulos de contage	2	Contagem 60 kHz	BMX EHC 0200	
para sensores — 24 V	8	Contagem 10 kHz	BMX EHC 0800	
de 2 e 3 fios e encoders		-		
incrementais == 10/30 V				

Acessórios de conexão (1)				
Designação	Composição	Referência unitária		
Kit de conectores para módulo	2 conectores 16 pinos e 1 conector 10 pinos para	BMX XTS HSC 20		
BMX EHC 0200 Borneiras extraíveis	módulo BMX EHC 0200 Parafuso tipo gaiola	BMX FTB 2000		
20 pinos para módulo	Parafuso estribo	BMX FTB 2010 BMX FTB 2020		
BMX EHC 0800 Kit de conexão da blindagem para módulos	Mola Composto de uma barra metálica, 2 bases para montagem em rack BMX EHC 0200/0800 e um conjunto de anéis de aperto de mola	DIVIA FIB 2020		

⁽¹⁾ A blindagem dos cabos que transmite os sinais de contagem deve ser obrigatoriamente conectada ao kit de conexão da blindagem BMX XSP ••00 montada na parte inferior do rack que segura os módulos BMX EHC 0200/0800.


Modicon M340 - Redes para máquinas e instalações CANopen, sistema de fiação

Caixas de derivação e conectores padrões				
Designação	Descrição			Referência
Caixa de	4 portas SUB-D.	1	-	TSX CAN TDM4
derivação	Borneira de parafuso			
CANopen IP 20	para conexão dos			
	cabos principais			
	Adaptação de			
	fim de linha			
Conectores IP 20	Cotovelo (90°)	2	-	TSX CAN KCDF 90T
CANopen SUB-D	Reto (2)	-	-	TSX CAN KCDF 180T
9 pinos fêmea.	Cotovelo (90°)	4	-	TSX CAN KCDF 90TP
Interruptor para	com SUB-D 9 pinos			
adaptação fim de	para conexão PC			
linha	ou ferramenta de			
	diagnóstico			
Conectores	Macho	-	_	FTX CN 12M5
M12 IP 67	Fêmea		_	FTX CN 12F5
Caixa de	2 portas RJ45	9	-	VW3 CAN TAP2
derivação				
CANopen IP 20				
para Áltivar e				
Lexium 05				

Cabos e cabos pré-equipados padrões IP 20							
Designação	Descrição	Cód.(1)	Compr.	Referência			
				unitária			
Cabos CANopen	Padrão, certificação	5	50 m	TSX CAN CB50			
(AWG 24)	UL, marcação C €:		100 m	TSX CAN CB100			
	não propagador de		300 m	TSX CAN CB300			
	chama (IEC 60332-2)						
Cabos CANopen	Padrão, certificação	6a	0,3 m	TSX CAN CBDD03			
pré-equipados	UL, marcação C €:		1 m	TSX CAN CBDD1			
1 conector SUB-D	não propagador de		3 m	TSX CAN CBDD3			
9 pinos fêmea em	chama (IEC 60332-2)		5 m	TSX CAN CBDD5			
cada extremidade	,						
(AWG 24)							

Modicon M340 - Canal serial Modbus e ASCII, sistema de fiação

Modicon M340 - Canal serial Modbus e ASCII, sistema de fiação

Elementos de derivação e de adaptação para canal serial RS 485					
Designação	Descrição	Cód.	Compr.	Referência	
Distribuidor Modbus	10 conectores RJ45 e 1 borneira de parafuso	1	- '	LU9 GC3	
Tap de derivação	2 conectores RJ45, 1 cabo integrado com conector RJ45	2	0,3 m 1 m	VW3 A8 306 TF03 VW3 A8 306 TF10	
Caixa de derivação passiva	Derivação e prolongação do cabo de rede, adaptador de fim de linha	-	-	TSX SCA 50	
Caixa de derivação passiva 2 vias 2 conectores SUB-D fêmea 15 pinos e 2 borneiras de parafuso	Derivação 2 vias, prolongação do cabo principal, codificação de endereço e adaptador de fim de linha	3	-	TSX SCA 62	
Caixa de derivação Borneira de parafuso para cabo principal 1 conector RJ45 para derivação	Isolação do canal serial RS 485 e adaptação de fim de linha Alimentação — 24 V ^(f) Montagem em trilho — 35 mm	4	_	TWD XCA ISO	
Caixa de derivação 3 conectores RJ45	Montagem em trilho → 35 mm	-		TWD XCA T3RJ	
Adaptador Modbus / Bluetooth®	1 adaptador Bluetooth® (dist. sens. 10 m, classe 2) c/1 conector RJ45, 1 cabo compr. 0,1 m p/PowerSuite com 2 conectores RJ45, 1 cabo compr. 0,1 m para TwidoSuite, com 1 conector RJ45 e 1 conector mini-DIN, 1 adaptador RJ45/SUB-D macho 9 pinos para inversores ATV			VW3 A8114	
Conversor RS 232C/RS 485 sem sinais do modem	Alimentação — 24 V/20 mA, 19,2 kbit/s, montagem em trilho — 35 mm	5	-	XGS Z24	

Modicon M340 - Redes para máquinas e instalações CANopen, sistema de fiação

Acessórios de conexão IP 20						
Designação	Descrição	Cód.(1)	Compr.	Referência unitária		
Conector CANopen	SUB-D fêmea	-	-	VW3 CAN KCDF 180T		
para inversor	9 pinos; interruptor					
de freqüência	fim de linha; saída					
Altivar 71 ⁽²⁾	dos cabos a 180°					
Adaptador para	Adaptador	-	-	VW3 CAN A71		
inversor de	CANopen					
freqüência	SUB-D para RJ45					
Altivar 71	·					
Cabos CANopen	1 conector RJ45 em	10	0,3 m	VW3 CAN CARR03		
pré-equipados	cada extremidade.		1 m	VW3 CAN CARR1		
para inversores						
Altivar e Lexium 05						
Adaptador de	Interface de	14	-	AM0 2CA 001V000		
rede CANopen para	hardware para					
servo acionamento	ligação conforme					
Lexium 15	padrão CANopen + 1					
	conector para ligação					
	de um terminal PC					
Conector em Y	CANopen/Modbus	_		TCS CTN011M11F		

Modicon M340 Canal serial Modbus e ASCII

Cabos de conex	ão para canal serial F	RS 48	35	
Designação	Descrição	Cód.	Compr.	Referência
Cabos principais	Cabo serial Modbus,	6	100 m	TSX CSA 100
com duplo par	fornecido sem conector		200 m	TSX CSA 200
trançado blindado	(para montagem)		500 m	TSX CSA 500
RS 485				
Cabos Modbus	2 conectores RJ45	7	0,3 m	VW3 A8 306 R03
RS 485			1 m	VW3 A8 306 R10
			3 m	VW3 A8 306 R30
	1 conector RJ45 e 1	-	3 m	VW3 A8 306
	conector SUB-D 15 pinos			
	1 conector mini-DIN	8	0,3 m	TWD XCA RJ003
	para controlador Twido		<u>1 m</u>	TWD XCA RJ010
	e 1 conector RJ45		3 m	TWD XCA RJ030
	1 conector RJ45 e 1	9	3 m	VW3 A8 306 D30
	extremidade fios livres			
	1 conector miniatura e 1	10	3 m	TSX SCP CM 4530
	conector SUB-D 15 pinos			
Cabo para display e	1 conector RJ45 e 1	11	2,5 m	XBT Z938
terminal compacto	conector SUB-D 25 pinos			
Magelis XBT N/R				
Cabos para	2 conectores RJ45 para:	11	3 m	VW3 A8 306 R30
terminal gráfico	- XBT GT1 (porta COM1)			
Magelis XBT GT	- XBT GT2GT7 (porta			
	COM2)			VDT T000
	1 conector RJ45 e	11	2,5 m	XBT Z938
	1 conector SUB-D			
	25 pinos para:			
	- XBT GT2GT7			
	(porta COM1)			
Adaptador de	Para conector RJ45	12	(1)	VW3 A8 306 RC
fim de linha	$R = 120 \Omega$, $C = 1 nf$			

⁽¹⁾ Venda em quantidade indivisível de 2

Modicon Premium

O melhor "midrange" do mercado!

Processadores

Grande performance e flexibilidade nas opções de CPU:

- Até 2048 E/S digitais e 512 E/S analógicas em rack
- Multiprocessamento
- Modelos com porta Ethernet e USB incorporadas
- Slot para cartão PCMCIA de comunicação
- Expansão de memória por cartão PCMCIA para até 7 Mbytes de programa e 8 Mbytes de dados
- Varredura de até 0.05 ms/K

Descrição geral

O controlador programável Premium é um controlador programável modular. Atende a uma grande diversidade de aplicações, devido à sua flexibilidade em termos de capacidade de processamento e possibilidades de expansão.

O controlador programável Premium é composto pelos seguintes tipos de módulos:

- Processador.
- Fonte de alimentação.
- E/S digitais e analógicas.
- Módulos de comunicação.
- Módulo para aplicações específicas.

Modicon Premium

Com exceção da CPU e fonte de alimentação, todos os módulos E/S e de aplicação específica podem ser instalados em qualquer posição do rack.

Os racks são usados para ligação elétrica e mecânica de todos os módulos do controlador programável. A modularidade é de 4, 6, 8 ou 12 módulos por rack. Podem existir diversos racks distribuídos por um sistema chamado Bus X, ligados uns aos outros por cabos de extensão. Os cabos estão ligados por dois conectores Db-9 na extremidade de cada rack. A CPU pode estar em qualquer um destes racks.

Os processadores constituem uma gama diversificada em termos de capacidades, de modo a satisfazer as diferentes necessidades de cada aplicação, em conjunto com a capacidade de comunicação integrada, e adicionalmente módulos de comunicação se forem necessários.

Os módulos de comunicação permitem a interligação deste controlador programável em outras redes de comunicação mais ou menos complexas.

Os módulos para aplicações específicas dão ao controlador programável funcionalidades adicionais para um desempenho ótimo em determinadas aplicações, como é o caso do módulo de pesagem industrial ou do módulo de controle de posicionamento, por exemplo.

Todos a linha Premium, permite sua utilização até a temperatura de 60 graus, sendo que com a utilização de ventiladores especiais desta linha poderemos operar até a temperatura de 70 graus.

Modicon Premium

Processador

A capacidade de processamento da família Premium varia de acordo com o modelo do processador.

- De 4 a 16 racks.
- De 512 a 2048 E/S digitais locais.
- De 24 a 256 E/S analógicas locais.
- De 8 a 64 canais de aplicações especificas.
- De 1 a 4 módulos rede (Ethernet, Fipway, Modbus Plus).
- De 2 a 8 redes AS-i.
- Redes Fipio.
- Possibilidade de módulos de ligação a redes (Interbus-S, Profibus DP, CANopen)

Os valores de E/S locais e remotas são cumulativas. Um total de mais de 10,000 E/S são possíveis: em rack + Fipio + redes de terceiros + AS-i.

Atualmente a família Premium é composta por 16 processadores, divididos em 6 níveis.

As características do PLC (número de E/S, módulos de aplicação específica, ligações de rede, etc.) são determinadas pelo modelo do processador.

Modicon Premium

	57-0x	57-1x	57-2x	57-3x	57-4x	57-5x	57-6x
Rack	1	4	16	16	16	16	16
E/S digitais	256	512	1024	1024	2048	2048	2048
E/S analógicas	12	24	80	128	256	512	512
Aplicações	4	8	24	32	64	64	64
específicas							
Canais de	-	-	10	15	20	30	30
controle de							
processo							
Redes	1	1	1	3	4	4	4
AS-I	1	2	4	8	8	8	8
FIPIO	-	1	1	1	1	1	1
integrado							
CANOpen	1	1	1	1	1	1	1
Profibus,	-	-	1	3	4	5	5
Interbus-S							
Memória	96 Kb	96 Kb	160/	192/	440 Kb	896 Kb	2Mb
de dados			192 Kb	208 Kb			
Memória	128 Kb	224 Kb	768 Kb	1.7 Mb	2 Mb	7 Mb	7 Mb
aplicação							
Memória	256 Kb	256 Kb	8 Mb	8 Mb	8 Mb	8 Mb	8/16 Mb
dados max.							

Modicon Quantum

Opte pela disponibilidade

Processadores

Baseadas em processadores Intel e AMD, as CPUs QUANTUM apresentam as mais altas performances do mercado:

- CPU até Pentium 266 MHz
- Multiprocessamento
- Portas Ethernet, USB, Modbus e Modbus Plus incorporadas
- Expansão de memória por cartão PCMCIA para até 7 Mbytes de programa e 8 Mbytes de dados
- Display / teclado frontal para diagnóstico e configuração

Descrição geral

O Quantum é uma plataforma de automação de natureza modular. É composta por um ou mais bastidores com os seguintes tipos de módulos: processador, fonte de alimentação, E/S digitais e analógicas, módulos de aplicação especifica. Estes módulos podem ser distribuídos por 64 bastidores no máximo.

Os módulos de alimentação, módulos de E/S ou módulos de aplicação especifica podem ser atribuídos em qualquer slot da configuração.

Os módulos de comunicação devem ser colocados no mesmo rack da CPU. É preferível, por razões térmicas, instalar os módulos das fontes de alimentação no ultimo slot do rack, mas não é obrigatório.

Modicon Quantum

Os racks são utilizados para ligação eléctrica e mecânica de todos os módulos da estação. Existem racks de 2, 3, 4, 6, 10 ou 16 módulos.

Os racks distribuídos no bus RIO (Remote Input/Output) são interligados entre si por cabos coaxiais ao longo de um comprimento máximo de 4500m.

A ligação pode ser feita por cabo simples ou redundante, sendo a gestão da redundância assegurada de base pelos módulos de comunicação. Não é necessária qualquer programação para esta gestão. Existem palavras de estado que permitem a monitorização das comunicações. É também possível usar ligações com fibra óptica e conversores dedicados.

As capacidades de processamento do Quantum variam conforme o modelo do processador, tendo como limite:

- 32 estações E/S, cada uma com dois racks: um rack principal e um rack de extensão
- 64.000 bits de E/S remotos, acessíveis através de Modbus
- 1024 bits por módulo com número ilimitado de palavras para o bastidor local,
- 1024 bits de entrada e 1024 bits de saída por cada Unidade Remota (E/S ou aplicação específica),
- 2 ou 6 módulos opcionais (Ethernet, Modbus Plus, Profibus DP, DeviceNet, SERCOS, Motion, Sy/Max Ethernet),

A arquitetura de E/S Remotas (RIO) é necessária se os slots do rack local que contém a CPU e os slots do rack de extensão estiverem ocupados, ou por necessidade de topologia.

Modicon Quantum

Exemplo para cálculo de bits: um modulo de 32 entradas digitais "consome" 64 bits de entrada; um módulo de 8 saídas analógicas "consome" 128 bits de saída; um módulo de 16 entradas analógicas "consome" 17 palavras de entrada (valores & palavras de estado).

140 CPU

Racks locais

Unidades E/S remotas

Unidades E/S distribuídas

F/S Local

Palavras E/S por bastidor remoto

Palavras E/S por bastidor distribuído

Número de módulos opcionais (em bastidor local)

Modbus / ASCII integrado

Modbus Plus integrado

Modbus Plus em bastidor

Ethernet TCP/IP integrado

Ethernet TCP/IP rack Local (Max.)

USB

Hot Standby

Programa e dados não-alocados sem PCMCIA

Dados alocados & config. (Max.)

Dados alocados (State RAM)

Dados alocados (Otato HAIVI)

Armazenamento de dados e programas com PCMCIA

Armazenamento de dados em PCMCIA

Modicon Quantum

Processador

A gama Quantum é constituída por 6 processadores divididos por nível de potência e funções. As características da estação são definidas pelo modelo de processador escolhido.

311 10	434 12A	534 14A	651 50	65160/ 67160*
2	2	2	2	2
31*2 racks	31*2 racks	31*2 racks	31*2 racks	31*2 racks
63	63	63	63	63
Ilimitado	Ilimitado	Ilimitado	Ilimitado	Ilimitado
64 E / 64 S	64 E / 64 S	64 E / 64 S	64 E / 64 S	64 E / 64 S
30 E / 32 S	30 E / 32 S	30 E / 32 S	30 E / 32 S	30 E / 32 S
2	6	6	6	6
2 RS232	2 RS232	2 RS 232	1 RS232/ RS485	1 RS232/ RS485
1	1	1	1	1
2	6	6	6	6
-	-	-	1	1/1 hot standby'
2	6	6	6	6
-	-	-	1	1
-	-	-	-	- / SIM
400 Kb	800 Kb	2716 Kb	512 Kb	768 Kb
148 Kb	256 Kb	256 Kb	256 Kb	256 Kb
1	64	64	64	64
Kpalavras	Kpalavras	Kpalavras	Kpalavras	Kpalavras
-	-	-	7168 Kb	7168 Kb
-	-	-	8192 Kb	8192 Kb

Software Unity Pro

Unity, a produtividade do software

Software "tudo em um" e de utilização simples

O Unity Pro explora inteiramente as vantagens das interfaces gráficas e contextuais do Windows XP e Windows 2000:

- Acesso direto às ferramentas e informações.
- Configuração 100% gráfica.
- Barra de ferramentas e ícones personalizáveis.
- Funções estendidas de "drag & drop" e zooms.
- Janela de diagnóstico integrada.

Todas as vantagens da padronização

O Unity Pro fornece um conjunto completo de funções e ferramentas que permite reproduzir a estrutura da aplicação na estrutura do processo da máquina. O programa é dividido em módulos de funções hierarquizados, que contêm:

- Seções de programa.
- Tabelas de animação.
- Telas do operador.
- Hiperlinks.

As funções básicas utilizadas de modo repetitivo são encapsuladas em blocos de funções do usuário (DFB) em linguagem IEC 61131-3.

Ganho de tempo pela reutilização

Testados e qualificados, seus padrões reduzem os tempos de desenvolvimento e de instalação no local. A qualidade e os prazos são otimizados:

- Módulos de funções reutilizáveis na aplicação ou entre projetos por importação/exportação XML.
- Blocos de funções solicitados por "drag & drop" a partir da biblioteca.

Instâncias que podem ser atualizadas automaticamente (se esta opção tiver sido selecionada pelo usuário) para refletir as modificações da biblioteca.

Software Unity Pro

Qualidade máxima garantida

O simulador do controlador programável integrado reproduz fielmente o comportamento do programa no PC. Todas as ferramentas de depuração são utilizadas em simulação para aumentar a qualidade antes da instalação:

- Execução passo a passo do programa.
- Ponto de parada e de visualização.
- Animações dinâmicas para visualizar o estado das variáveis e a lógica que está sendo executada.

Tempos de paradas reduzidos

O Unity Pro fornece uma biblioteca de DFBs de diagnóstico da aplicação. Integrados no programa, estes DFBs podem ser utilizados (dependendo de sua função) para monitorar as condições permanentes de segurança e a evolução do processo no tempo. Uma janela de visualização mostra claramente e na ordem cronológica, por registros datados, todas as falhas do sistema e da aplicação. Desta janela, por um simples clique é possível acessar o editor do programa onde ocorreu o erro (procura das condições faltantes na fonte).

As modificações online podem ser agrupadas coerentemente em modo local no PC e transferidas diretamente no controlador programável em uma única operação para serem consideradas no mesmo scan. Um conjunto completo de funções fornece a base para o controle da precisão de suas operações, para minimizar o tempo de parada:

- Histórico das ações dos operadores no Unity Pro em um arquivo protegido.
- Perfil do usuário e proteção por senha.
- Telas gráficas de operação integradaselétricos.

Software Unity Pro

Kit de Soitware	Kit de Softwares Unity Pro Smail Versão 4.0						
Para contr. programáveis	Designação	Tipo de licença	Referência				
BMX P34 1000	Kit de softwares Unity	Simples (1 estação)	UNY SPU SFU CD 40				
BMX P34 20•0	Pro Small	Grupo (3 estações)	UNY SPU SFG CD 40				
		Equipe (10 estações)	UNY SPU SFT CD 40				
	Atualização de	Simples (1 estação)	UNY SPU SZU CD 40				
	softwares a partir de:	Grupo (3 estações)	UNY SPU SZG CD 40				
	- Concept S	Equipe (10 estações)	UNY SPU SZT CD 40				
	- PL7 Micro						
	- ProWORX NxT/32 Lite						

Kit de softwares Unity Pro Medium versão 4.0						
P/ controladores programáveis	Designação	Tipo de licença	Referência			
BMX P34 1000	Kit de softwares Unity	Simples (1 estação)	UNY SPU MFU CD 40			
BMX P34 20•0	Pro Medium	Grupo (3 estações)	UNY SPU MFG CD 40			
TSX 57 0•57 20		Equipe (10 estações)	UNY SPU MFT CD 40			
TSX PCI 57 20	Atualização de	Simples (1 estação)	UNY SPU MZU CD 40			
	softwares a partir de:	Grupo (3 estações)	UNY SPU MZG CD 40			
	- Concept S, M	Equipe (10 estações)	UNY SPU MZT CD 40			
	 PL7 Micro, Junior 					
	 ProWORX NxT/32 Lite 					

Software Unity Pro

Kit de software	Kit de softwares Unity Pro Large versão 4.0							
P/ controladores programáveis	Designação	Tipo de licença	Referência					
BMX P34 1000	Kit de softwares Unity	Simples (1 estação)	UNY SPU LFU CD 40					
BMX P34 20•0	Pro Large	Grupo (3 estações)	UNY SPU LFG CD 40					
TSX 57 0 · 57 40		Equipe (10 estações)	UNY SPU LFT CD 40					
TSX PCI 57 20/30		Site (> 10 estações)	UNY SPU LFF CD 40					
140 CPU 311 10	Atualização de	Simples (1 estação)	UNY SPU LZU CD 40					
140 CPU 434 12U	softwares a partir de:	Grupo (3 estações)	UNY SPU LZG CD 40					
140 CPU 534 14U	- Concept S, M	Equipe (10 estações)	UNY SPU LZT CD 40					
	- PL7 Micro, Junior, Pro - ProWORX NxT/32 Lite	Site (> 10 estações)	UNY SPU LZF CD 40					

Software Unity Pro Extra Large versão 4.0							
P/ controladores programáveis	Designação	Tipo de licença	Referência				
BMX P34 1000	Software Unity Pro	Simples (1 estação)	UNY SPU EFU CD 40				
BMX P34 20•0	Extra Large	Grupo (3 estações)	UNY SPU EFG CD 40				
TSX 57 0 · 57 50		Equipe (10 estações)	UNY SPU EFT CD 40				
TSX PCI 57 20/30		Site (> 10 estações)	UNY SPU EFF CD 40				
140 CPU 311 10	Atualização de	Simples (1 estação)	UNY SPU EZU CD 40				
140 CPU 434 12U	softwares a partir de:	Grupo (3 estações)	UNY SPU EZG CD 40				
140 CPU 534 14U	- Concept S, M, XL	Equipe (10 estações)	UNY SPU EZT CD 40				
140 CPU 651 50/60	- PL7 Micro, Junior, Pro	Site (> 10 estações)	UNY SPU EZF CD 40				
140 CPU 671 60	- ProWORX NxT Lite, Full						
	- ProWORX 32 Lite, Full						

Software Unity Pro

TSX PCX 1031

TSX CUSB 485

Cabos de p	rogramaçao		Cabos de programação					
Documentaçã	o Unity Pro versão	4.0						
P/ controladores programáveis	Designação	Tipo de licença	Referência					
Manuais do hardware e software (em DVD)	Instalação das plataformas: - Modicon M340 - Atrium/Premium - Quantum - Momentum	Multiidioma: alemão, inglês, chinês, espanhol, francês	UNY USE 909 CD M					

Instalação dos softwares:
- Unity Pro

Compatibilidade eletromagnética das redes e bus de campo.

- Biblioteca dos blocos

Software Unity Pro

BMX XCA USB H0.

Elementos ser	oarados			
Designação	Utilização do processador	Para porta do PC	Compr.	Referência
Cabos de conexão	Porta USB mini B	Porta USB	1,8 m	BMX XCA USB H018
ao terminal PC	Modicon M340 BMX P34 1000/20•0		4,5 m	BMX XCA USB H045
	Porta mini-DIN para Premium TSx 57 1•/2•/3•/4•	RS 232D (conector SUB-D 9 pinos)	2,5 m	TSX PCX 1031
	Atrium TSX PCI 57	Porta USB (conversor USB/RS 485)	0,4 m	TSX CUSB 485 ⁽¹⁾
		Porta USB (cabo mini-DIN/ RJ45)	2,5 m	TSX CRJMD 25(1)
	Porta Modbus	RS 232D	3,7 m	990 NAA 263 20
	SUB-D 15 pinos Quantum 140 CPU 311 10 140 CPU 434 12A 140 CPU 534 14A	(conector SUB-D 15 pinos)	15 m	990 NAA 263 50
	Porta USB Premium TSX 57 5• Quantum 140 CPU 6•1	Porta USB	3,3 m	UNY XCA USB 033
	Porta Modbus do	Conector	1 m	110 XCA 282 01
	conector RJ45	RJ45	3 m	110 XCA 282 02
	Quantum 140 CPU 6•1		6 m	110 XCA 282 03

⁽¹⁾ O conversor TSX CUSB 485 necessita da utilização do cabo mini-DIN/RJ45 TSX CRJMD 25.

Advantys OTB F/S distribuídas IP20

Aberta e modular, esta solução otimizada de módulos permite criar ilhas de E/S.

Os módulos são instalados o mais próximo possível da máquina e gerenciados por um controlador mestre (controlador programável, PC ou inversor de freqüência) através de uma rede de campo ou uma rede de comunicação. Conectividade com rede CANopen, Ethernet e Modbus.

Advantys FTB/FTM F/S distribuídas IP67

Os módulos Advantys FTB e FTM podem ser usados para conectar sensores e atuadores em sistemas distribuídos de automação usando conexões de rede e cabos prémontados em ambientes hostis com água, óleo, poeira, soldagem etc... A oferta Advantys FTB é compacta e possibilita a conexão de até 16 canais entrada/saída digital ou analógico, já na Advantys FTM este número é ampliado para 256 pois é uma oferta modular e pode ser interligada.

Conectividade com rede CANopen, DeviceNet, Profibus DP e Interbus.

Advantys OTB – E/S distribuídas IP20 Blocos otimizados

Módulos de comunicação

Tipo de rede	CANopen	Ethernet TCP/IP (2)	Ligação serial Modbus		
Número	20 E/S				
de canais					
Número	12 entradas 24	Vcc IEC tipo 1			
de entradas					
Número de saídas	6 saídas a relé e 2 saídas a transistor 24 Vcc				
Tipo de conexão	Borneira extraível por parafuso				
Nº máx. módulos de	7 módulos de entradas/saídas digitais,				
expansão de E/S (1)					
Configuração	Com base do módulo de interface:				
máxima de E/S	132 com expansões de E/S com parafuso;				
	244 com expansões de E/S com conector HE10;				
	até 48 canais a	analógicos			
Tensão de	24 Vcc				
alimentação					
Contagem 5 kHz		ts (04.294.967.295 p das - contador crescen ão			
20 kHz 2 canais, 32 bits (04.294.967.295 pts.) - entradas/saío digitais dedicadas - contador crescente/decrescente,					
contador crescente e decrescente, frequencímetro					
Gerador de		unção PWM (saída cor			
pulsos 7 kHz					
Dimensões LxPxA 55 x 70 x 90					
(em mm)					
Referências OTB1C0DM9LP OTB1E0DM9LP OTB1S0DM9LP (1) Para as referências dos módulos de expansão de E/S digitais e analógicas, consultar o					

Para as referências dos módulos de expansão de E/S digitais e analógicas, consultar o catálogo do Twido ou Advantys OTB.

Acessórios

Tipo de acessório	Módulos comuns	Documentação
Utilização	Para agrupar as entradas	Manual do usuário para
	ou saídas comuns, máx. 8 A	hardware e software
Posicionamento	Módulo intermediário	_
Referência	OTB9ZZ61JP	FTXES00

⁽²⁾ Transparent Ready: Classe A10

Advantys STB Sistema aberto e modular

Apresentação

Para atender as necessidades dos fabricantes de máquinas e dos usuários, as arquiteturas de automação se descentralizam, enquanto obtêm desempenhos comparáveis aos obtidos com uma estrutura centralizada. A solução de

entradas/saídas distribuídas Advantys STB, sistema aberto e modular de entradas/saídas, permite criar ilhas de automação industrial gerenciadas por um controlador mestre através de uma rede de comunicação.

É possível conectar a estas ilhas:

- Partidas de motores
- Inversores de frequência.
- Terminais de diálogo com o operador Magelis.
- Ou qualquer outro produto de terceiros através da rede CANopen (válvulas Festo, E/S distribuídas IP 67 FTB...).

Estas ilhas instaladas o mais próximo possível da máquina permitem reduzir o tempo e o custo da fiação dos sensores e atuadores, aumentando a disponibilidade da instalação.

Os componentes da ilha são apresentados sob a forma de módulos eletrônicos, montados em trilho DIN para constituir um ou diversos segmentos, que permitem a distribuição automaticamente da alimentação (lógica, sensores e atuadores). Este conceito integrado é conhecido como "mecatrônica".

A família de E/S Advantys STB divide-se em 2 grupos de módulos:

- Standard: uma oferta completa que possui parâmetros configuráveis.
- Básico: extensão da linha standard, mais econômica, mas apresenta funções mínimas e módulos não configuráveis.

Advantys STB Sistema aberto e modular

Os módulos standards e básicos podem ser combinados em uma mesma ilha, embora esta combinação provoque limitações operacionais.

Estas 2 gamas são compostas de:

- Módulos de interfaces da rede.
- Módulos de E/S digitais (= 24 V e \sim 115/220 V).
- Módulos de saídas a relè (bobina --- 24 V e contato --- 24 V ou ~ 115/230 V).
- Módulos de E/S analógicas.
- Módulo de contagem.
- Módulo para partidas integradas de motores TeSys modelo U
- Módulo para aplicações específicas Tego Power (partidas de motores TeSys modelo d).

Módulos de distribuição da alimentação de sensores e atuadores completam estes módulos, permitindo assim a simplificação da fiação.

Os sensores e dos atuadores são conectados aos módulos de entradas/saídas através de conectores por parafuso ou por mola extraíveis. Com os dispositivos integrados, é permitido saque a quente de todos os módulos Advantys STB standard (se utilizados com módulos de interface da rede tipo standard).

As entradas/saídas distribuídas Advantys STB apresentam grau de proteção IP 20. Para instalações no chão de fábrica, elas devem ser incorporadas em invólucros com proteção mínima IP 54 (conforme as normas IEC 60950 ou NEMA 250).

Cada módulo Advantys STB dispõe de uma configuração padrão, tornando-se uma ilha operacional a partir de sua energização. No entanto, para implementar as diferentes funções dos módulos standard, o software de configuração Advantys STB permite definir a parametrização, adaptandose às necessidades do usuário. Além disso, este software permite definir ações reflexas diretamente nos módulos standards de saídas, evitando assim o tratamento pelo mestre da ilha

Interfaces Homem-Máquina Magelis alfanuméricas, matriciais e gráficas

Magelis XBTN e XBTR: Interfaces alfanuméricas

- Display LCD alfanumérico
- 4 x 20 caracteres
- Teclas de função dinâmica
- 3 cores de iluminação traseira
- Texto com deslocamento automático
- 3 níveis de senhas

Magelis XBTRT: Interfaces semi-gráficas

- Tela de 3,9" (198 x 80 pixels)
- Display LCD alfanumérico

10 x 33 caracteres

- Tela touchscreen
- Biblioteca de objetos gráficos
- 12 teclas de função
- 3 níveis de senhas

Interfaces Homem-Máquina Magelis XBTGT Touch

A melhor imagem com a maior conectividade

Magelis XBTGT

Imagens mais realistas e detalhadas suportando aplicações com vídeo

- Telas TFT 65536 cores, STN 4096 cores ou monocromáticas 8 ou 16 níveis ■ 6 dimensões de produtos 3,8", 5,7", 7,5",
- 6 dimensões de produtos 3,8", 5,7", 7,5" 10,1", 12,1" e 15"
- Até 1 GB de memória para alarmes, receitas e dados
- Tela Touch analógica 1024x1024, para maior precisão e controle (sem Grid)
- Gerenciamento de múltiplas janelas pop-up
- Contraste e brilho ajustáveis
- Até 40 tipos de fontes
- Protocolo de comunicação Schneider Electric e de terceiros em toda a família de IHMs Magelis

Visualização de gravação de vídeo

Interfaces Homem-Máquina XBTGK Touch

Magelis XBTGK: Interfaces gráficas com Teclado e Touchscreen

- Telas TFT 65536 cores, ou monocromáticas 16 níveis
- 2 dimensões de produtos 5.7" e 10.4"
- Mouse industrial incorporado
- Teclas de função estáticas e dinâmicas
- LEDs associados às teclas
- Até 1 GB de memória para alarmes, receitas e dados
- Tela Touch analógica 1024x1024, para maior precisão e controle (sem Grid)
- Gerenciamento de múltiplas janelas pop-up
- Contraste e brilho ajustáveis
- Até 40 tipos de fontes
- Protocolo de comunicação Schneider Electric e de terceiros em toda a família de IHMs Magelis

Interfaces Homem-Máquina Magelis iPC - PCs industriais

Computadores industriais compactos, modulares e terminais WEB client

Magelis iPC compacta

- Com dimensões reduzidas, integra as mais recentes tecnologias. Tipicamente interessante para montadores de painéis e fabricantes de máquinas.
- Windows XP PRO incorporado
- Portas, Fast Ethernet DUAL (12"), seriais, USB, PCMCIA, 1x PCI
- Expansão de memória RAM até 1 GB (12")
 - HDD de até 40 GB
- Versões com sistema de supervisão Vijeo Citect incorporado
- Telas de 12" e 15" XGA matriz ativa Touch com ângulo de visualização de 160 graus

Interfaces alfanuméricas Magelis XBTN/R

Para aprimorar o desempenho de seu equipamento de produção, a Schneider Electric propõe uma oferta completa de hardware e software, dedicada ao diálogo Homem-Máquina.

Com t	ela alfanun	nérica				
Tipo		Interfaces com	pactas			
Tela	Capacidade	2 linhas, 20 caracteres 20 caracteres				
	Tipo	LCD retroiluminado verde LCD retroilum. 3 cores: verde,laranja, vermelho.				
Entrada	de dados	Teclado com 8 teclas (4 com legendas personalizáveis)				
Funções	Apresentação dos dados	Alfanumérico				
Comuni- cação	Protocolos	Uni-TE, Modbus		Uni-TE, Modbus, Siemens, Rockwell, Omron, Mitsubishi		
Software configura		Vijeo Designer	Lite			
Dimensõ	es LxPxA	132 x 37 x 74 r	mm			
compatil com con programa	troladores	Twido, Nano, TSX Micro, Premium, Modicon M340		Twido, Nano, TSX Micro, Premium, Quantum, Momentum, Modicon M340		
Tensão d alimenta		5 Vcc do controlador programável		24 Vcc		
Referênc	ias	XBTN200	XBTN400	XBTN410	XBTN401	

Interfaces alfanuméricas Magelis XBTN/R

- Compacta, a gama de displays, interfaces, interfaces gráficas e PCs industriais Magelis distingue-se por sua simplicidade de operação.
- Engenhosa, a gama de softwares facilita o desenvolvimento de suas aplicações IHM (Interfaces Homem-Máquina).

Interfaces compactas				
4 linhas,		10 linhas,		
20 caracteres		33 caracteres		
LCD retroiluminado verde		LCD retroilum. 3 cores: verde,laranja,	LCD retroiluminado verde	LCD retroilum. 3 cores: verde,laranja,
		verue,iararija,	verue	vermelho.
20 teclas (12 configurações)			12 teclas (10 configurações) e/ou touchscreen	
Alfanumérico		Alfanumérico, gráficos de barra, curvas, botões e lâmpadas		
Uni-TE, Modbus	Uni-TE, Modbus, Siemens, Rockwell, Omron, Mitsubishi		Uni-TE, Modbus	Uni-TE, Modbus, Siemens, Rockwell, Omron, Mitsubishi
Vijeo Designer Lite				
137 x 37 x 118 m	m			
Twido, Nano, TSX Micro, Premium, Modicon M340	Twido, Nano, TSX Micro, Premium, Quantum, Momentum, Modicon M340		Twido, Nano, TSX Micro, Premium, Modicon M340	
5 Vcc do controlador programável	24 Vcc		5 Vcc do controlador programável	24 Vcc
XBTR400	XBTR410	XBTR411	XBTRT500	XBTRT511

Softwares de Programação

Softwares de Interfaces Homem-Máquina e sistemas de supervisão

Vijeo Designer Lite

Software de programação para IHM

Software de programação Vijeo Designer Lite

- Interface simples e fácil
- Configura todas as interfaces alfanuméricas e semi-gráficas XBTN/B/RT
- Biblioteca de símbolos incorporada
- Protocolos de comunicação Schneider Electric e de terceiros
- Compartilhamento de variáveis com os principais softwares Schneider Electric
- Help completo
- Simulador Offline

Softwares de Programação

Softwares de Interfaces Homem-Máquina e sistemas de supervisão

Software de programação Vijeo Designer

- Programa toda a gama de IHM Touch-screen XBTGT
- Interface multi-window com uma linha completa de animações: bargraph, meter, displays de mensagens, colunas luminosas, alarmes, movimentação de objetos na horizontal e vertical, redimensionamento de objetos através de variáveis e controle de até 32 cores em um objeto
- Possibilidade de configuração de até 32 ações em qualquer objeto
- Até 40 protocolos de comunicação dos mais diversos fabricantes
- Help completo, incluindo hardware, software e protocolos de comunicação
- Compartilhamento de variáveis com os principais softwares da Schneider Electric
- Simulador Offline PC e IHM

Interfaces gráficas Série Arion

IHMs gráficas Série ARION

As IHMs da série Arion associadas à ferramenta de configuração Design tools oferecem alta performance e simplicidade para atender a automação de máquinas e processos industriais, além de recursos específicos para gerar diversos tipos de gráficos, CEPs etc.

Interfaces gráficas Série Arion

IHMs gráficas série ARION				
2700.03	IHM Touch Screen gráfica 400x240 TFT (65.000 cores), memória flash 8M, 2 canais seriais (RS232 e RS485), USB, alimentação 24Vcc			
2700.03/S	IHM Touch Screen gráfica 400x240 TFT (65.000 cores), memória flash 8M, 2 canais seriais (RS232 e RS485), USB, alimentação 24Vcc, sem policabornato			
2700.06	IHM Touch Screen gráfica 320x240 (16 tons), memória flash 2M, 2 canais seriais (RS232 e RS485), alimentação 9 a 36Vcc			
2700.06/S	IHM Touch Screen gráfica 320x240 (16 tons), memória flash 2M, 2 canais seriais (RS232 e RS485), alimentação 9 a 36Vcc, sem policarbonato			

Phaseo

ARI 8MFM24006

ARI 8RPS24050

Phaseo ABL1 - Fontes dedicadas

- Monofásica / Bifásica
- ☐ Alimentação: 100...240 Vca ou
- 110...220 Vcc
- ☐ Tensão de saída: 12 ou 24 Vcc (±10%)
- □ Potência: 60 a 240 W
- Montagem
- ☐ Fixação por parafuso
- ☐ Trilho 35 mm ou cantoneira (opcional)
- Proteção
- □ Curto-circuito
- ☐ Sobrecarga
- □ Subtensão
- □ Térmica
- Rearme automático
- Filtro Anti-Hamônico

Phaseo Modular

- Monofásica / Bifásica
- ☐ Alimentação: 100...240 Vca ou
- 110...220 Vcc
- ☐ Tensão de saída: 5, 12 ou 24 Vcc (+20%)
- □ Potência: 7 a 60 W
- Montagem
- ☐ Fixação por parafuso ou trilho 35 mm
- ☐ Fundo e frontal de painel
- Proteção
- ☐ Curto-circuito
- ☐ Subtensão e térmica em alguns modelos
- Rearme automático

Phaseo

ARI 8WPS24200

Phaseo Optimum

- Monofásica / bifásica
- ☐ Alimentação: 100...240 Vca ou 110...220 Vcc
- ☐ Tensão de saída: 12, 24, 48 Vcc (+20%)
- ☐ Potência: 60 a 144 W
- Montagem
- ☐ Trilho 35 ou 75 mm
- Proteção
- ☐ Curto-circuito
- □ Sobrecarga
- ☐ Subtensão e sobretensão
- Rearme automático ou manual
- Fator de potência de até 0,98

Phaseo Universal

- Monofásica / bifásica ou trifásica
- ☐ Alimentação: 100...500 Vca
- ☐ Alimentação trifásica: 380...500 Vca
- ☐ Tensão de saída: 24 Vcc (+20%)
- □ Potência: 72 a 960 W
- Proteção
- □ Curto-circuito
- Sobrecarga
- □ Subtensão e sobretensão
- □ Térmica
- Rearme automático ou manual
- Filtro para correção de fator de potência
- Contato LEDs de diagnóstico
- Função boost: 1,5 In por até 4 segundos
- Compatível com módulo buffer, DC UPS, redundância e proteção seletiva

Tino

Fontes chaveadas

Phaseo Modular, Optimum, Universal

ABL8MEM24006

ARI SRPS24050

Про	Fonte chaveada modular,				
	com rearr		ático		
Tensão de alimentação	100240 VCA				
Tensão de saída	24 VCC				
	+/- 20%				
Potência /	7,5 W /	15 W /	30 W /	60	0 W /
Corrente nominal	0,3 A	0,6 A	1,2 A	2,	5 A
Rearme	Automático				
Conformidade à IEC 61000-3-2	Não				
Certificações	cULs, cCSAus	s, TÜV, CE, C-	Tick		
Dimensões (mm)	36x59x90		54x59x90	0 7	2x59x90
Fixação (mm)	Trilho DIN 35x	7,5 ou 35x15	ou em pair	nel por	parafuso
Referências	ABL8	ABL8	ABL8	Α	BL7
	MEM24003	MEM24006	MEM240	12 R	M24025
Time	Fonte cha	veede lle	iverel		
Tipo					u ol
Tensão de	com rearme automático ou manual				
alimentação	100240 VCA e 200500 VCA				
Tensão de saída	24 VCC +/- 2	DN%			
Potência /	72 W /	120 W	/	240 W	1 /
Corrente nominal	3 A	5 A		10 A	<i>'</i>
Corrente de	1,5 In durant			IUA	
pico temporária	1,5 iii dalam	10 + 3			
admissível (boost)					
Conformidade à	Sim				
IEC 61000-3-2	0				
Relé de diagnóstico	Não	Sim			
(tensão de saída					
> 21,6 V)					
Certificações	UL (em curs	o), cCSAus,	CB schen	ne, CE	
Dimensões (mm)	44x120x143				0x143
Fixação (mm)	Trilho DIN 35	5x7,5 ou 35x	15		
Referências	ABL8RPS24	030 ABL8R	PS24050	ABL8	RPS24100
6/94	Sc	chneider			

Phaseo Optimum, Universal

ABL8WPS24200

		(0 0 0 0				
Fonte chaveada Optimum, com rearme automático						
100240 VCA			100240 VCA			
		12 VCC	24 VCC	<i>//</i>	12 VCC	48 VCC
		+/- 20%	+/- 20%		+/- 20%	
		25 W /		120 W /	60 W /	
		2 A		5 A		
	Automático		Automático		Automático ou manual	
	Não		Não		Sim	
			cULs, cCSAL	ıs, TÜV, CE, C	C-Tick	
	54x59x90		27x120x120	54x120x120		
	lho DIN 75x7	,5, 35x7,5 ou	35x15			
	ABL8	ABL8 MEM12020	ABL8			ABL7 RP4803
			<u> </u>			
	Fonte chaveada Universal, com rearme automático ou manual					
	100120 VCA e 3 x 380500 VCA 200240 VCA					
480 W /				960 W / 40) A	
	20 A 1,5 In durante 4 s					
	Sim					
	Sim					
		so), cCSAus,				
	145x140x14		95x155x143	3	165x155x1	143
	Trilho DIN 35x7,5 ou 35x15					
	ABL8RPM2	24200	ABL8WPS2	24200	ABL8WPS	S24400
			Calan	afalau.		0/0

Phaseo Modular Optimum, Universal

Tipo	Módulo buffer para rede	Módulo DC UPS e bateria para rede			
	com curtas interrupções	com longas interrupções			
Compatibilidade	Conexão de saída de fonte Universal ABL8RPS24 e ABL8WPS24				
Tensão nominal	40 A 20 A 40 A				
Tempo de espera 1A	2 s típico	ajustável de 10 s a 24 h (dependendo da bateria)			
Tempo de espera p/ corrente máxima	100 ms típico	ajust. de 10 s a 30 min (depende da bateria)	ajust. de 10 s a 10 min (depende da bateria)		
Certificações	UL (em curso), cCSAus, CB scheme, CE				
Dimensões(mm)	85x140x146	86x175x143	86x175x143		
Fixação (mm)	Trilho DIN 35x7,5 ou 35x15 (1)				
Referências do	ABL8	ABL8	ABL8		
módulo de controle	BUF24400	BBU24200	BBU24400		
Referências 3,2 AH	-	ABL8	ABL8		
da bateria		BPK24A03	BPK24A03		
7 AH	-	ABL8	ABL8		
		BPK24A07	BPK24A07		
12 AH	-	ABL8	ABL8		
		BPK24A12	BPK24A12		

⁽¹⁾ Módulo de bateria exceto 7AH e 12 AH. Para módulo de bateria 3,2 AH com kit ABL 1A02.

Phaseo Optimum, Universal

	Tipo	Modulo Conversores CC/CC		
	Compatibilidade	Conexões de saída de fontes Universal ABL8RPS24 e ABL8WPS24		
	Tensão de	24 VCC /	24 VCC /	
	entrada/saída	5 VCC +/- 20%	12 VCC +/- 20%	
	Corrente de saída	6 A	2 A	
	Certificações	UL (em curso), cCSAus, CB scheme, CE		
Dimensões (mm)		44x140x146		
	Fixação (mm)	Trilho DIN 35x7,5 ou 35x15		
	Referências	ABL8DCC05060	ABL8DCC12020	
	Tipo	Módulo de redund	lância	
	Compatibilidade	Conexão de 2 entradas de fontes até 20 A		
		(1 fonte de 40 A)		
	Tensão de saída	24 VCC +/- 20%		
Corrente de saída		40 A		
	Certificações	UL (em curso), cCSAus, CB scheme, C		
	Dimensões (mm)	nensões (mm) 44x140x146		
	Fixação (mm)	Trilho DIN 35x7,5 ou 35x15		
	Referência	ABI 8BED2///00		

Tipo	Módulo de proteção seletiva			
Compatibilidade	Conexão de saída de fonte Universal ABL8RPS24 e ABL8WPS24			
Corrente de saída	10 A por canal			
Calibres	1/2,5/4/5/7/8/10 A			
Número de canais	4			
Relés de falha	Não	Sim		
Interrupção manual (1 por canal)	Monopolar	Bipolar		
Certificações	UL (em curso), cCSAus, CB scheme, CE			
Dimensões (mm)	71x109x110			
Fixação (mm)	Trilho DIN 35x7,5 ou 35x15 ou			
	em painel por parafuso			
Referências	ABL8PRE24100	ABL8PRP24100		

Esquemas elétricos básicos

Índice

1	Esquemas de ligação em instalações residenciais	7/4
2	Esquema geral de uma instalação elétrica	7/1
3	Requisitos mínimos de uma instalação	7/10
4	Critérios para uma instalação seg	jura 7/1 8
5	Instalação de pára-raios limitador de sobretensão	7/19
6	Comando de emergência a distância (telecomando)	7/20
7	Comando de um circuito com vários pontos	7/2
8	Comando centralizado de vários circuitos	7/22
9	Comando programado de um circuito	7/2:
10	Limitar o tempo de funcionamento de um circuito	7/2
11	Sinalização de estado e defeito _	7/2
12	Abertura de um circuito por falta de tensão	7/20
13	Controle do fator de notência	7/2

7/29

Índice

	Comando e proteção de máquinas
15	Representação simbólica do circuito 7/33
16	Diferentes tipos de partidas para motores em corrente alternada 7/35
	Partidas - Diretas - Estrela-triângulo - Autotransformador - Soft starter
	Esquemas - Tradicionais - Altistart 48 - Altivar 11 - Altivar 21 - Altivar 31 - Altivar 61 - Altivar 71

Esquemas de ligação e módulos de segurança

- XPS AF - XPS AK - XPS BA - XPS BC - XPS BF

Preventa

14 Sensores eletrônicos

7/57

Esquemas de ligação em instalações residenciais

Interruptores

Nos esquemas de ligação será adotada a seguinte simbologia para identificação dos condutores:

N - Condutor de neutro

F - Condutor de fase

PE - Condutor de proteção (terra)

R - Condutor de retorno

Unipolares

São utilizados no acionamento dos pontos de luz ligados entre os condutores de fase e neutro (110 ou $127 \, V_{\sim}$).

Interruptor simples: é utilizado para acionar lâmpadas a partir de um único ponto (veja figura 1, pág. 7/5).

Interruptor paralelo: é utilizado quando um ponto de luz precisa ser acionado a partir de dois locais diferentes (veja figura 2, pág. 7/6).

Interruptor intermediário: é utilizado quando um ponto de luz precisa ser acionado de três ou mais locais diferentes (veja figura 4, pág. 7/8).

Bipolares

São utilizados no acionamento de pontos de luz ligados entre os condutores de fase e fase (220 V~).

Interruptor simples: é utilizado para acionar lâmpadas a partir de um único ponto (veja figura 5, pág. 7/9).

Interruptor paralelo: é utilizado quando um ponto de luz precisa ser acionado a partir de dois locais diferentes (veja figura 6, pág. 7/10).

Figura 1 - Interruptor unipolar simples

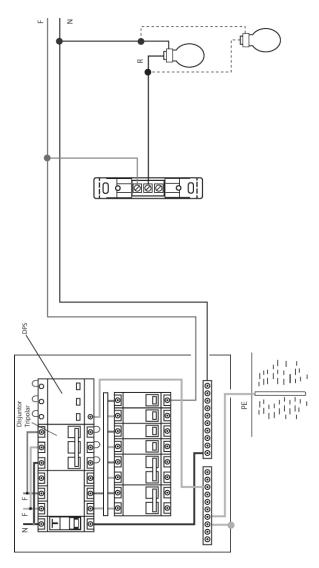


Figura 2 - Interruptor unipolar paralelo

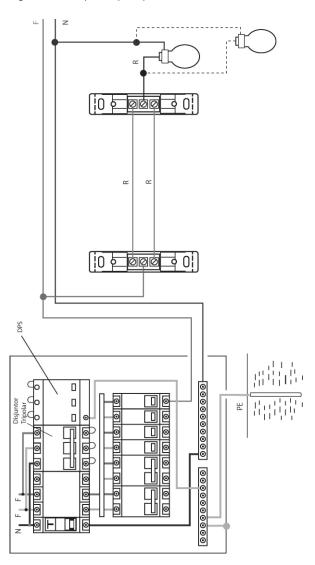


Figura 3 - Interruptor unipolar paralelo - modo de instalação incorreto

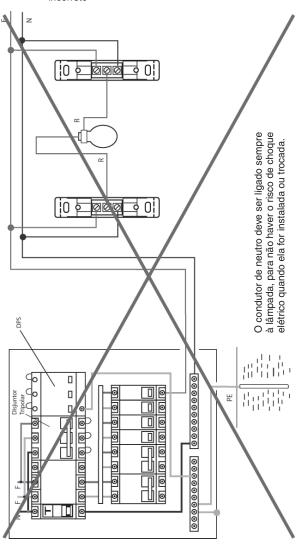


Figura 4 - Interruptor unipolar intermediário

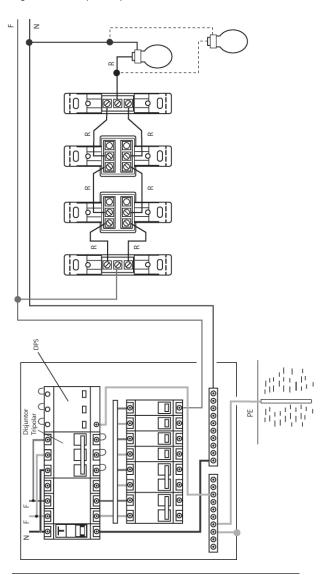
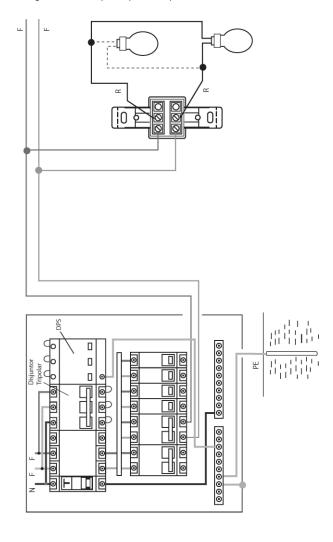
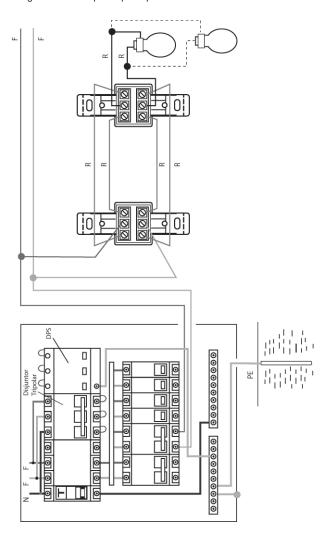
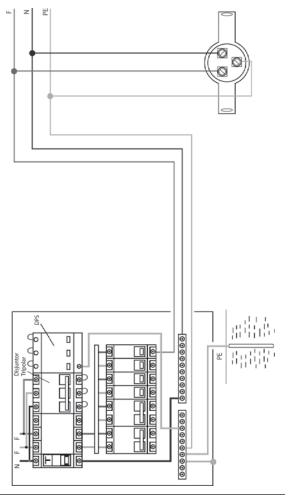
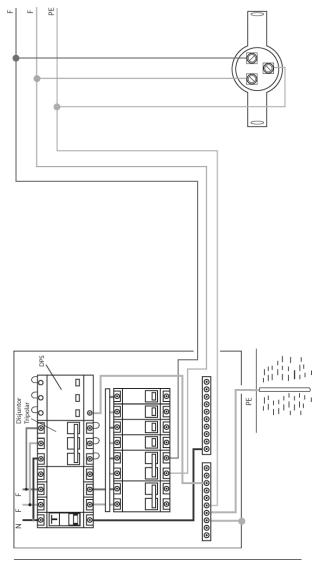


Figura 5 - Interruptor bipolar simples

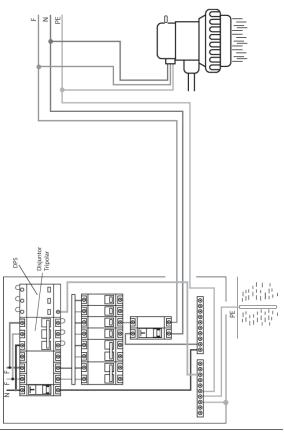



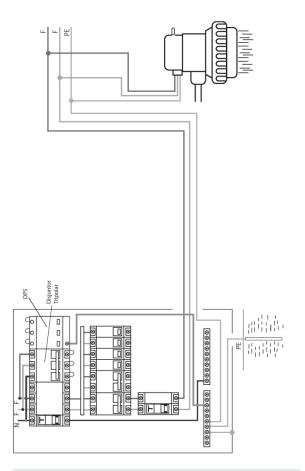

Figura 6 - Interruptor bipolar paralelo


Pontos de tomada de corrente

São pontos destinados à ligação de aparelhos móveis. Não possuem uma utilização específica. Podem ser ligados entre os condutores de fase e fase (220 V~) e fase e neutro (110 ou 127 V~).

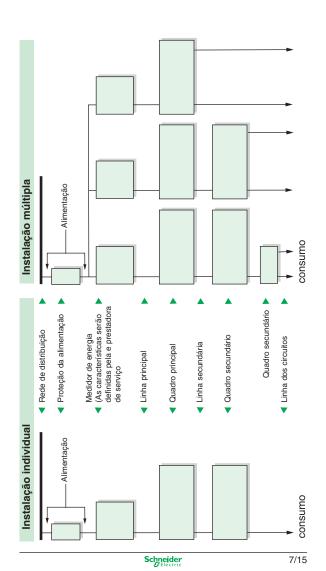
Ponto de tomada de 127 V~ (fase - neutro)


Ponto de tomada de 220 V~ (fase - fase)

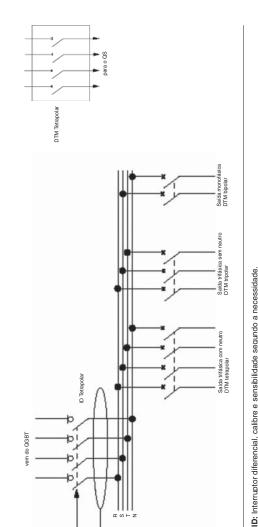

Circuitos independentes

São circuitos destinados à ligação de aparelhos específicos, cuja corrente nominal é superior a 10 A. Nesses circuitos, a utilização de dispositivos DR é exigida por norma (NBR 5410). No caso de chuveiros e torneiras elétricas, a utilização de tomadas não é recomendada. Podem ser utilizados conectores ou então emendas isoladas com fita isolante.

Circuito independente de 127 V~ (fase - neutro) com dispositivo DR


Circuito independente de 220 V~ (fase – fase) com dispositivo DR

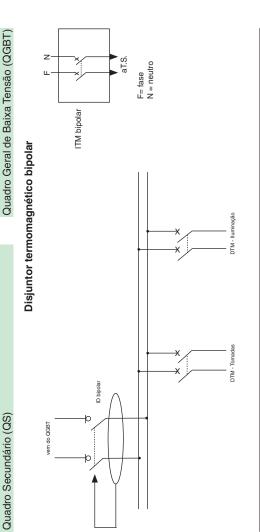
Atenção: no quadro de distribuição, é recomendável deixar sempre um espaço livre para a colocação de mais disjuntores e/ou dispositivos DR, para o caso de uma futura ampliação. Deve-se deixar um espaço livre de, no mínimo, 20% do espaço já ocupado.


Exemplo: para cada dez disjuntores instalados no quadro, recomenda-se deixar um espaço livre para uma possível e futura instalação de pelo menos mais dois disjuntores.

2 Esquema geral de uma instalação elétrica

3 Requisitos mínimos de uma instalação

Alimentação trifásica (com neutro interrompido)



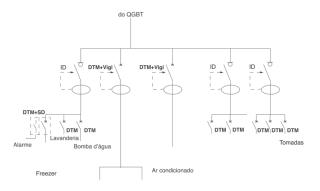
DTM: Disjuntor termomagnético, calibre, capacidade de interrupção e curvas de disparo, tipo K32a até NS, segundo a necessidade da aplicação.

Quadro Secundário (QS)

Quadro Geral de Baixa Tensão (QGBT)

Alimentação monofásica (com neutro interrompido)

DTM: Disjuntor termomagnético, calibre, capacidade de interrupção e curvas de disparo, tipo K32a até NS, segundo a necessidade da aplicação. ID: Interruptor diferencial, calibre e sensibilidade segundo a necessidade.


Critérios para uma instalação segura

Em ambientes residenciais, os acidentes elétricos são numerosos, geralmente atribuídos a descuidos, falta de preparo e imprudência das pessoas.

Para evitar estes acidentes, é aconselhável a instalação de dispositivos diferenciais por grupos de circuitos.

- Proteção diferencial independente nas tomadas do quarto de crianças e banheiro.
- Circuitos independentes para aparelhos de alta demanda de energia (ar condicionado) ou aparelhos críticos (freezer).

Alimentação mono ou trifásica

Banho Quarto de crianças

DTM + SD: Disjuntor termomagnético bi, tri ou tetrapolar, calibre de acordo com a necessidade de aplicação, tipo C60 com bloco auxiliar de sinal de defeito (SD).

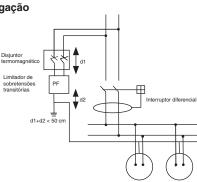
ID: Disjuntor diferencial bi ou tetrapolar, calibre de acordo.

ID: Disjuntor diferencial bi ou tetrapolar, calibre de acordo com a necessidade de aplicação.

DTM + Vigi: Disjuntor termomagnético tipo C60 com bloco diferencial Vigi, calibre de acordo com a necessidade de aplicação.

Instalação de pára-raios (limitador de sobretensão)

Descrição


Protege os equipamentos elétricos e eletrônicos (freezer, televisão, áudio, vídeo, informática, etc.), das sobretensões transitórias de origem atmosférica, queda de um raio diretamente sobre a linha ou de origem industrial (manobras na rede de distribuição).

Instalação

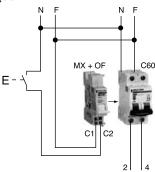
- O dispositivo será instantâneo se instalado a montante de um diferencial.
- Se o pára-raios for instalado a jusante de um diferencial, este tem que ter um nível de imunidade adequado.
- A conexão entre o terra e o disjuntor de proteção/desconexão tem que ser a menor possível (< 50 cm).
- Poderá ter a proteção com um disjuntor apropriado para a manobra.

Modelo DPS	Disjuntor
PRF1	125 A curva D
PRF1 Master	160 A curva D
PRD65	50 A curva C
PRD40	40 A curva C
PRD15	25 A curva C
PRD8	20 A curva C

Esquema de ligação

Comando de emergência a distância (telecomando)

Descrição


Provoca a abertura a distância do disjuntor termomagnético.

- Equipado com um contato de interrupção em série com a bobina.
- Equipado com o contato NANF para identificar a posição aberto ou fechado do disjuntor.

De que maneira?

Por meio da atuação dos botões à impulsão com contato NA, estrategicamente colocados, aciona-se a distância a bobina de abertura no caso de uma anomalia.

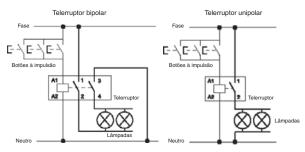
Esquema de ligação

Schneider

Comando de um circuito

Com vários pontos

Descrição


A manobra de um circuito de iluminação, a partir de vários locais, podendo acender ou apagá-lo. Pode-se realizar pelos botões à impulsão localizados em um ou mais locais, fazendo a troca de estado da iluminação.

- Se o mesmo está aceso, apagá-lo.
- Se o mesmo está apagado, acendê-lo.

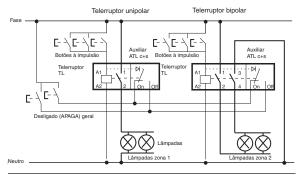
De que maneira?

- Os pontos de comando se realizam, por exemplo, com botões à impulsão convencionais.
- Estes botões à impulsão serão conectados em paralelo com cabos de comando (0,75 mm²) na bobina do telerruptor, que abre ou fecha o circuito.
- A cada pulso que se dá na bobina de quaisquer dos botões, muda o estado do contato do telerruptor fechando ou abrindo o circuito.

Esquema de ligação

8 Comando centralizado

De vários circuitos


Descrição

Nas instalações com vários circuitos separados de iluminação, é possível acender ou apagar cada um deles independentemente ou a partir de vários locais e pontos, ou mesmo acendê-los ou apagá-los simultaneamente, a partir de um ponto centralizado.

De que maneira?

- Se acender ou apagar de forma centralizada, é realizado de forma manual (recepcionista de um hotel, de uma loja etc), o comando dos circuitos é feito com botões à impulsão que atuam os telerruptores. Neles se acrescenta um contato auxiliar permitindo acender/apagar todos os circuitos alocados de acordo com um botão à impulsão de ON e outro de OFF.
- Acrescentando um módulo ATL C+S, obtém-se a sinalização do estado do circuito a manobrar

Esquema de ligação

Comando programado De um circuito

Descrição

A automação de um circuito de iluminação (aceso/apagado), de acordo com uma determinada necessidade. Exemplo: toda sexta-feira, de todas as semanas, manter as luzes de um corredor acesas das 8 da manhã às 6 da tarde.

De que maneira?

- Por meio de interruptores horários IH, ou interruptores horários programáveis IHP digitais.
- Se a manobra ocorre todos os dias à mesma hora, pode-se utilizar um relógio diário analógico.
- Se há manobras distintas em dias e horários específicos, utilizar um relógio semanal digital.
- Para qualquer um dos casos, pode-se intervir manualmente sobre o circuito.

10 Limitar o tempo de funcionamento De um circuito

Descrição

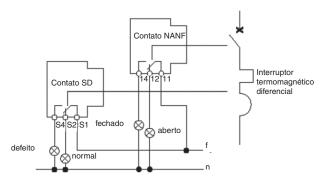
O objetivo deste tipo de controle é, após ligado o circuito de iluminação, preestabeleça um tempo, onde ao final do mesmo o circuito será desligado.

De que maneira?

- Por meio de utilização de minuterias, pode-se regular o funcionamento de 1 a 7 minutos, com precisão de 15 segundos.
- A utilização de um telerruptor TL, com o auxiliar ATLt que atua o temporizador. Permite a regulagem do período de funcionamento da iluminação, de 1 s a 10 h.

Sinalização de estado e defeito

Descrição


O objetivo é identificar no quadro elétrico, através de sinalizadores verdes ou vermelhos, o estado de circuito, sendo este aberto ou fechado, ou mesmo se a abertura for causada por um defeito (sobrecarga, curtos-circuitos), por meio de uso de contatos auxiliares adicionados aos disjuntores termomagnéticos.

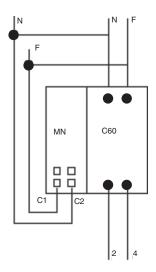
Características

- Sinalização da posição aberto ou fechado do DTM ou ID.
- É possível através do uso de um contato auxiliar NANF acoplado à esquerda do aparelho.
- Sinalização de posição aberto por defeito do DTM ou ID

É possível através do uso de um contato de sinal de defeito SD acoplado à esquerda do DTM.

Esquema de ligação

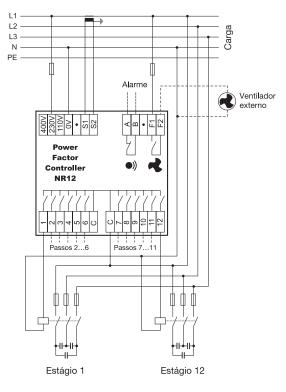
Abertura de um circuito Por falta de tensão


Descrição

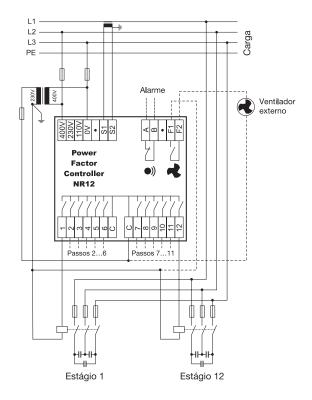
Abrir um circuito quando a tensão cair abaixo dos 70% da tensão nominal Un e, impedindo o fechamento do disjuntor até que a alimentação se normalize.

De que maneira?

■ A bobina de mínima tensão MN permite esta função, acoplando-a à esquerda do DTM

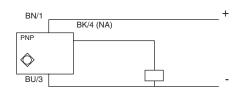

Esquema de ligação

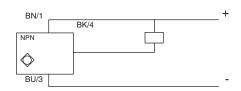
Controle do fator de potência


Os Varlogic podem ser aplicados em redes trifásicas até 460 V 50-60 Hz.
Para aplicação em média tensão, os esquemas abaixo não são válidos, consultar nosso Call center.

Esquemas elétricos BT/BT

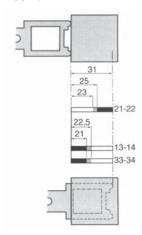
Ligação Fase - Neutro


Controle do fator de potência


Ligação Fase - Fase

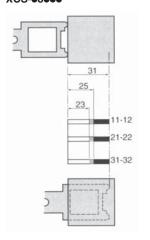
Sensores eletrônicos

3 fios PNP


3 fios NPN

2 fios

XCS-e5eee


XCS-e7eee

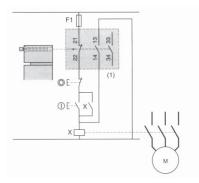
Funcionamento de contatos

Passante

Passante
Não passante
Instável

XCS-e8eee

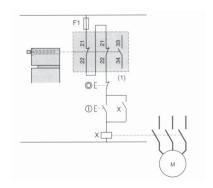
Funcionamento de contatos


Passante
Não passante
Instável

Schneider

Esquemas de funcionamento

Ligação de categoria 1 segundo EN 954-1

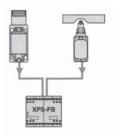

Exemplo com contato tripolar "NF+2NA" e com proteção por fusível contra curto-circuito no cabo ou tentativa de fraude.

(1) Contato de sinalização

Ligação de categoria 3 segundos EN 954-1

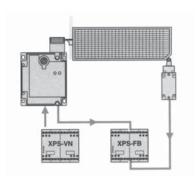
Exemplo com contato tripolar "2NF+NA" sem supervisão.

(1) Contato de sinalização


Ligação de categoria 4 segundos EN 954-1. Princípio de ligação com módulo de seguranca PREVENTA

(O interruptor de segurança com chave é geralmente associado a um outro interruptor de posição normal).

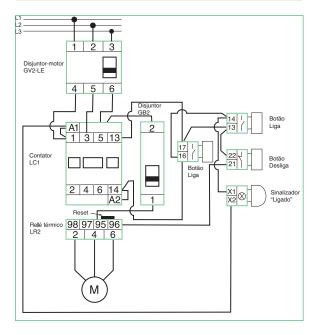
Princípio para máquinas sem inércia


Dispositivo de travamento ou intertravamento baseado em redundância e autocontrolo.

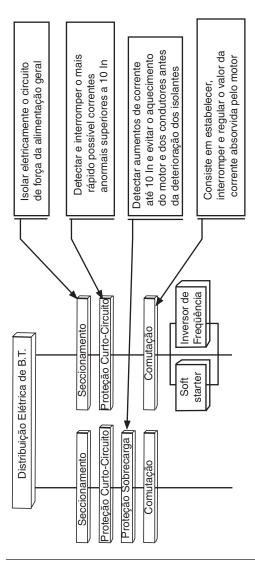
Os módulos de segurança garantem estas funções.

Travamento com chave e acionamento em modo positivo associado a um módulo de segurança.

Princípio para máquinas com inércia



Dispositivo de intertravamento com chave do protetor e detecção de velocidade nula.


I Representação simbólica do circuito

Estabelece a representação gráfica dos circuitos de potência e comando de como eles serão cabeados e montados na prática. A representação simbólica evita demonstrações complicadas dos circuitos, evitando assim, difícil identificação de dispositivos, ligações e demonstrações. Mesmo seu uso não possuindo uma normalização, recomenda-se uma legenda clara e objetiva para circuitos complexos.

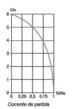
Partida direta de um motor elétrico trifásico Comando local e remoto

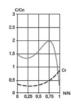
Estrutura geral das partidas de motores

Diferentes tipos de partidas para motores em corrente alternada

Proteção e conteúdo de motores elétricos

Serão apresentadas as possibilidades de ligações elétricas para controle de motores elétricos trifásicos.

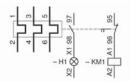

Dentre as opções possíveis com relação à partida de motores encontradas no mercado, pode-se citar as partidas mais usadas desde a partida direta até as mais sofisticadas, como o inversor de freqüência. Demonstramos as características básicas das partidas a seguir.


Para mais esclarecimentos e suporte, entre em contato com o departamento técnico da Schneider Electric Brasil.

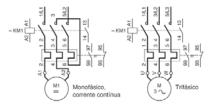
Partida convencional dos motores elétricos assíncronos trifásicos

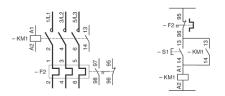
Partida direta (a plena tensão)

- Corrente de partida: 4 a 8 vezes à corrente nominal.
- Conjugado de partida: 0,5 a 1,5 vezes o conjugado nominal.
- Características:
- ☐ motor com 3 bornes de saída,
- □ partida em carga,
- □ picos de corrente e queda de tensão elevados.
- □ aparelhagem simples,
- partida brusca para a mecânica.
- Sem regulagem dos parâmetros.



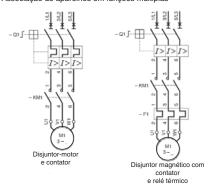
Esquemas de ligações tradicionais


Rearme dos relés térmicos LR2-D Schneider Electric

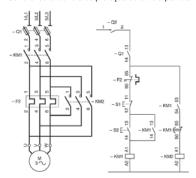

Comando de um sinalizador e de uma bobina de contator


Proteção de circuitos monofásicos e trifásicos

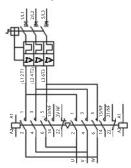
Associação de um relé térmico com um contator



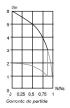
Associação de um relé térmico com fusíveis

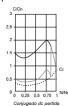


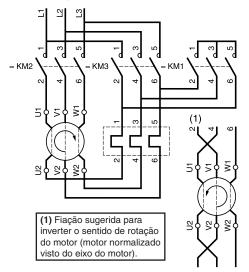
Esquemas de ligações tradicionais


Associação de aparelhos em funções múltiplas

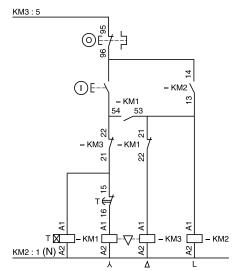
Curto-circuito do relé de proteção durante a partida

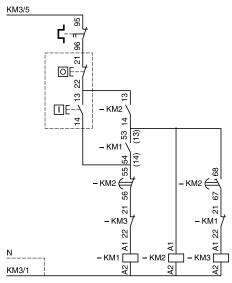



Partida direta para dois sentidos de rotação

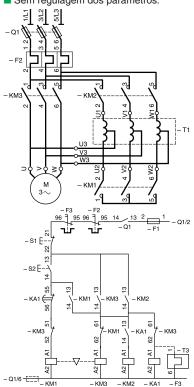

Partida "estrela-triângulo"

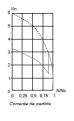
- Corrente de partida: 1,8 a 2,6 vezes a corrente nominal.
- Conjugado de partida: 0,5 vezes o conjugado nominal.
- Características:
- motor com 6 bornes,
- ☐ partida sem carga ou com baixo conjugado resistente,
- ☐ picos de corrente e de conjugado elevado na passagem "estrela-triângulo",
- ☐ aparelhagem com necessidade de manutenção,
- ☐ esforços mecânicos na partida.
- Sem regulagem dos parâmetros.




Esquemas LC3-K, LC3-D09A a D80 LC3-D090A a D320A

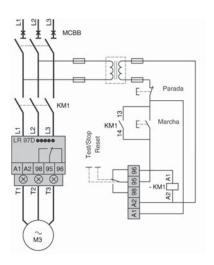
LC3-K



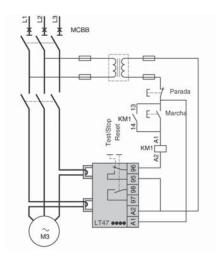

LC3-D

Partida por autotransformador

- Corrente de partida: 1,7 a 4 vezes a corrente
- Conjugado de partida: 0,4 a 0,85 vezes o conjugado nominal.
- Características:
- ☐ motor com 3 bornes, de potência elevada, ☐ queda de tensão e picos de corrente
- elevados no momento da ligação da tensão plena,
- ☐ aparelhagem complexa e volumosa, com necessidade de manutenção,
- ☐ esforços mecânicos na partida.
- Sem regulagem dos parâmetros.



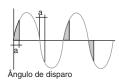
2,5

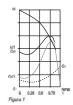

0.5

Conjugado de partida

Esquema LR97 Deeee

Esquema LT47


Conversores de partida e parada


Partida progressiva dos motores assíncronos trifásicos

Partida convencional eletrônica por tensão variável e limitação da corrente

- A alimentação do motor assíncrono trifásico, por aumento progressivo da tensão na partida, é obtida por meio de um circuito composto de 6 tiristores, montados em anti-paralelo em cada fase da rede.
- ☐ Permite, em função do momento e do ângulo de disparo dos tiristores, fornecer uma tensão que aumenta progressivamente com a freqüência fixa.
- ☐ A subida progressiva da tensão de saída pode ser controlada seja pela rampa de aceleração, seja pelo valor da corrente de limitação, seja pela associação destes dois parâmetros.

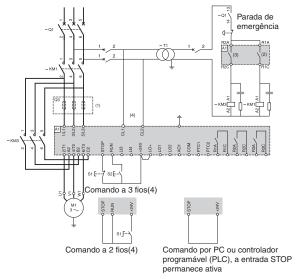
■ A figura 1 mostra a evolução do conjugado em função da corrente de partida.
A limitação da corrente de partida Id a um valor predeterminado Id1, provoca uma redução do conjugado de partida Cd1, praticamente igual à relação do quadrado das correntes Id e Id1.

Exemplo

Num motor cujas características são: Cd = 2 Cn para Id = 6In, a limitação da corrente em Id1= 3 In, isto é 0,5 Id, fornece um conjugado de partida:

 $Cd1 = Cd \times (0,5)^2 = 2 Cn \times 0,25 = 0,5 Cn.$

■ A figura 2 mostra a característica conjugado/velocidade de um motor de gaiola em função da tensão de alimentação. O conjugado varia com o quadrado da tensão com a freqüência fixa. A subida progressiva da tensão elimina o pico de corrente instantânea na energização.


Vantagens de uma partida com o Altistart 48

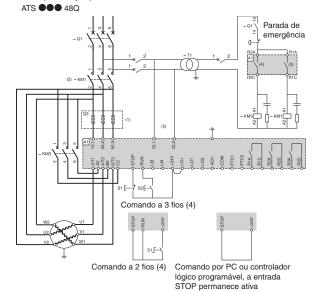
- Partida convencional eletrônica Para remediar os problemas dos:
- esforços mecânicos na partida,
- transitórios hidráulicos na aceleração e na desaceleração em aplicação de bombas, as partidas convencionais eletrônicas utilizam diversas limitações de corrente, ou comutações de diversas rampas de tensão.
 Deste modo, a regulagem torna-se complexa e deve ser modificada a cada evolução da carga.
- Partida com o Altistart 48
 O controle do conjugado do Altistart 48
 permite fazer, com somente uma rampa
 de aceleração, uma partida sem esforços
 mecânicos e um gerenciamento suave dos
 transitórios hidráulicos.

As regulagens são simples e eficazes, qualquer que seja a carga.

Conversores de partida e parada progressivas

Esquema de aplicação sugerido para 1 sentido de rotação com contatores de linha e de bypass do conversor, em coordenação tipo 1 e tipo 2.

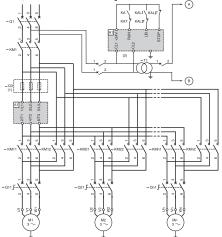
- (1) Para coordenação tipo 2 (segundo IEC 60947-4-2), acrescentar fusíveis ultrarápidos para assegurar a proteção do conversor em caso de curto-circuito.
- (2) Configurar o relé R1 como "relé de isolação". Atenção aos limites de emprego dos contatos, utilizar um contator auxiliar para os contatores de calibre elevado.
- (3) Inserir um transformador, se a tensão de rede for diferente da tensão de alimentação definida para o controle.
- (4) Comando a 2 fios e 3 fios.


Componentes a associar em função dos tipos de coordenação e das tensões

ao oooraonag	do 0001 do 11dquo o duo 10110000					
Identificação	Descrição					
M1	Motor					
A1	Conversor (aplic. em serviços standard e severo)					
Q1	Disjuntor ou Interruptor/Fusíveis					
Q3	3 fusíveis UR					
KM1, KM3	Contator					
S1, S2	Comando (elementos separados XB2 e XB2 M)					

Conversores de partida e parada progressivas

Esquema de aplicação sugerido para ligação do conversor no motor em triângulo, 1 sentido de rotação parada por inércia, com contatores de linha e de by-pass do conversor, em coordenação tipo 1 e tipo 2.


Este tipo de fiação permite diminuir o calibre do conversor.

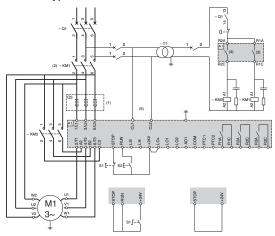
- (1) Contator de linha obrigatório na sequência.
- (2) Para coordenação tipo 2 (segundo IEC 60947-4-2), acrescentar fusíveis ultrarápidos para assegurar a proteção do conversor em caso de curto-circuito.
- (3) Configurar obrigatoriamente R1 como "relé de isolação" para controlar o contator KM1. Atenção aos limites de emprego dos contatos, utilizar um contator auxiliar para os contatores de calibre elevado.
- (4) Inserir um transformador, se a tensão de rede for diferente da tensão de alimentação definida para o controle.
- (5) Comando a 2 fios e 3 fios.

Conversores de partida e parada progressivas

Esquema de aplicação sugerido para partida de diversos motores em cascata com somente um Altistart 48, 1 sentido de rotação e contator de linha

- (1) Para coordenação tipo 2 (segundo IEC 60947-4-2), acrescentar fusíveis ultrarápidos para assegurar a proteção do conversor em caso de curto-circuito.
- (2) Inserir um transformador se a tensão de rede for diferente da tensão de alimentação definida para o controle

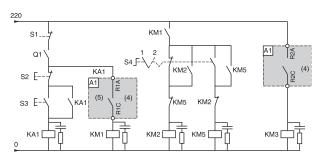
Importante:


- È necessário configurar uma entrada lógica do Altistart 48 em "cascata".
- Em caso de falha, não é possível desacelerar ou frear os motores que estiverem em operação.
- Ajustar a proteção térmica de cada disjuntor Qn1 na corrente nominal do motor correspondente.

Componentes a associar em função dos tipos de coordenação e das tensões

Identificação	Descrição
M1,M2,Mi,Mn	Motor
<u>A1</u>	Conversor (aplic. em serviços standard e severo)
KM1,KM2,KMi,KMn	Disjuntor ou Interruptor/Fusíveis
Q3	3 fusíveis UR
Q11,Q21,,Qn1	Disjuntores termomagnéticos
KA,KAT,KALI,KALIT	Comando (elementos separados XB2 e XB2 M)

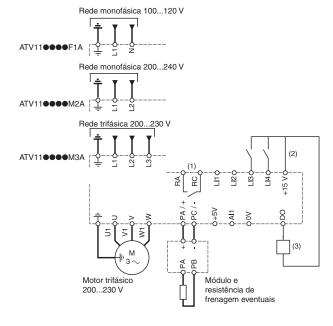
Conversores de partida e parada progressivas


Esquema de aplicação sugerido para motor de duas velocidades, 1 sentido de rotação com contatores de linha e de bypass do conversor

- (1) Para coordenação tipo 2 (segundo IEC 60947-4-2), acrescentar fusíveis ultrarápidos para assegurar a proteção do conversor em caso de curto-circuito.
- (2) Inserir um transformador se a tensão de rede for diferente da tensão de alimentação definida para o controle.
- (3) Configurar a entrada lógica LI3 como "ativação das funções de regulagens do 2o motor".
- (4) Configurar o relé R1 como "relé de isolação". Atenção aos limites de emprego dos contatos, utilizar um contator auxiliar para os contatores de calibre elevado.

Esquemas de ligação - Altistart 48 (cont.)

S4 = 1: velocidade baixa = 2: velocidade alta

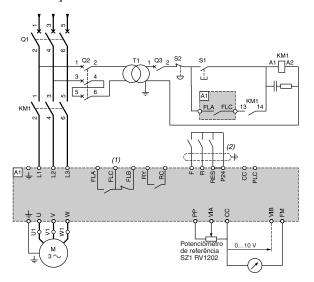

Componentes a associar em função dos tipos de coordenação e das tensões

Identificação	Descrição
M1,	Motor
A1	Conversor (aplic. em serviços standard e severo)
Q1	Disjuntor ou Interruptor/Fusíveis
Q3	3 fusíveis UR
KM1,KM2,KM3,KM5,KA1	Disjuntores termomagnéticos
S1.S2.S3	Comando (elementos separados XB2 ou XB2 M)

Inversor de frequência

Esquema de ligação para pré-regulagem de fábrica

- bornes da rede na parte superior, bornes do motor na parte inferior
- ligar os bornes de potência antes dos bornes de controle


(1) Contato do relé de falha, para sinalizar a distância o estado do inversor.
(2) + 15 V interno. No caso de utilização de uma fonte externa (+ 24 V máx.), ligar o 0 V deste ao borne 0V, e não utilizar o borne + 15 V do inversor.

(3) Galvanômetro ou relé de nível baixo.

Nota: Equipar com antiparasitas todos os circuitos indutivos próximos do inversor ou acoplados no mesmo circuito (relés, contatores, eletroválvulas...)

Inversor de frequência

Alimentação trifásica

Nota: Todos os terminais estão situados na parte inferior do inversor de freqüência. Instalar módulos antiparasitas em todos os circuitos indutivos próximos do inversor de fregüência ou acoplados no mesmo circuito, tais como relés, contatores, eletroválvulas, iluminação fluorescente...

Componentes a associar

Para as referências completas, consultar nosso catálogo "Soluções partidas de motores. Componentes de controle e proteção de potência".

$\overline{\mathbf{c}}$	ód	iao	Desi	gnação

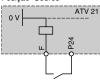
Código	Designação
A1	Inversor de frequência ATV 21
KM1	Contator
Q1	Disjuntor
Q2	GV2 L calibrado em 2 x corrente nom. do primário de T1
Q3	GB2 CB05
S1 S2	Botões à impulsão XB2 B ou XA2 B

- Transformador 100 VA secundário 220 V (1) Contatos do relé de defeito. Permite sinalizar a distância o estado do inversor de freqüência.
- (2) A ligação do comum das entradas lógicas depende do posicionamento do comutador ("Source", "Controlador programável", "Sink").

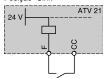
Inversor de frequência

Comutadores (regulagem de fábrica)

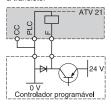
Seleção tensão/corrente para as E/S analógicas (FM e VIA)

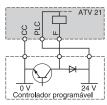

Seleção do tipo de lógica

	Source
	(lógica positiva)
	Controlador programáve
-	Sink
	(Iógica negativa)


Exemplos de esquemas recomendados

Entradas lógicas segundo a posição do comutador do tipo de lógica


Posição "Source"

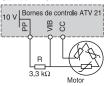


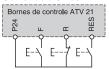
Posição "Sink"

Posição "Controlador programável" com saídas de controladores programáveis a transistor

Inversor de frequência

Exemplos de esquemas recomendados (cont.)

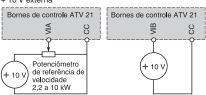

Comando a 2 fios


F: Avanço

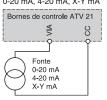
R: Velocidades pré-selecionadas

Sonda PTC

Comando a 3 fios

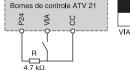

F: Avanço

R: Parada

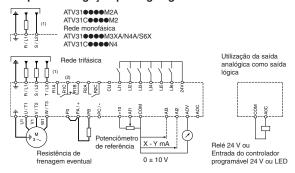

RES: Rearme das falhas

Entradas analógicas configuradas em tensão

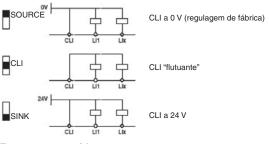
+ 10 V externa


Entrada analógica configurada em corrente 0-20 mA. 4-20 mA. X-Y mA

Entrada analógica VIA configurada como entrada lógica

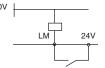

Lógica positiva (posição "Fonte") Lógica negativa (posição "Sink")

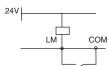
Inversor de frequência


Esquema de ligação pré-regulagem de fábrica

- (1) Indutância de linha eventual (monofásica ou trifásica)
- (2) Contatos do relé de segurança, para sinalização a distância do estado do inversor. Nota: Instalar antiparasitas em todos os circuitos indutivos próximos ao inversor ou acoplados no mesmo circuito (relés, contatores, eletroválvulas...).

Aplicação do inversor de frequência


Este comutador afeta a conexão comum das entradas lógicas no 0 V. 24 V ou "flutuante"


Esquema sugerido

Utilização de contatos secos

Comutador na posição CLI "Source" (regulagem de fábrica dos ATV31)

Comutador na posição "SINK"

Inversor de frequência

Precauções de fiação

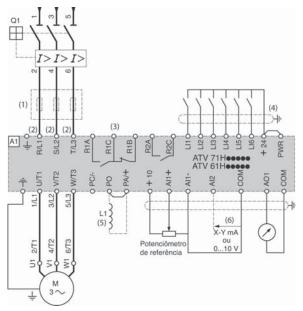
Potência

O inversor deve ser obrigatoriamente aterrado, para estar em conformidade com as regulamentações, em relação às correntes de fuga elevadas (superiores a 3,5 mA). Quando uma proteção a montante por "dispositivo diferencial residual" é imposta pelas normas de instalação, é necessário utilizar um dispositivo do tipo A para os inversores monofásicos e do tipo B, para os inversores trifásicos. Escolher um modelo adaptado que integra:

- uma filtragem das correntes de alta freqüência (AF)
- uma temporização que evita desligamento devido à carga das capacitâncias parasitas na energização. A temporização não é possível para dispositivos 30 mA. Neste caso, escolher dispositivos imunes contra desligamentos intempestivos, por exemplo, os DDR com imunidade reforçada da gama superimunizada.

Se a instalação possuir diversos inversores, prever um "dispositivo diferencial residual" por inversor.

Separar os cabos de potência dos circuitos de sinais de nível baixo da instalação (sensores, controladores programáveis, aparelhos de medição, vídeo, telefone). Se utilizar cabos com comprimentos > 80 m entre o inversor e o motor: instalar filtros de saída (ver catálogo específico).


Controle

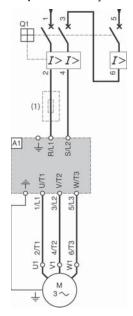
Separar os circuitos de comando e os cabos de potência. Para os circuitos de comando e de referência de velocidade, é recomendado utilizar cabo blindado e trançado em passos entre 25 e 50 mm, ligando a blindagem a cada extremidade.

Inversor de frequência

Esquemas em conformidade com as normas EN 954-1 categoria 1, IEC/EN 61508 capacidade SIL 1, em categoria de parada 0 segundo IEC/EN 60204-1.

Alimentação trifásica com interrupção a jusante por interruptor-seccionador

Nota: Todos os bornes estão situados na parte inferior do inversor de freqüência. Instalar módulos antiparasitas em todos os circuitos indutivos próximos do inversor de freqüência ou acoplados no mesmo circuito, tais como relés, contatores, eletroválvulas, iluminação fluorescente, ...


Componentes a associar

Para as referências completas, consultar nosso catálogo "Soluções partidas de motores. Componentes de controle e proteção de potência".

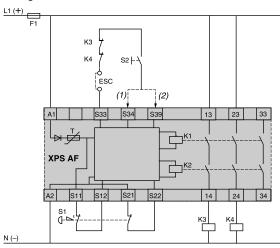
proteção de potencia.					
Código	Designação				
A1	Inversor de freqüência ATV61 / ATV 71				
L1	Indutância CC				
Q1	Disjuntor, ver partidas de motores				

Inversor de frequência

Parte de potência para alimentação monofásica

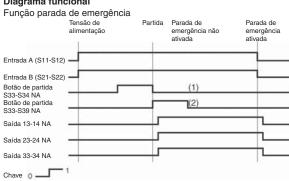
- (1) Indutância de linha (monofásica ou trifásica).
- (2) Para os inversores de freqüência ATV 71HC40N4 associados a um motor de 400 kW e ATV 71HC50N4 e para inversores de freqüência ATV 61HC50N4 e ATV 61HC63N4.
- (3) Contatos do relé de defeito. Permite sinalizar a distância o estado do inversor de freqüência.
- (4) A ligação do comum das entradas lógicas depende do posicionamento do comutador SW1.
- (5) Indutância CC opcional para ATV 71H●●●M3Z,

ATV 71HD11M3XZ•••HD45M3X, ATV 71H075N4Z•••HD75N4. Ligada em substituição da ligação entre os bornes PO e PA/+. Para os ATV 71HD55M3X, HD75M3X, ATV 71HD90N4•••HC50N4, a indutância é fornecida com o inversor de freqüência; ligação deve ser realizada pelo cliente.


Indutância CC opcional para ATV 61H●●●M3, ATV 61HD11M3X●●●HD45M3X, ATV 61H075M4●●HD75M4. Ligada em substituição da ligação entre os bornes PO e PA/+. Para os ATV 61HD55M3X, HD75M3X, ATV 61HD90N4●●HC50N4, a indutância é fornecida com o inversor de freqüência; ligação deve ser realizada pelo cliente.

(6) Entrada analógica configurável por software em corrente (0...20 mA) ou em tensão (0...10 V).

Esquemas de ligação - Preventa XPS AF


Módulo de segurança para monitoramento de parada de emergência e chaveamento

Módulo XPS AF associado com um botão de parada de emergência com 2 contatos NF

- (1) Com monitoramento do botão de partida
- (2) Sem monitoramento do botão de partida
- ESC: Condições de partida externa

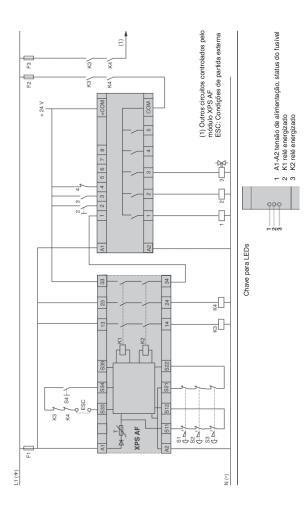
Diagrama funcional

- Com monitoramento do botão de partida (2) Sem monitoramento do botão de partida

Esquemas de ligação - Preventa XPS AF

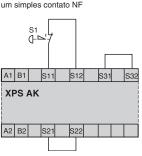
Módulo de segurança

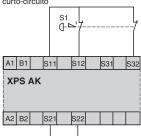
Diagrama funcional


Função de alerta com partida automática

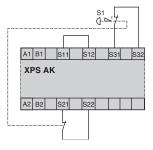
Esquemas de ligação - Preventa XPS AF

Módulo de segurança

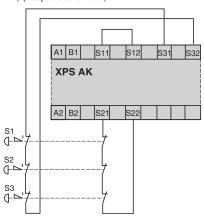

Módulo XPS AF com conexão de múltiplos botões de parada de emergência combinado com um Controlador Programável


Esquemas de ligação - Preventa XPS AK

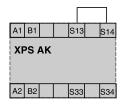
Módulo de segurança para monitoramento de parada de emergência, chaveamento, esteira e borda de segurança ou cortina de luz de segurança


Configuração da função de monitoramento da parada de emergência Fiação com 1 canal Botão de parada de emergência com

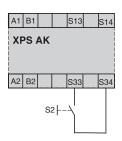
Nem todas as faltas são detectadas: um curto-circuito no botão de parada de emergência não é detectado Fiação com 2 canais Botão de parada de emergência com 2 contatos NF sem detecção de curto-circuito


Botão de parada de emergência com contatos NF com detecção de curtocircuito (aplicação recomendada)

Os 2 canais de entrada são conectados a polaridades diferentes. Um curto-circuito entre as 2 entradas é detectado

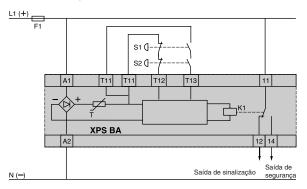

Esquemas de ligação - Preventa XPS AK

Conexão de múltiplos botões de parada de emergência com 2 contatos NF (aplicação recomendada)



Os 2 canais de entrada são conectados a polaridades diferentes. Um curto-circuito entre as 2 entradas é detectado

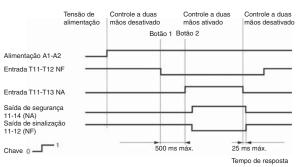
Configurações de partida Partida automática


Com monitoramento do botão de partida

Esquemas de ligação - Preventa XPS BA, XPS BC


Módulos de segurança para monitoramento elétrico de estação de controle a duas mãos

Módulo XPS BA associado a uma estação de controle a duas mãos - Tipo III A de acordo com a EN 574



S1 e S2: botões

Não devem ser usados para aplicações (pressão) que necessitem de um módulo tipo III C (XPS BC)

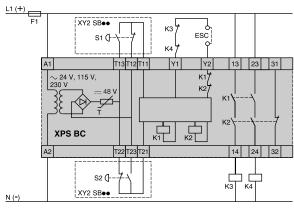
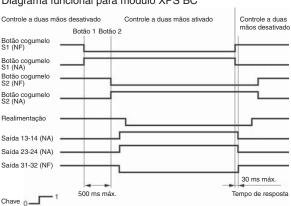
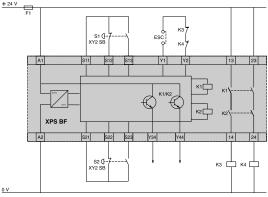


Diagrama funcional para módulo XPS BA

Esquemas de ligação - Preventa XPS BA, XPS BC


Módulo XPS BC associado a uma estação de controle a duas mãos - Tipo III C de acordo com a EN 574

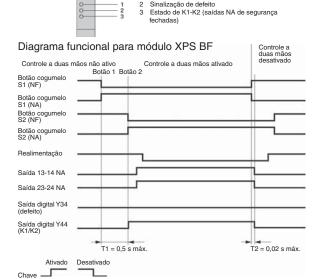
ESC: Condições de partida externa. Y1-Y2: realimentação A saída (31-32) não deve ser utilizada como um circuito de segurança. Pode ser utilizado em máquinas com movimentos não perigosos.


Diagrama funcional para módulo XPS BC

Esquemas de ligação - Preventa XPS BF

Módulo de segurança para monitoramento elétrico de estação de controle a duas mãos

Módulo XPS BF associado a um console de controle a duas mãos


ESC: Condições de partida externa. Y1-Y2: realimentação

do fusível)

A1-A2 tensão de alimentação A1-A2 (status

Chave para LEDs

7/64

Schneider

Visite nosso site:

www.schneider-electric.com.br wap.schneider.com.br

Para mais informações sobre produtos:

Call Center 0800 7289 110 / (11) 3468-5791

call.center.br@br.schneider-electric.com

Informação técnica

Índice

1	Fórmulas elétricas	8/4
2	Consumo dos motores elétricos	8/6
3	Grau de proteção	8/7
4	Símbolos gráficos usuais	8/9

1 Fórmulas elétricas

	Potência ativa	Potência reativa	Potência aparente
Contínua	P= U.I		
Monofásica	P=U.I.cos φ	Q=U.I.sen φ = U.I. $\sqrt{\varpi}$ 1-cos ² φ	S=U.I
Trifásica	$P=\sqrt{3}.U.I\cos\phi$	$Q=\sqrt{3}.U.I.sen\varphi = \sqrt{3}.U.I.\sqrt{1-cos^2\varphi}$	S=√3.U.I

Onde:

- S: Potência aparente em volt-ampères [VA].
- U: Tensão em volts (em rede trifásica tensão entre fases)[V].
- I: Corrente em ampères [A].

	l: Corrente em ampères [A]. P: Potência ativa em watts [W]. Q: Potência reativa em volt-ampères reativos [VAR]. Cosφ: Fator de potência do circuito (adimensional).						
	Fator Rendimento de potência						
	Corrente absorvida por u	m motor					
Contínua	I= <u>Pa</u> Un						
Monofásica	I= Pa Un cosφ						
Trifásica	I= <u>Pa</u> √3.Un.cosφ						
Onde:	Pa: Potência ativa absorvida em watts [W]. I: Corrente absorvida pelo motor em ampères [A]. Un: Tensão nominal em volts (em trifásica, tensão entre fases) [V]. η: Rendimento do motor. Cosφ: Fator de potência do circuito.						
	Resistência de um condutor						
Onde:	$\begin{split} &R=\frac{Pl}{s}\\ &R: \text{Resistência do condutor em ohms } [\Omega].\\ &\rho\colon \text{Resistividade do condutor em ohms-metros } [\Omega.m].\\ &l\colon \text{ Distância do condutor em metros } [m].\\ &S: \text{Secção do condutor em metros quadrados} [m^2]. \end{split}$						

Resistividade

 $\rho\theta = \theta (1 + \alpha \Delta \theta)$

 $\begin{array}{l} \rho\theta = \text{Resistividade à temperatura }\theta \text{ em ohm-metros }[\Omega.m].\\ \rho = \text{Resistividade à temperatura }\theta_0 \text{ em ohm-metros }[\Omega.m].\\ \Delta\theta = \theta - \theta_0 \text{ em graus celsius }{}^0\text{C}. \end{array}$

 α = Coeficiente de variação da resistividade em função da temperatura [1/ $^{\circ}$ C].

Lei de Joule

W= R.I².t em monofásica (energia em [J]).

R= Resistência do circuito em ohms [Ω].

I= Corrente em ampères [A].

t= Tempo em segundos [s].

 $1 \text{ [Wh]} \equiv 3600 \text{ [J]}$

1 [KWh] = 3,6.10⁶ [J]

Reatância indutiva

 $XI = \omega I$

XL: Reatância indutiva em ohms $[\Omega]$.

L: Indutância em henrys [H].

ω: Pulsação = 2πf

f: Frequencia em hertz [rad/s].

Reatância capacitiva

Xc=1

Xc: Reatância capacitiva em ohms.

C: Capacidade em faradays [F].

ω: Pulsação = 2πf

f: Frequência em hertz [Hz].

Lei de Ohm

Circuito resistivo U=I.R
Circuito reativo U=I.X
Circuito resistivo reativo U=I.Z

U: Tensão nos bornes do circuito em volts [V].

I: Corrente em ampères [A].

R: Resistência de circuito em ohms [Ω].

X: XL e XC reatâncias do circuito em ohms $[\Omega]$.

Z: Impedância do circuito em ohms [Ω].

2 Consumo dos motores

Motores assíncronos trifásicos 4 pólos 50/60Hz

Potên	ıcia	220V	230V (1)	380V	400V	415V	433/ 440V	460V (1)	575V (1)	660V	1000V
KW	CV	Α	A	Α	Α	Α	Α	A	A	Α	Α
0.37	0.5	1.8	2	1.03	0.98	-	0.99	1	0.8	0.6	0.4
0.55	0.75	2.75	2.8	1.6	1.5	_	1.36	1.4	1.1	0.9	0.6
0,75	1	3,5	3,6	2	1,9	2	1,68	1,8	1,4	1,1	0,75
1.1	1,5	4.4	5.2	2,6	2,5	2.5	2,37	2.6	2.1	1,5	1
1.5	2	6.1	6,8	3.5	3.4	3.5	3.06	3.4	2.7	2	1.3
2,2	3	8,7	9,6	5	4,8	5	4,42	4,8	3,9	2,8	1,9
3	-	11.5		6,6	6,3	6,5	5,77	_	_ `	3,8	2,5
	5		15,2	- "	_	-	_	7,6	6,1	-	3
4	-	14,5	_	8,5	8,1	8,4	7,9		_	4,9	3,3
5,5	7,5	20	22	11,5	11	11	10,4	11	9	6,6	4,5
7,5	10	27	28	15,5	14,8	14	13,7	14	11	6,9	6
9	-	32	_	18,5	18,1	17	16,9	_	_	10,6	7
11	15	39	42	22	21	21	20,1	21	17	14	9
15	20	52	54	30	28,5	28	26,5	27	22	17,3	12
18,5	25	64	68	37	35	35	32,8	34	27	21,9	14,5
22	30	75	80	44	42	40	39	40	32	25,4	17
30	40	103	104	60	57	55	51,5	52	41	54,6	23
37	50	126	130	72	69	66	64	65	52	42	28
45	60	150	154	85	81	80	76	77	62	49	33
55	75	182	192	105	100	100	90	96	77	61	40
75	100	240	248	138	131	135	125	124	99	82	53
90	125	295	312	170	162	165	146	156	125	98	65
110	150	356	360	205	195	200	178	180	144	118	78
132	-	425	-	245	233	240	215	-	-	140	90
	200	472	480	273	222	260	236	240	192	152	100
160	-	520	-	300	285	280	256	-	-	170	115
	250	-	600	-	-	-	-	300	240	200	138
200	-	626	-	370	352	340	321	-	-	215	150
220	300	700	720	408	388	385	353	360	288	235	160
250	350	800	840	460	437	425	401	420	336	274	200
280	-	-	-	528	-	-	-	-	-	-	220
315	-	990	-	584	555	535	505	-	-	337	239
	450	-	1080	-	-	-	-	540	432	-	250
355	-	1150		635	605	580	549	-	-	370	262
	500	-	1200	-	-	-	-	600	480	-	273
400	-	1250	-	710	675	650	611	-	-	410	288
450	600	-	1440	-	-	-	-	720	576	-	320

⁽¹⁾ Valores de acordo com o NEC (National Electrical Code) Estes valores são indicativos e variam em função do tipo de motor, de sua polaridade e do fabricante.

 $1 \text{ [HP]} \equiv 0.7457 \text{ [KW]} \qquad \qquad 1 \text{ [HP]} \equiv 1.0139 \text{ [CV]}$ $1 \text{ [CV]} \equiv 0.7355 \text{ [KW]} \qquad \qquad 1 \text{ [CV]} \equiv 0.9863 \text{ [HP]}$

≡ (Símbolo de equivalência ou equivalente).

Motores monofásicos de indução

KW	HP	220VA	240V A
0,37	0,5	3,9	3,6
0,55	0,75	5,2	4,8
0,75	1	6,6	6,1
1,1	1,5	9.6	8.8
1,5	2	12.7	11.7
1,8	2.5	15.7	14.4
2,2	3	18.6	17.1
3	4	24.3	22.2
4	5.5	29.6	27.1
4,4	6	34.7	31.8
5,2	7	39.8	36.5
5,5	7.5	42.2	38.7
6	8	44.5	40.8
7	9	49.5	45.4
7,5	10	54,4	50

Grau de proteção IP e de resistência mecânica IK

O grau de proteção IP é uma condição importante para a escolha do equipamento, uma vez escolhida sua definição técnica específica(tensão, potência, corrente). Ele define as condições de segurança de funcionamento em função da agressividade do ambiente e a segurança das pessoas, na qual tem a função de impedir que sejam atingidas e corram risco de vida.

A publicação IEC 60529 (2001/02), define o código IP do grau de proteção proporcionado pelo invólucro do material elétrico, contra o acesso às partes perigosas e contra a penetração de corpos sólidos estranhos ou água.

O código IP é formado por 2 dígitos, (exemplo 44) e pode ser ampliado por meio de uma letra adicional quando a proteção real das pessoas contra o acesso às partes perigosas seja superior à indicada pelo primeiro dígito

O grau de resistência mecânica IK, fornecido na norma IEC 60262 (2001/02), especifica o grau de resistência do equipamento ou invólucro aos impactos mecânicos externos (exemplo: IK 08 resistente a impactos de energia E = 5J).

(exemplo IP 20C)

Proteção do material contra a penetração de seranhos contra a penetração de seranhos acesso às partes cortra a penetração de seranhos ativas perigosas, como: Proteção do material acesso de gardes acesso de partes aces aces aces aces aces aces aces ac	<u>aı</u>	1ª Dígito característico		2ª I	2ª Dígito característico	Ď	Dígito adicional
(não protegido) 50 mm A mão 1 Gotas de água verticais 12,5 mm O dedo 2,5 mm Ferramenta Ø 2,5 mm 1,0 mm Fio Ø 1 mm 2,5 mm 2,5 mm 2,5 mm 2,5 mm 3 Chuvas (60° de inclinação) 4 Projeção de água 2 Jatos de água 4 Projeção de água 5 Jatos de água 7 Imersão temporária	Pro con cor	teção do material itra a penetração de pos sólidos estranhos	Proteção das pessoas contra o acesso às partes ativas perigosas, como:	Prote a pe noci	eção do material contra netração de água com efeitos vos	Prod pess ace	Proteção das pessoas contra o acesso às partes ativas perígosas, como:
De diâmetro ≥ 50 mm A mão 1 Gotas de água verticais De diâmetro ≥ 12,5 mm O dedo De diâmetro ≥ 2,5 mm Ferramenta Ø 2,5 mm De diâmetro ≥ 1,0 mm Fio Ø 1 mm Protegido contra pó Fio Ø 1 mm Selado contra pó Fio Ø 1 mm	0	(não protegido)	(não protegido)	0	(não protegido)	⋖	A mão
De diâmetro ≥ 12,5 mm O dedo De diâmetro ≥ 2,5 mm Ferramenta Ø 2,5 mm Protegido contra pó Fio Ø 1 mm Selado contra pó Fio Ø 1 mm	-	De diâmetro ≥ 50 mm	A mão	-	Gotas de água verticais	В	O dedo
De diâmetro ≥ 2,5 mm Ferramenta Ø 2,5 mm 3 Chuvas (60° de inclinação) De diâmetro ≥ 1,0 mm Fio Ø 1 mm 5 Jatos de água Protegido contra pó Fio Ø 1 mm 5 Jatos de água Selado contra pó Fio Ø 1 mm 6 Jatos intensos de água 7 Imersão temporária 8 Imersão prolongada	N		n O dedo	0	Gotas de água (15º de inclinação)	O	C Ferramenta Ø 2,5 mm
De diâmetro ≥ 1,0 mm Fio Ø 1 mm Protegido contra pó Fio Ø 1 mm Selado contra pó Fio Ø 1 mm	က		Ferramenta ∅ 2,5 mm	က	Chuvas (60º de inclinação)	۵	Fio Ø 1 mm
Protegido contra pó Fio ⊘ 1 mm Selado contra pó Fio ⊘ 1 mm	4	De diâmetro ≥ 1,0 mm	Fio ∅ 1 mm		Projeção de água		
Selado contra pó Fio ∅ 1 mm	2	Protegido contra pó	Fio ∅ 1 mm	2	Jatos de água		
7 Imersão temporária 8 Imersão prolongada	9		Fio ∅ 1 mm	9	Jatos intensos de água		
8 Imersão prolongada				7	Imersão temporária		
				œ	Imersão prolongada		

a do primeiro dígito (grau de proteção contra a penetração de corpos sólidos estranhos).

4 Símbolos gráficos usuais (IEC 1082-1)

Natureza da corrente	
Corrente alternada	Corrente contínua
~	===
Corrente retificada	Corrente alternada Trifásica 60 Hz
~	3 ~ 60 Hz
Terra	Massa/carcaça
<u>_</u>	*
Terra de proteção	Terra sem ruído

Natureza dos condutores	
Condutor circuito auxiliar	Condutor circuito principal
Representação tripolar	Representação unipolar
L1 L2 L3	-///-
Condutor neutro (N)	Condutor de proteção (PE)
	—
Condutores blindados	Condutores trançados
	

Contatos	
Contato NA	
1-principal 2-auxiliar	1 2
Contato NF	1531
1-principal 2-auxiliar	1/2
Interruptor	Seccionador
1	Ţ
Contator	Pólo fechado (ruptor)
ď	7
disjuntor	Interruptor- seccionador
1	Å
Interruptor-seccion. com abertura autom.	Interruptor-seccion. com fusíveis
Contato com simult. não garantida	Contato com sobrep. garantida
	Lel

Contatos

Contatos apresentados em posição acionada

Contatos NA ou NF de ab. ou fechados retardados

Contatos NA ou NF temporizados em trabalho

Contatos NA ou NF antecipados

Interruptor de posição

Contatos NA ou NF temporizados em repouso

Elemento de comando

Comando eletromag. Símbolo geral

Comando electromag. Contator principal

Bobina de eletroválvula

Comando eletromag. Contator auxiliar

Comando eletromag. com travamento mecân.

Elementos de medida

Relé de medição ou dispositivo visivel Símbolo geral

Relé de sobrecorrente com efeito térmico

Relé de mínima tensão

Dispositivo acionado pela freqüência

Relé de sobrecorrente com efeito magnético

Relé de máxima corrente

Relé de falta de tensão

Materiais e elementos diversos

Fusível

Diodo

Tiristor

Capacitor

Resistor

Indutância

Resistor dependente da tensão: Varistor

Corta circuito fusível com percutor

Ponte retificadora

Transistor NPN

Elemento de bateria ou pilha

Shunt

Potenciômetro

Resistor depend. da temp. termistor

Materiais e elementos diversos

Fotorresistor

Fototransistor PNP

Autotransformador

Disp. de partida símbolo geral

Aparelho indicador símbolo geral

Contador símbolo geral

Relógio

Fotodiodo

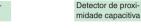
Transformador de tensão

Transformador de corrente

Disp. de partida da estrela-triângulo

Amperímetro

Freio símbolo geral



Detector sensível de proximidade

Materiais e elementos diversos

Detector de proximidade indutiva

Detector fotoelétrico

Bornes de conexão

Derivação

Cruzamento sem conexão

Régua de terminais

11 12 13 14

Plug

1 Comando 2 Potência

Tomada

Conexão por contato deslizante

1 Comando 2 Potência

Plug e tomada

Conjunto de conectores fixo e movel

Sinalização

Lâmpada de sinalização

Dispositivo Iuminoso intermitente

Máquinas elétricas rotativas

Motor assíncrono trifásico com rotor em curto-circuito

Motor assíncrono com dois enrolam. (estatores) separados (motor de 2 velocid.)

Motor assíncrono trifásico de rotor anéis

Motor assíncrono monofásico

Motor assíncrono com seis bornes de saída (ligação estrela-triângulo)

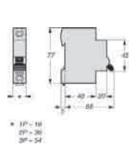
Gerador de corrente alternada

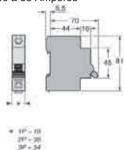
Quadro comparat	tivo dos símbolos	
mais habituais	ivo dos simbolos	
Símbolo gráfico	Normas IEC	Normas NEMA
Contato NA principal e auxiliar	11	+ +
Contato NF principal e auxiliar	77	# #
Contato NA ou NF temporizado ao trabalho	NA NF	NA NF
Fusível	2	-
Relés de proteção	Térmico Magnético	>
Comando eletromagnético	A2 A1	Ċ
Seccionadores	\\	7事
Disjuntores	*	Térmico Magnético
Motores	5 5 \$ 0 wi av	

Dimensões

Índice

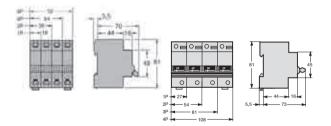
Dimensionamento	
Disjuntores - K32a/K60	9/4
Vigi C60/C120, DPNa Vigi e ID	9/5
Interruptores I	9/8
Telerruptores TL e TLI	9/8
DPS - dispositivos de proteção contra surtos	9/9
EasyPact 100, 250, 400	9/11
Compact NB 600 e 800N, NR160 a 630, NS100 a 630	9/12
Varlogic NR	9/13
Varplus ²	9/13
Medidores de energia elétrica	9/14
Partidas e equipamentos Tesys	9/15
Disjuntores-motores Termomagnéticos GV2	9/15
Termomagnéticos GV2-ME e GV2-P	9/16
Termomagnéticos GV3-P	9/18
Termomagnéticos GV3-ME e GV <u>7-R</u>	9/20
Termomagnéticos GV2-L/LE	9/22
Contatores modelo D	9/24
Relés térmicos para modelo D	9/33
Contatores auxiliares TeSys	9/38
Contatores modelo F	9/40
Relés térmicos modelo K	9/41
Relés térmicos modelo D	9/42
Relés térmicos modelo F	9/43
Relés eletrônicos e instantâneos LR 97/LT47	9/45
Partidas integradas de motores e Relés de	
proteção e controle Te <i>Sys</i> modelo U	9/46
Unidades de comando e sinalização XB6	9/47
Botoeiras pendentes e postos de comando XB2-TB para XB3 Ø30 mm	9/50
Botoeiras murais e postos de de comando XB4-TB para XB4 Ø22 mm	9/51

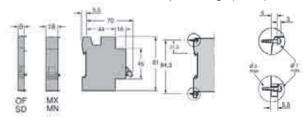

Unidades de comando e	9/52
sinalização XB4-B	
Unidades de comando e	9/59
sinalização XB5-B	
Unidades de comando e sinalização XB7	9/66
Unidades de comando e sinalização ZB3/XB3	9/69
Comutadores de 12 a 20 A (K1/K	2) 9/71
Comutadores de 32 a 150 A (K1/	K2) 9/72
Inversores de freqüência	9/74
Microprocessados - Altivar 11	
Inversores de frequência	9/75
Microprocessados - Altivar 21	0/77
Inversores de freqüência Microprocessados - Altivar 31	9/77
Inversores de freqüência	9/79
Microprocessados - Altivar 61	
Inversores de freqüência Microprocessados - Altivar 71	9/82
Conversores de partida e parada progressiva - Altistart 01	9/85
Conversores de partida e parada progressiva - Altistar 48	9/87
Interruptores de posição XC	9/88
,	
Pressostatos Nautilus	9/93
Sensores indutivos Osiprox	9/95
Sensores fotoelétricos - XU	9/97
Interruptores de segurança	9/99
Módulos lógicos Zelio Logic	9/102
Fontes de alimentação Phaseo	9/104
Componentes de proteção	9/108
Controlador programável Twido	9/111


Dimensões

Disjuntores - K32a/K60

6 a 40 Ampères


50 a 63 Ampères


C60 N/H

C120 N

Auxiliares C60N/H e C120N

Montagem em superfície ou perfil ômega (35mm)

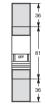
Acessórios C60

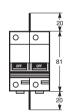
base plug-in

proteção de parafusos

proteção de bornes

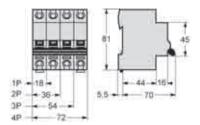
separador de fases




Acessórios C120

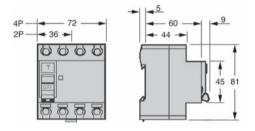
proteção de parafusos

proteção de bornes separador de fases

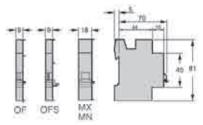


Vigi C60/C120, DPNa, DPNa Vigi e ID

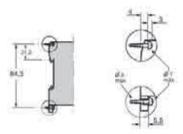
Vigi C60 / C120

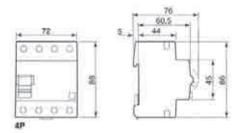

DPNa / DPNa Vigi

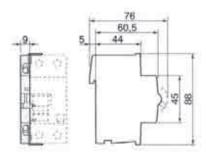
DPNa



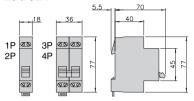
DPNa Vigi = 36 mm


ID Interruptores Diferenciais

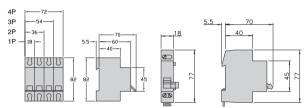

Auxiliares


Montagem em sup. ou perfil ômega (35 mm)

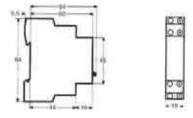
ID, 100 / 125A (referências: 16900/16905/16907)



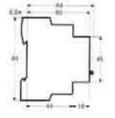
Auxiliar OFsp (referência 16940)


Interruptores I

20 a 32A

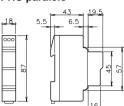


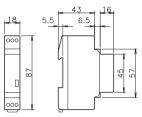
40 a 125A


NA, NF (auxiliar)

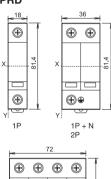
Telerruptores TL e TLI

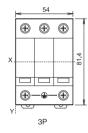
Auxiliares adaptáveis ATLc

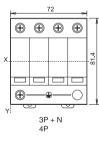




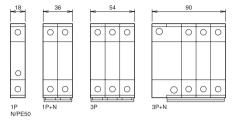
DPS - dispositivos de proteção contra surtos

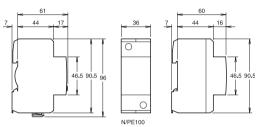

PRC paralelo

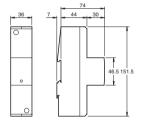



PRC série - PRI

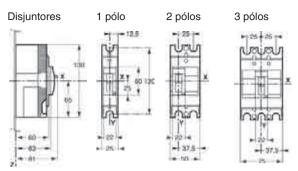
PRD

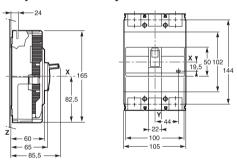


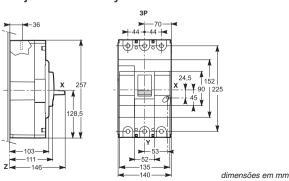



DPS - dispositivos de proteção contra surtos

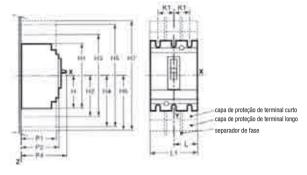
PRF1




PRF1 mestre


Disjuntores EasyPact 100

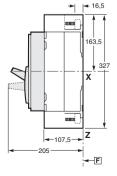
Disjuntores EasyPact 250

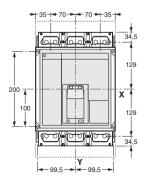


Disjuntores EasyPact 400

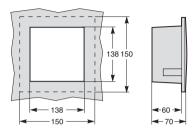
Disjuntores Compact NB, NR e NS

Compact NB 600, NR 160 a 630 e NS 100 a 630




Disjuntor	G	G1	G4	G5	Н	H1	H2	НЗ	H4
NR160/250F	62,5	125	70	140	80,5	161	94	188	160,5
NS100 a 250N/SX/H/L									
NB600N; NR400/630F	100	200	113,5	227	127,5	255	142,5	285	240
NS400/630N/H/L									

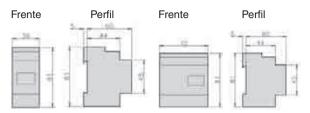
Disjuntor	H5	H6	H7	K1	L	L1	P1	P2	P4
NR160/250F	321	178,5	357	35	52,5	105	81	86	111 ⁽¹⁾
NS100 a 250N/SX/H/L									
NB600N; NR400/630F	480	237	474	45	70	140	95,5	110	168
NS400/630N/H/L									
(4) D4 400 NC	OF ON L	21/11/1							


⁽¹⁾ P4 = 126 mm para NS250N/SX/H/L.

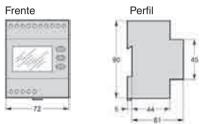
Compact NB 800N



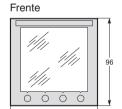
Controladores de fator de potência Varlogic NR


Varlogic NR6 a NR12

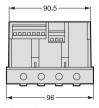
Capacitores de correção do fator de potência Varplus²



Medidores de energia elétrica

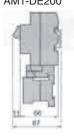

PowerLogic® série ME

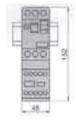
PowerLogic® série PM9

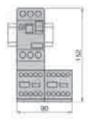

PowerLogic® série PM700

Superior

-96

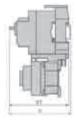

dimensões em mm


Partidas e equipamentos TeSys

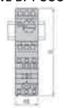

Disjuntores-motores termomagnéticos GV2

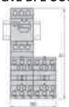
GV2-ME ••K••• GV2-ME ••K1•• GV2-ME ••K2••

Montagem em perfil AM1-DF200

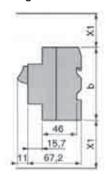


GV2-DP ●●●●


Montagem em perfil AM1-DE200


Com placa LAD-31

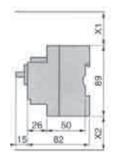
GV2-DP1 ••••

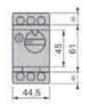


GV:	2-DP●02●●a	GV2-DP●10●●a	GV	2-DP●02●●	GV2-DP●10●●
	DP●08●●	DP@32@@		DP●08●●	DP@32@@
b	177,4	187,8	b	169,1	199,5
С	94,1	100,4	С	122,3	122,3
c1	88,6	94,9	c1	116,8	116,8
d	96,8	96,8			
d1	91	91			
d	96,8	96,8		,0	1.10,0

Componentes de proteção TeSys

Disjuntores-motores termomagnéticos GV2-ME e GV2-P Montagem GV2-ME

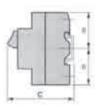


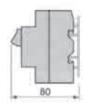

000	и
	40
	4
000	U
44.5	

	b	
GV2-ME●●	89	
GV2-ME●●3	101	

⁽¹⁾ Máximo

Montagem GV2-P

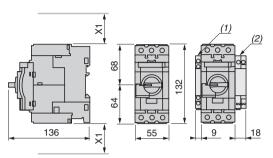

- (1) Máximo
- X2 = 40 mm
- X1 Perímetro de segurança = 40 mm para Ue ≤ 415 V


X1 Perímetro de segurança = 40 mm para Ue ≤ 690 V.

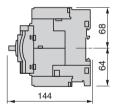
Componentes de proteção TeSys

Disjuntores-motores termomagnéticos GV2-ME e GV2-P Montagem GV2-ME

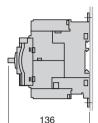
Em perfil de 35 mm c=78,5 em AM1-DP200 (35x7,5) c=86 em AM1-DE200,ED200 (35x15)

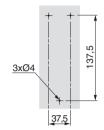

Montagem GV2-P

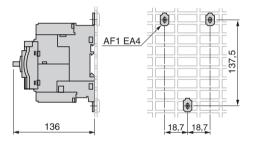
Em perfil AM1-DE200, ED200 (35x15)



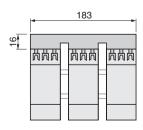
Componentes de proteção TeSys Disjuntores-motores termomagnéticos GV3-P


X1 = Perímetro de segurança (desligamento ICC máx.) 40 mm para Ue < 500 V. 50 mm para Ue < 690 V

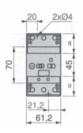

Montagem em perfil AM1 DE200 ou AM1 ED201


(1)Aditivos GV AN••, GV AD••, GV AM11 (2)Aditivos GV3 AU•• e GV3 AS••

Componentes de proteção TeSys Disjuntores-motores termomagnéticos GV3-P Montagem em painel, por parafuso M4

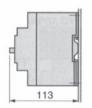


Montagem em placa perfurada AM1 PA


Jogo de barras GV3 G364

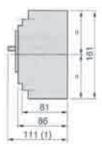
Componentes de proteção TeSys

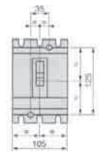
Disjuntores-motores termomagnéticos GV3-ME e GV7-R Montagem GV3-ME



X1 Perímetro de segurança (desligamento ICC máx.)

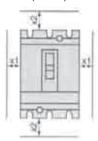
Montagem


Em painel



40mm para Ue < 500V 50mm para Ue < 690V

Montagem GV7-R



(1) 126 para GV7-R●220

Componentes de proteção TeSys

Perímetro de segurança

Em perfil AM1-DE200, ED200 (35x15)

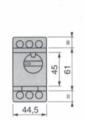
		x1	x2	
Chapa pintada d	ou isolada, isolador ou barra isolada	0	30	
Chapa sem	U ≤ 440V	5	35	
Proteção	440 V < U < 600 V	10	35	
	U ≥ 600 V	20	35	
Dietêncie minim	a antra O diairmtaraa lada a lada O			

Distância mínima entre 2 disjuntores lado a lado = 0

Montagem

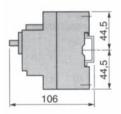
Em painel

Montagem embutida



Componentes de proteção TeSys Disjuntores-motores magnéticos modelos GV2-L/LE

Montagem GV2-L

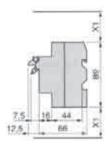


X1 Perímetro de segurança = 40 mm para Ue ≤ 415V, ou 80 mm para Ue = 440 V, ou 120 mm para Ue = 500 e 690 V. X2 = 40 mm

Montagem GV2-L

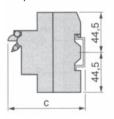
Em perfil AM1-DE200, AM1-ED200 (35x15) Em painel

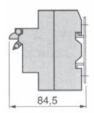
Componentes de proteção TeSys


Suporte de 7,5 mm

GV1-F03

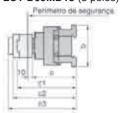
GV2-LE




X1 Perímetro de segurança = 40 mm para Ue ≤ 690 V.

Montagem GV2-LE

Em perfil de 35 mm



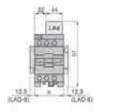
Em painel com placa GV2AF02

c = 80 em AM1-DP200 (35x75) c = 80 em AM1-DE200, ED200 (35x15)

Modelo D LC1-D09...D18 (3 pólos)

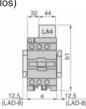
LC1-D25...D38 (3 pólos) **LC1-DT20...DT60** (4 pólos)

dimensões em mm

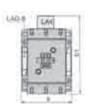

LC1	D09 D18	D093 D183	D099 D189	D25 D38	D253 e D323
b sem aditivo	77	99	80	85	99
b1 com LAD-4BB	94	107	95,5	98	107
com LA4-D●2	110(1)	123(1)	111,5(1)	114(1)	123(1)
com LA4-DF,DT	119(1)	132(1)	120,5(1)	123(1)	132(1)
com LA4-DM,DR,DW,DL	26(1)	139(1)	127,5(1)	130(1	139(1)
c sem tampa, nem aditivo	84	84	84	90	90
com tampa, sem aditivo	86	86	86	92	92
c1 com LAD-N ou C (2 ou 4 cont.)	117	117	117	123	123
c2 com LA6-DK10, LAD-6K10	129	129	129	135	135
c3 com LAD-T, R, S	137	137	137	143	143
c/ LAD-T, R, S e tampa de lacre	141	141	141	147	147

LC1	DT20 e DT25	DT203 e DT253	DT32 e DT60	DT323 e DT603
b sem aditivo	85	99	91	105
b1 com LAD-4BB	98		-	
com LA4-D●2	114		-	
com LA4-DF,DT	129		-	
com LA4-DM,DR,DW,DL	190		-	
c sem tampa, nem aditivo	90	90	98	98
com tampa, sem aditivo	92	92	100	100
c1 com LAD-N ou C (2 ou 4 cont.)	12	123	131	131
c2 com LA6-DK10, LAD-6K10	135	135	143	143
c3 com LAD-T, R, S	143	143	151	151
c/ LAD-T, R, S e tampa de lacre	147	147	155	155
(1) LAD-4BB incluso				

LC1-D40...D65 (3 pólos)


LC1-D65004, D40008 e D65008 (4 pólos)

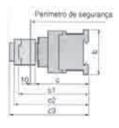
LC1-D80...D95 (3 pólos) **LC1-D80004...80008** (4 pólos)



dimensões em mm

LC1-	D40D65	D40008	D80 D65004
a	75	85	85
b1 com LA4-DI2	135	135	135
com LA4-DB3	_	_	135
com LA4-DF, DT	142	142	142
com LA4-DM, DR, DW, DL	150	150	150
c sem tampa, nem aditivo	114	125	125
com tampa, sem aditivo	119	_	130
c1 com LAD-N (1 contato)	139	139	150
com LAD-N ou C (2 ou 4 contatos)	147	147	158
c2 com LA6-DK	159	159	170
c3 com LAD-T, R, S	167	167	178
com LAD-T, R, S e tampa de lacre	171	171	182
LC1-	D95	D80004	D80008
LC1-	Dag	D00004	D00000
LC1-	Daa	D00004	D65008
a a	85	96	
			D65008
<u>a</u>	85	96	D65008 96
a b1 com LA4-Di2	85	96	D65008 96
a b1 com LA4-Di2 com LA4-DB3	85 135 –	96 135 –	D65008 96 135 -
a b1 com LA4-Di2 com LA4-DB3 com LA4-DF, DT	85 135 – 142	96 135 - 142	D65008 96 135 - 142
a b1 com LA4-Di2 com LA4-DB3 com LA4-DF, DT com LA4-DM, DR, DW, DL	85 135 - 142 150	96 135 - 142 150	D65008 96 135 - 142 150
a b1 com LA4-Di2 com LA4-DB3 com LA4-DF, DT com LA4-DM, DR, DW, DL c sem tampa, nem aditivo com tampa, sem aditivo c1 com LAD-N (1 contato)	85 135 - 142 150 125	96 135 - 142 150	D65008 96 135 - 142 150
a b1 com LA4-Di2 com LA4-DB3 com LA4-DF, DT com LA4-DM, DR, DW, DL c sem tampa, nem aditivo com tampa, sem aditivo	85 135 - 142 150 125 130	96 135 - 142 150 125	96 135 - 142 150 140
a b1 com LA4-Di2 com LA4-DB3 com LA4-DF, DT com LA4-DM, DR, DW, DL c sem tampa, nem aditivo com tampa, sem aditivo c1 com LAD-N (1 contato)	85 135 - 142 150 125 130 150	96 135 - 142 150 125 - 150	96 135 - 142 150 140 - 150
a b1 com LA4-Di2 com LA4-DB3 com LA4-DF, DT com LA4-DM, DR, DW, DL c sem tampa, nem aditivo com tampa, sem aditivo c1 com LAD-N (1 contato) com LAD-N ou C (2 ou 4 contatos)	85 135 - 142 150 125 130 150 158	96 135 - 142 150 125 - 150 158	96 135 - 142 150 140 - 150 158

LC1-D115 e D150 (3 pólos) **LC1-D115004** (4 pólos)



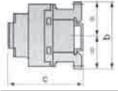
LC	1-	D115	D115004	D115006	D150006	D1150046
		D150				
а		120	150	120	120	155
b1	c/LA4-DA2	174	174	174	174	174
	c/LA4-DF, DT	185	185	185	185	185
	c/LA4-DM, DR, DL	188	188	188	188	188
	c/LA4-DW	188	188	188	_	188
С	s/tampa, nem aditivo	132	132	115	115	115
	c/tampa, sem aditivo	136	_	_	-	_
c1	c/LAD-N ou C (2 ou 4 cont.)	150	150	150	150	150
c2	c/LA6-DK20	155	155	155	155	155
c3	c/LAD-T,R,S	168	168	168	168	168
	c/LAD-T, R,S e	172	172	172	172	172
	tampa de lacre					

LC1-D09...D18 (3 pólos) LC1-D25...D38 (3 pólos)

LC1-D20...DT60 (4 pólos)

LC1-	D09	D093	D099	D25	D253
	D18	D183	D189	D38	e D323
b	77	99	80	85	99
c sem tampa, nem aditivo	93	93	93	99	99
com tampa, sem aditivo	95	95	95	101	101
c1 com LAD-N ou C (2 ou 4 contatos)	126	126	126	132	132
c2 com LA6-DK10, LAD-6K1	138	138	138	144	144
c3 com LAD-T, R, S	146	146	146	152	152
com LAD-T, R, S e tampa de lacre	150	150	150	156	156
LC1-	DT20	DT203	3 DT3	2	DT323
	e DT25	e DT2	53 e D	T60	e DT603
b	85	99	91		105
c sem tampa, nem aditivo	90	90	98		98
com tampa, sem aditivo	123	123	131		131
c1 com LAD-N ou C (2 ou 4 contatos)	135	135	143		143
c2 com LA6-DK10, LAD-6K10	143	143	151		151
c3 com LAD-T, R, S	147	147	155		155

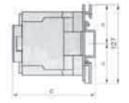
LC1-D40...D95 (3 pólos) LP1-D65004...D80004, LP1-D40008...D80008 (4 pólos)



	LC1- D40D65	LP1-D65004	LP1-D40008 e D65008	LC1- D80 e D95
c sem tampa, nem aditivo	171	171	182	181
com tampa, sem aditivo	176	_	_	186
c1 com LAD-N (1 contato)	196	196	196	204
comLAD-NouC(2 ou 4 cont.	202	202	202	210
c2 com LA6-DK10	213	213	213	221
c3 com LAD-T, R, S	221	221	221	229
c/LAD-T,R,S e tampa de lac	.225	225	225	233

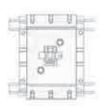
	LP1-	LP1-
	D80004	D80008
c sem tampa, nem aditivo	181	196
com tampa, sem aditivo	176-	-
c1 com LAD-N (1 contato)		204
comLAD-NouC(2 ou 4 cont.	210	210
c2 com LA6-DK10	221	221
c3 com LAD-T, R, S	229	229
c/LAD-T,R,S e tampa de lac	.233	233

Em perfil AM1-DP200, DR200 ou AM1-DE200 (largura 35 mm)

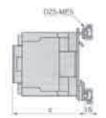

LC1-D09...D38, DT20...DT60

LC1-	D09D18	D25D38	DT20 e DT2	DT32 5 DT60
b	77	85	85	100
c (AM1-DP200 ou DR200) (1)	88	94	94	109
c (AM1-DE200) (1)	96	102	102	117
Circuito de comando em correr	nte contínua			
b	77	85	94	109
c (AM1-DP200 ou DR200) (1)	97	103	103	118
c (AM1-DE200) (1)	105	110	111	1236

Em perfil AM1-DL200,ou DL201 (largura 75 mm)
Em perfil AM1-ED●●● ou AM1-DE200 (largura 35 mm)
LC1-D40...D95, LP1-DT40...D80

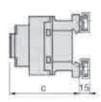


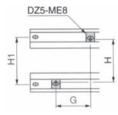
Circuito de comando em corrente alternada						
LC1-	D40	.D65		D80 e D95		
c (AM1-DL200) (1)	136			147		
c (AM1-DL201) (1)	126			137		
c (AM1-EDiii ou DE200)	(1) 126			137		
Circuito de comando er	m corrent	e contí	nua			
LC1-	D40	.D65		D80 e D95		
LC1- c (AM1-DL200) (1)	D40 193	.D65		D80 e D95 203		
		.D65				
c (AM1-DL200) (1)	193	.D65	D80	203		
c (AM1-DL200) (1) c (AM1-DL201) (1)	193 183		D80 198	203		
c (AM1-DL200) (1) c (AM1-DL201) (1) LP1-	193 183 D40	D65		203		


Em 2 perfis DZ5-MB com 120 mm de entre os eixos LC1-D115...D150

Circuito de comando em corrente alternada ou contínua					
LC1- D115 e D150 D1156 e D150					
c (AM1-DP200 ou DR200)	134,5	117,5			
c (AM1-DE200 ou EDiii)	142,5	125,5			

Em 2 perfis DZ5-MB com 120 mm de entre eixos LC1-D40...D95, D40...D80

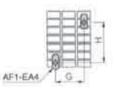




Circuito de coman	do em corren	te alternada			
LC1-	D40D65	D80 e D95			
c com tampa	119	130			
Circuito de comando em corrente contínua					
LC1-	D40D65	D80 e D95			
c com tampa	176	186			
LP1-	D40 e D65	D80			
С	171	181			

LC1-D09...D38

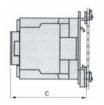
Em 2 perfis DZ5-MB

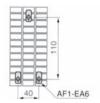


Circuito de comando:	em corrente	alternada	em corrente contínua	
LC1-	D09D18	D25D38	D09D18	D25D38
c com tampa	86	92	95	101
G	35	35	35	35
Н	60	60	60	60
H1	70	70	70	70
Contatores tetrapolares	3			
LC1-	DT20	DT32	DT20	DT32
	e DT25	DT60	e DT25	DT60
С	92	100	101	109
G	135	40/50	35	35
Н	60	60	60	60
H1	70	70	70	70

LC1-D09...D38 e LC1-DT20...DT60

Em placa perfurada AM1-PA, PB, PC





Circuito de comando:	em corrente alternada		em corrente contínua	
LC1-	D09D18	D25D38	D09D18	D25D38
c com tampa	86	92	95	101
G	35	35	35	35
c com tampa	86	92	95	101
Contatores tetrapolares	3			
LC1-	DT20	DT32	DT20	DT32
	e DT25	DT60	e DT25	DT60
С	00	00	118	132
	80	93	110	132
G	35	35	35	35

LC1-D40...D95, LP1-D40...D80

Em placa perfurada AM1-PA, PB, PC

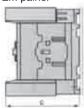
Circuito de comando:	em corrente	alternada	em corrente	contínua
LC1-	D40D65	D80 e D95	D40D65	D80 e D95
c com tampa	119	130	176	186
LP1-	-	_	D40 e D65	D80
c sem tampa	_	_	171	181

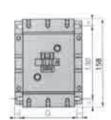
LC1-D09...D38 e D38

Em painel

Circuito de comando:	em corrente alternada		em corrente contínua	
LC1-	D09D18	D25D38	D09D18	D25D38
c com tampa	86	92	95	101
Contatores tetrapolares				
LC1-	DT20	DT32	DT20	DT32
	e DT25	DT60	e DT25	DT60
c com tampa	90	98	90	98

LC1-D40...D95, LP1-D40...D80





Circuito de comando:	em corrente	e alternada	em corrente contínua	
LC1-	D40D65	D80 e D95	D4D65	D80 e D95
c com tampa	119	130	176	186
LP1-	_	-	D40 e D65	D80
c sem tampa	-	_	171	181

LC1-D115...D150

Em painel

LC1-	D115	D1156	D150	D1506
С	132	115	132	115
G (3 pólos)	96/110	96/110	96/110	96/110
G (4 pólos)	130/144	130/144		

Relés térmicos para modelo D

LRD-01...35

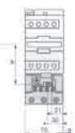
Montagem direta em contatores com parafusos estribo



LC1-	D09D18	D25D38
b	123	137
C	84	90

LRD-13...353

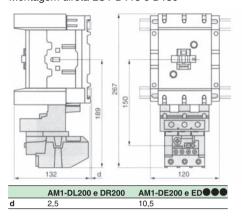
Montagem direta com bornes tipo mola

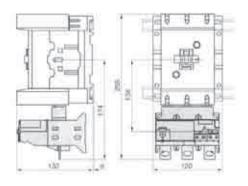


LC1-	D093D383
b	168
С	90

LRD-3

Montagem direta LC1-D40...D95 e LP1-D40...D80




AM1-	DL201	DL200					
d	7	17					
			b	С	е	g (tri)	g (tetra)
Circuito	de coman	do em c	orrente	altern	ada		
LC1-D40	1		111	119	72,4	4,5	13
LC1-D50			111	119	72,4	4,5	
LC1-D65	i		111	119	72,4	4,5	13
LC1-D80	1		115,5	124	76,9	9,5	22
LC1-D95	i		115,5	124	76,9	9,5	-
Circuito	de coman	do em c	orrente	contír	nua		
LC1-D40	, LP1-D40		111	119	72,4	4,5	13
LC1-D50			111	176	72,4	4,5	_
LC1-D65	, LP1-D65		111	176	72,4	4,5	13
LC1-D80	, D95, LP1	-D80	115,5	179,4	76,9	9,5	22

LRD-4

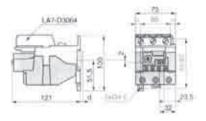
Montagem direta LC1-D115 e D150

LRD-9 Montagem direta LC1-D115 e D150

	AM1-DP200 e DR200	AM1-DE200 e ED●●●
d	2,5	10,5

LRD-01...35

Montagem separada a 50 mm de distância entre eixos ou em perfil AM1-DP200 ou DE200


Montagem separada a 110 mm de distância entre eixos

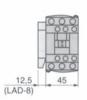
LRD-3●●● e LR2-D35●●

Montagem separada a 50 mm de distância entre eixos ou em perfil AM1-DP200 ou DE200

	AM1-	DP200	AM1-DE200
d	2	9,5	

LRD-3●●● e LR2-D35●● LR9-D

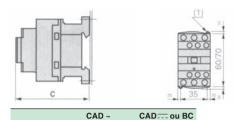
Montagem separada a 50 mm de distância entre eixos ou em perfil AM1-DP200 ou DE200



Contatores auxiliares TeSys

CAD~	32	323
	50	503
b	77	99
c sem tampa, nem aditivo	84	84
com tampa, sem aditivo	86	86
c1 com LAD-N ou C (2 ou 4 contatos)	117	117
c2 com LA6-DK10	129	129
c3 com LAD-T, R, S	137	137
com LAD-T, R, S e tampa de lacre	141	141

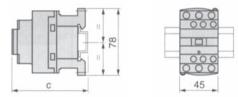
CAD ===



32	323	
50	503	
77	99	_
93	93	_
95	95	_
126	126	_
138	138	
146	146	
150	150	_
	50 77 93 95 126 138 146	50 503 77 99 93 93 95 95 126 126 138 138 146 146

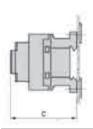
Contatores auxiliares TeSys

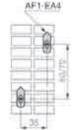
${\sf CAD}\,{\sim}$


Montagem em painel

${\sf CAD}\,{\sim}$

c com tampa

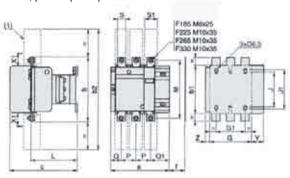

Montagem em perfil AM1-DP200 ou DE200



	${\sf CAD}\!\sim$	CAD == ou BC
c (AM1-DP200) (1)	88	97
c (AM1-DE200) (1)	96	105
(1) Com tampa		

${ m CAD}\,\sim$

Montagem em placa AM1-P



	cad \sim	CAD == ou BC
c com tampa	86	95

Contatores modelo F

LC1-F 115 a 330

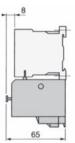
Frente, perfil e parte posterior

			_
X1 = Perímetro	de segurança de ac	ordo com a tensão de utilização e o)
seu poder de i	nterrupção		
LC1-F	200 500V	600 1000V	_

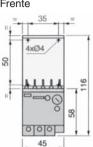
LC1-F	200500V	6001000V	
115, 150(²) 185	10	15	
	10	15	
225, 265	10	15	
330	10	15	

⁽¹⁾ Tampa de proteção

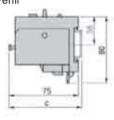
⁽²⁾ Sustituídos por LC1D115 / 150


	F115		F150		F185		F225		F265		F330	
	3р	4p	3p	4p								
а	163,5	200,5	163,5	200,5	168,5	208,5	168,5	208,5	201,5	244,5	213	261
b	162	162	170	170	174	174	197	197	203	203	206	206
b1	137	137	137	137	137	137	137	137	145	145	145	145
b2	265	265	301	301	305	305	364	364	375	375	375	375
C	171	171	171	171	181	181	181	181	213	213	219	219
f	131	131	131	131	130	130	130	130	147	147	147	147
G	106	143	106	143	111	151	111	151	142	190	154,5	202,5
G1	80	80	80	80	80	80	80	80	96	96	96	96
J	106	106	106	106	106	106	106	106	106	106	106	106
J1	120	120	120	120	120	120	120	120	120	120	120	120
L	107	107	107	107	113,5	113,5	113,5	113,5	141	141	145	145
M	147	147	150	150	154	154	172	172	178	178	181	181
P	37	37	40	40	40	40	48	48	48	48	48	48
Q	29,5	29,5	26	26	29	29	21	17	39	34	43	43
Q1	60	60	57,5	55,5	59,5	59,5	51,5	47,5	66,5	66,5	74	74
S	20	20	20	20	20	20	25	25	25	25	25	25
S1	26	26	34	34	34	34	44,5	44,5	44,5	44,5	44,5	44,5
Υ	44	44	44	44	44	44	44	44	38	38	38	38
Z	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	21,5	21,5	20,5	20,5

f: Distância mínima de fixação para a extração da bobina.


Relés térmicos modelo K

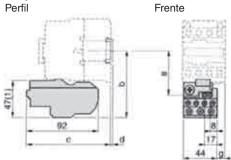
LR2-K



Frente

LR2-K Montagem por bornes

Perfil


Frente

	С
AM1-DP200	78,5
AM1-DE200	86

Relés térmicos modelo D

LR2, LR3-D1

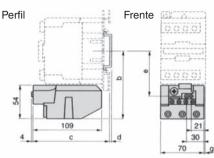
	AM1-DP200	AM1-DE200
d	2	9.5
-	_	-,-

	b(1)	С	е	а
LC1-D09, D12, D18	97,5	98	60	1,5
LC1-D25	97,5	98	60	0,5
LC1-D32	97,5	155	60	1,5
LP1-D09, D12, D18	97,5	155	60	0,5
LP1-D25	·			
LP1-D32				

LP4-D12

(1) + 5 mm para LR2-D15..

LR2, LR3-D2


	AM1-DP200	AM1-DE200
d	2	9,5

	b	С	е	a	
LC1-D25	97,5	98	60	1,5	
LC1-D32	97,5	98	60	0,5	
LP1-D25	97,5	155	60	1,5	
LP1-D32	97,5	155	60	0,5	

Relés térmicos modelo D

LR2, LR3-D3

Montagem direta

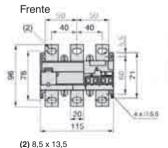
	AM1-E	DL201	AM1-	DL200	
d	7		17		
	b	С	е	g (tri)	g(tetra)
LC1-D40	111	119	72,4	4,5	13
LC1-D50	111	119	72.4	4.5	_
LC1-D65	111	119	72.4	4.5	13
LC1-D80	115.5	124	76.9	9.5	22
LC1-D95	115.5	124	76.9	9.5	-
LP1-D40	111	176	72.4	4.5	13
LP1-D50	111	176	72.4	4.5	-

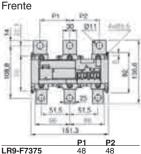
Relés térmicos modelo F

176

115,5 179,4 76,9

LR9-F5377, F5363, F5369


LP1-D65

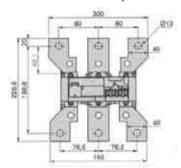

LP1-D80

LR9-F7375, F7379, F7381

13

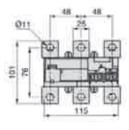
9,5 22

55 dimensões em mm

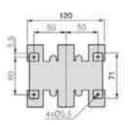

55

LR9-F7379, F7381

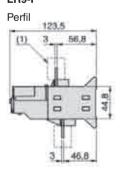
Relés térmicos modelo D


LR9-F7381 (para ser montado abaixo LC1-F630)

Frente

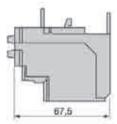


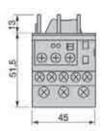
LR9-F5371


Frente

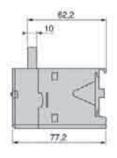
Posterior

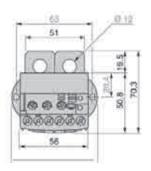
LR9-F

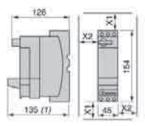


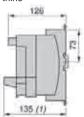


dimensões em mm


(1) Tampa de proteção


Relés eletrônicos e instantâneos LR97 e LT47


LT471



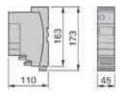
Partidas integradas de motores TeSys modelo U

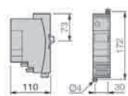
Partida Direta

Montagem em trilho

Fixação por parafuso

Partida Reversora


Perímetro de segurança:


X1 = 50 mm para Ue = 440 V e 70 mm para Ue = 500 e 690 V

X2 = 0

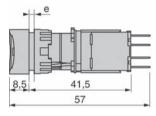
(1) Profundidade máxima (com módulo de comunicação Modbus)

Relés de proteção e controle TeSys modelo U

Unidades de comando e sinalização XB6

Botões, comutadores e sinalizadores com anel plástico, produtos completos

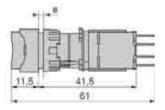
Botões luminosos ou não luminosos à impulsão Com cabeçote retangular


XB6-DWOOD, DF, DAOOD

Com cabeçote quadrado

XB6-CWOOO, CFOOOO, CAOOOO,

Com cabecote redondo


XB6-AW • • • , AF • • • • , AA • • • •

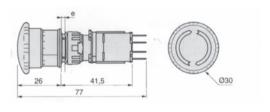
XB6-DE

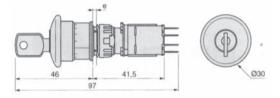
XB6-AE

Vista frontal

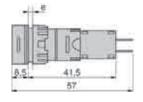
Vista frontal

Vista frontal


23,5



e: espessura do suporte de 1 a 6 mm.


Unidades de comando e sinalização XB6

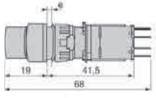
Botões tipo "soco" XB6-AS8349B

Com cabeçote quadrado XB6-CV●●● Com cabeçote redondo XB6-AV●●●●

Unidades de comando e sinalização XB6

Botões, comutadores e sinalizadores com anel plástico, produtos completos

Comutadores com manopla Com cabecote retangular

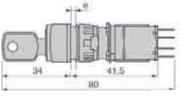

XB6-DD

Com cabecote quadrado

XB6-CD

Com cabeçote redondo

XB6-AD●●●

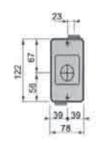

Comutadores com chave Com cabeçote retangular XB6-DG●●●●

Com cabeçote quadrado

XB6-CG●●●

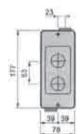
Com cabeçote redondo

XB6-AG



Unidades de comando e sinalização

Botoeiras pendentes e postos de comando XB2-TB para unidades de comando e sinalização XB3 Ø30 mm


XB2-TB11M/XB2-TB11ML

XB2-TB12M/XB2-TB12ML

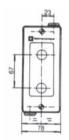
XB2-TB13M/XB2-TB13ML

Unidades de comando e sinalização

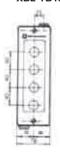
Botoeiras murais e postos de comando XB2-TB para unidades de comando e sinalização XB4 Ø22 mm

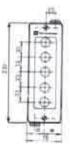
Botoeiras murais XB2-TB11B XB2-TB11BL

XB2-TB12B XB2-TB12BL



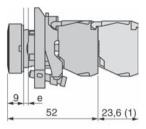
XB2-TB14B XB2-TB14BL



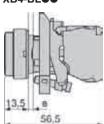

2 2 2

XB2-TB13B XB2-TB13BL

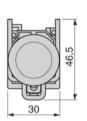
XB2-TB15B XB2-TB15BL

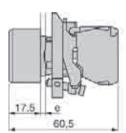


dimensões em mm

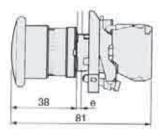

Botões, comutadores e sinalizadores metálicos cromados, produtos completos XB4-B: funcões de comando

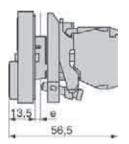
Botões à impulsão

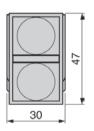

XB4-BA●●



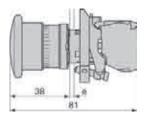
XB4-BL●●

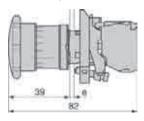

Vista face comum XB4-BP●●




Botões à impulsão "tipo soco" XB4-BC21

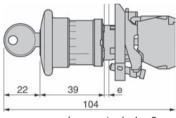
Botões com duplo comando à impulsão XB4-BL●45, BL●4C5


e: espessura do suporte de 1 a 6mm.


(1) Possibilidade de acrescentar um segundo nível de contatos

Botões "tipo soco" Desliga emergência

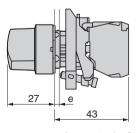
XB4-BT42. BT845

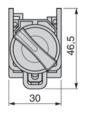

XB4-BS542, BS8445



XB4-BS142, BS9445

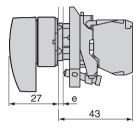
Vista face comum

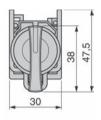




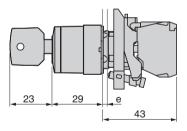
e: espessura do suporte de 1 a 6 mm.

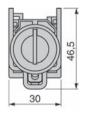
Comutadores Com manopla curta

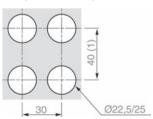

XB4-BD



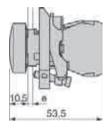
e: espessura do suporte: 1 a 6 mm


Com manopla longa **XB4-BJ**



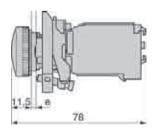

e: espessura do suporte de 1 a 6 mm

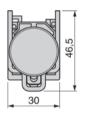
Com chave XB4-BG


e: espessura do suporte de 1 a 6 mm

Botões, comutadores e sinalizadores metálicos cromados, produtos completos XB4-B: funções de sinalização com ou sem contatos

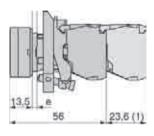
Sinalizadores Com LED integrado Alimentação direta XB4-BVB●, BVG●, BVM●

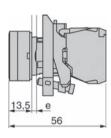




Com transformador incorporado XB4-BV3●, BV●

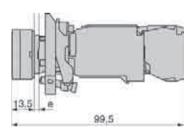
Vista face comum

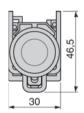




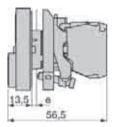
e: espessura do suporte de 1 a 6 mm.

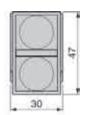
Botões luminosos à impulsão Com LED integrado XB4-BW3.


Alimentação direta XB4-BW3●65

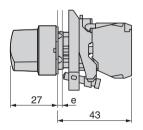


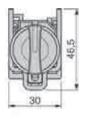
Com transformador XB4-BW3●●5


Vista face comum

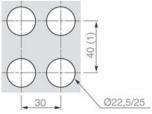


Botões luminosos com duplo comando à impulsão Com LED integrado

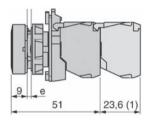

XB4-BW84@5

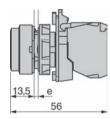


Comutadores luminosos Com LED integrado



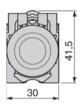
e: espessura do suporte de 1 a 6 mm.

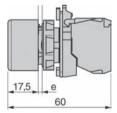

(1) Possibilidade de acrescentar um segundo nível de contatos.

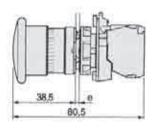


Botões, comutadores e sinalizadores plásticos, produtos completos XB5-B: funções de sinalização com ou sem contatos

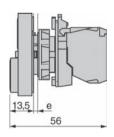
Botões à impulsão

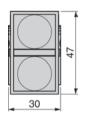

XB5-AL



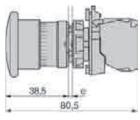

Vista lado comum

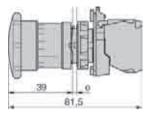
XB5-AP●●




Botões à impulsão Tipo "soco" XB5-AC21

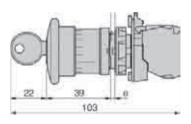
Com duplo comando XB5-AL●45, AL●4C5

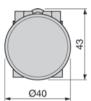

e: espessura do suporte de 1 a 6 mm.


(1) Possibilidade de acrescentar um segundo nível de contatos.

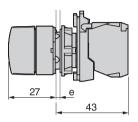
Botões "tipo soco" Desliga emergência

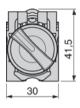
XB5-AT42, BT845

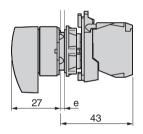

XB5-AS542, AS8445

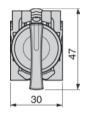


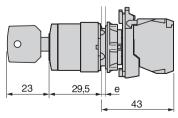
XB5-AS142, AS9445

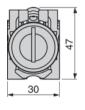

Vista lado comum



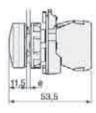

e: espessura do suporte de 1 a 6 mm.

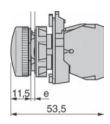

Comutadores Com manopla curta XB5-AD




Com manopla longa XB5-AJ

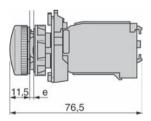
Com chave XB5-AG

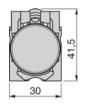




e: espessura do suporte de 1 a 6 mm.

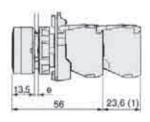
Sinalizadores Com LED integrado XB5-AVB●. AVG●. AVM

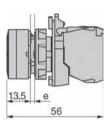

Alimentação direta XB5-AV6



Com transformador incorporado XB5-AV3●, AV4●

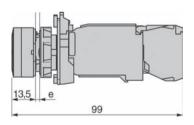
Vista lado comum

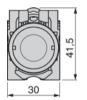



e: espessura do suporte de 1 a 6 mm.

Unidades de comando e sinalização XB5 Harmony

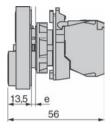
Botões luminosos à impulsão Com LED integrado XB5-AW3●●5

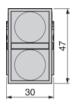

Alimentação direta XB5-AW3●65



Com transformador XB5-AW3●●5

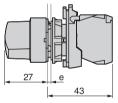
Vista lado comum

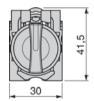




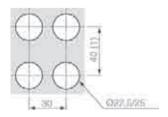
Unidades de comando e sinalização XB5 Harmony

Botões luminosos com duplo comando à impulsão Com LED integrado

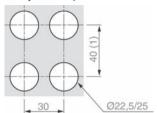

XB5-AW84@5

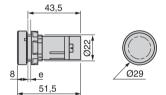


Comutadores luminosos Com LED integrado

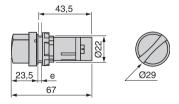

XB5-AK12●●5

e: espessura do suporte de 1 a 6 mm.

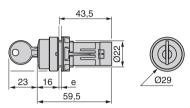

(1) Possibilidade de acrescentar um segundo nível de contatos

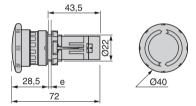

Unidades de comando e sinalização XB7 Harmony

Botões, comutadores e sinalizadores plásticos, monoblocos

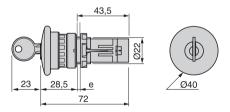

Furação do suporte

XB7-EA●●P, XB7-EH●●P

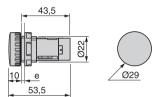

XB7-ED●●P

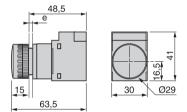

e: espessura do suporte de 1 a 6 mm.

Unidades de comando e sinalização XB7 Harmony

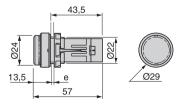

XB7 EG●●P

XB7 ES5●●P


XB7 ES1●P


e: espessura do suporte de 1 a 6 mm.

Unidades de comando e sinalização XB7 Harmony


XB7-EV●●P

XB7-EV8●P

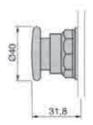
XB7-EW3●●P, XB7-EH0●●P

e: espessura do suporte de 1 a 6 mm.

Unidades de comando e sinalização ZB3/XB3

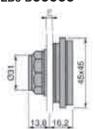
Cabeça octogonal, anel metálico cromado

ZB3-BA●

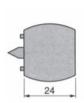

ZB3-BL● Cabeçote para XB3-BW1●●●

ZB3-BD●

ZB3-BC●
Cabeçote para XB3-BW6●●●



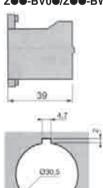
Cabeçote para XB3-BV●●



Unidades de comando e sinalização 7B3/XB3

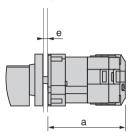
ZB3-B

Bloco de contato 7B2-BF

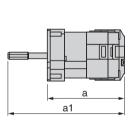

Alimentação direta Z00-B006

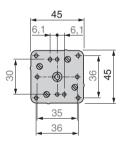
18

Soquetes para sinalizadores e botões luminosos Com redutor de tensão ZOO-BO07

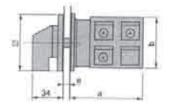

Com Transformador ZOO-BV00/ZOO-BW00

dimensões em mm


Comutadores de 12 a 20 A (K1/K2)

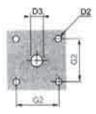

Multifixação

e: espessura para fixação de 1 a 6 mmm


Fixação dianteira

Tipo do Comutador			
	а	a1	
KOAOOO, KOBOOO	53	77	
Keceeee, Kedeeee	63	87	
KOEOOOO, KOFOOOO	73	97	
KOGOOO, KOHOOO	83	107	
Keleeee, Kekeeee	93	117	
Keleeee, KeMeeee	103	127	
KONOOOO, KOOOOOO	113	137	
Kepeeee, Keqeeee	123	147	
KOROOOO, KOSOOOO	133	157	
KOTOOOO, KOUOOOO	143	167	

Comutadores de 32 a 150 A (K1/K2)

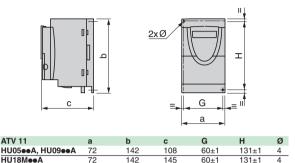


K30-A K30-B	K30-C K30-D	K30-E K30-H	K30-H	K30-K	K50-A K50-B
a 41	53,7	66,4	79,1	104,5	45,8
b 58	58	58	58	58	60
□ 64	64	64	64	64	64

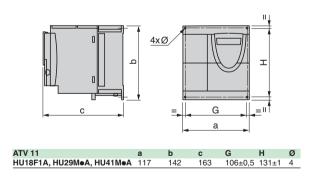
K50-C	K50-E	K50-H	K50-K	K63-A	K63-C
K50-F	K50-F			K63-B	K63-D
a 63,3	80.8	98,3	133,3	49,8	71,3
b 60	60	60	60	66	66
□ 64	64	64	64	64	64

K63-E K63-F	K63-H	K63-K
a 92,8	114.3	157,3
b 66	66	66
□ 64	64	64

Comutadores de 32 a 150 A (K1/K2)

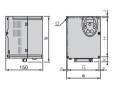

K115-A K115-B	K115-C K115-D	K115-E K115-H	K115-H
a 61,5	88	114,5	141
b 84	84	84	84
□ 88	88	88	88

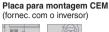
K115-K	K150-A	K150-C	K150-E
	K150-B	K150-D	K150-F
a 194	67,5	100	132,5
b 84	88	88	88
■ 88	88	88	88

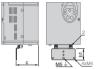

K150-H	K150-K	
a 165	230	
b 88	88	
□ 88	88	

Para motores assíncronos de 0,18 a 2,2 kW

ATV 11HU05••A, ATV 11HU09••A, ATV 11HU18M••A

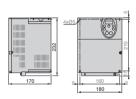



ATV 11HU18F1A, ATV 11HU29M●A, ATV 11HU41M●A



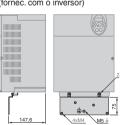
Inversores UL tipo 1/IP 20

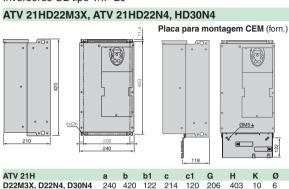
ATV 21H075M3X...HU40M3X. ATV 21H075N4...HU55N4



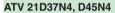
ATV 21H	а	b	b1	С	G	Н	J	K	Ø
075M3XU22M3X									
075N4U22N4	105	143	49	67,3	93	121,5	5	18,5	2x5
U30M3X, U40M3X	140	184	48	88,8	126	157	6,5	20,5	4x5
U30N4U55N4									

ATV 21HU55M3X, HU75M3X, ATV 21HU75N4, HD11N4


Placa para montagem CEM (fornec, com o inversor)


ATV 21HD11M3X...HD18M3X, ATV 21HD15N4, HD18N4

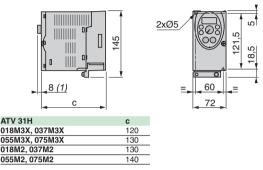
190 225 245


Placa para montagem CEM (fornec. com o inversor)

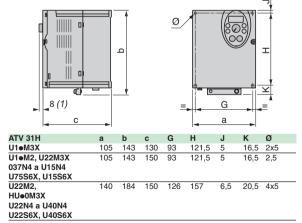
Inversores UL tipo 1/IP 20

244 127 206 529

D37N4, D45N4



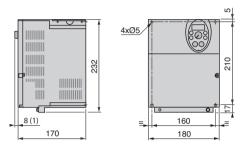
240 550


Para motores assíncronos de 0,18 a 15 kW

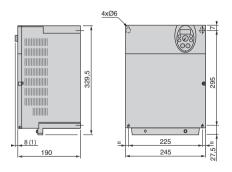
ATV 31H000MXA, ATV 31H000M2A

(1) Somente para os inversores cuja referência termina em A.

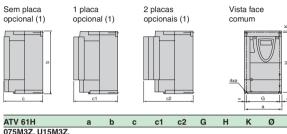
ATV 31HU••M2A, ATV 31HU1•M3XA a ATV 31HU4•M3XA, ATV 31H0••N4A a ATV 31HU40N4A, ATV 31H075S6X a ATV 31HU40S6X



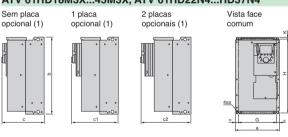
(1) Somente para os inversores cuja referência termina em A.


Para motores assíncronos de 0,18 a 15 kW

ATV 31HU55M3XA, ATV 31HU75M3XA, ATV 31HU55N4A, ATV 31HU75N4A, ATV 31HU55S6X, ATV 31HU75S6X


(1) Somente para os inversores cuja referência termina em A.

ATV 31HD1•M3XA, ATV 31HD1•N4A, ATV 31HD1•S6X


(1) Somente para os inversores cuja referência termina em A.

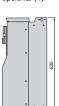
ATV 61H000M3Z, ATV 61HD11M3XZ, HD15M3XZ, ATV 61H075N4Z...HD15N4Z

								-	a
ATV 61H	а	b	С	c1	c2	G	Н	K	Ø
075M3Z, U15M3Z,									
075N4ZU22N4Z	130	230	149	172	195	113,5	5 220	5	5
U22M3ZU40M3Z,									
U30N4Z, U40N4Z	155	260	161	184	207	138	249	4	5
U55M3Z, U55N4Z,									
U75N4Z	175	295	161	184	207	158	283	6	6
U75M3Z, D11N4Z	210	295	187	210	233	190	283	6	6
D11M3XZ, D15M3XZ,									
D15N4Z, D18N4	230	400	187	210	233	210	386	8	6

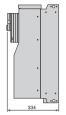
ATV 61HD18M3X...45M3X, ATV 61HD22N4...HD37N4

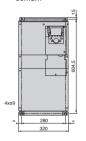
ATV 61H	а	b	С	c1	c2	G	Н	K	Ø
D18M3X, D22M3X,									
D22N4	240	420	236	259	282	206	403	11,4	6
D30N4, D37N4	240	550	266	289	312	206	531,5	11,4	6
D30M3XD45M3X	320	550	266	289	312	280	524	20	9

(Dimensões em mm)

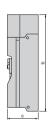

(1) Placas opcionais: placas de extensão de entradas/saídas, placas de comunicação ou placa programável "Controller Inside".


ATV 61HD45N4...HD75N4

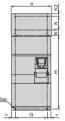

Sem placa opcional (1)


1 placa opcional (1)

2 placas opcionais (1) Vista face comum


ATV 61HD55M3X, HD90M3X, ATV 61HD90N4...HC31N4

Sem ou com 1 placa opcional (1) 2 placas opcionais (1)


Vista face

ATV 61HC25N4...HC31N4 com unidade de frenagem VW3 A7 101

Vista frontal

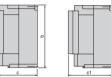
ATV 61H	а	b	С	c1	G	Н	K	K1	K2	Ø
D55M3X, D75M3X	, 320	920	377	392	250	650	150	75	30	11,5
D90N4, C11N4										
D90M3X, C13N4	360	1022	377	392	298	758	150	72	30	11,5
C16N4	340	1190	377	392	285	920	150	75	30	11,5
C22N4	440	1190	377	392	350	920	150	75	30	11,5
C25N4C31N4	595	1190	377	392	540	920	150	75	30	11,5

(1) Placas opcionais: placas de extensão de entradas/saídas, placas de comunicação ou placa programável "Controller Inside".

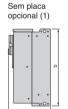
ATV 61HC40N4...HC63N4 Com ou sem 1 placa opcional opcionals (1) 2 placas opcionals (1) Vista frontal Vista frontal

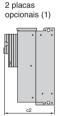
ATV 61H	а	b	С	c1	G	J	J1	н к	K1	K2	Ø
C40N4,											
C50N4	890	1390	377	392	417,5	70	380	112015	0 75	30	11,5
C63N4	1120	1390	377	392	532,5	70	495	112015	0 75	30	11,5

⁽¹⁾ Placas opcionais: placas de extensão de entradas/saídas, placas de comunicação ou placa programável "Controller Inside".


ATV 71HeeeM3Z, ATV 71HD11M3XZ, HD15M3XZ, ATV 71H075N4Z...HD15N4Z. ATV 71HD18N4

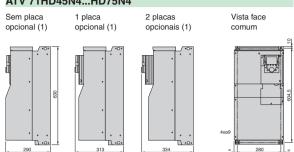
Vista face comum

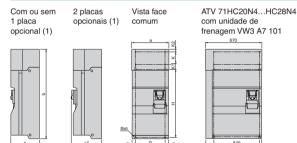



4xø		τ -
=-	G	=

ATV 71H	а	b	С	c1	c2	G	Н	K	Ø
037M3ZU15M3Z,									
075N4ZU22N4Z	130	230	149	172	195	113,5	220	5	5
U22M3ZU40M3Z,									
U30N4Z, U40N4Z	155	260	161	184	207	138	249	4	5
U55M3Z, U55N4Z,									
U75N4Z	175	295	161	184	207	158	283	6	6
U75M3Z, D11N4Z	210	295	187	210	233	190	283	6	6
D11M3XZ, D15M3XZ,									
D15N4Z	230	400	187	210	233	210	386	8	6
D18N4	230	400	213	236	259	210	386	8	6

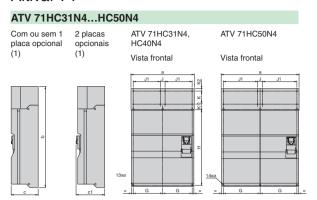
ATV 71HD18M3X...45M3X, ATV 71HD22N4...HD37N4




ATV 71H	а	b	С	c1	c2	G	Н	K	Ø	
D18M3X, D22M3X,										
D22N4	240	420	236	259	282	206	403	8,5	6	
D30N4, D37N4	240	550	266	289	312	206	529	10	6	
D30M3XD45M3X	320	550	266	289	312	280	524,5	5 10	9	

(1) Placas opcionais: placas de extensão de entradas/saídas, placas de comunicação ou placa programável "Controller Inside".

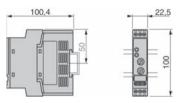
ATV 71HD45N4...HD75N4



ATV 71HD55M3X, HD75M3X, ATV 71HD90N4...HC28N4

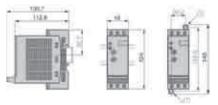
ATV 71H	а	b	С	c1	G	Н	K	K1	K2	Ø
D55M3X, D90N4	320	920	377	392	250	650	150	75	30	11,5
D75M3X, C11N4	360	1022	377	392	298	758	150	75	30	11,5
C13N4	340	1190	377	392	285	920	150	75	30	11,5
C16N4	440	1190	377	392	350	920	150	75	30	11,5
C20N4C28N4	595	1190	377	392	540	920	150	75	30	11,5
(4) DI :				~ .					-	

(1) Placas opcionais: placas de extensão de entradas/saídas, placas de comunicação ou placa programável "Controller Inside".


ATV 71H	а	b	С	c1	G	J	J1	н к	K1	K2	Ø
C31N4,											
C40N4	890	1390	377	392	417,5	70	380	1120150	75	30	11,5
C50N4	1120	1390	377	392	532,5	70	495	1120150	75	30	11,5

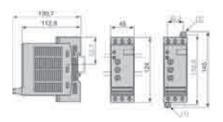
⁽¹⁾ Placas opcionais: placas de extensão de entradas/saídas, placas de comunicação ou placa programável "Controller Inside".

Conversores de partida e parada progressivas para motores assíncronos Altistart 01


ATS 01N103FT, ATS 01N106FT

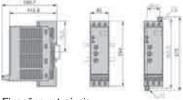
Montagem em trilho 5 (35 mm)

ATS 01N109FT, ATS 01N112FT


Montagem em trilho 5 (35 mm) Fixações retraíveis.

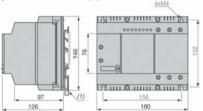
Fixações retraíveis.

ATS 01N206●● a ATS 01N212●●

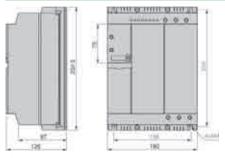

Montagem em trilho 5 (35 mm) Fixação por parafuso

Conversores de partida e parada progressivas para motores assíncronos Altistart 01

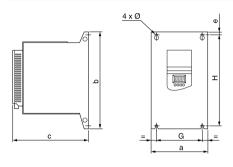
ATS 01N22200 a ATS 01N23200


Montagem em trilho 5 (35 mm) Fixação por parafuso

Fixações retraíveis.

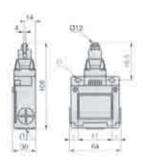

ATS 01N230LY, ATS 01N244LY, ATS 01N244Q

Montagem rápida em trilho 5 (35 ou 70 mm) através da placa VY1 H4101 (1)


Fixações retraíveis.

ATS 01N272LY, ATS 01N285LY, ATS 01N272Q, ATS 01N285Q

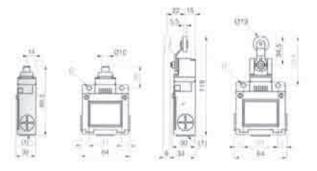
Conversores de partida e parada progressivas para motores assíncronos Altistart 48


ATS 48D17●...ATS 48C66●

ATS-48	а	b	С	е	G	Н	Ø
	mm						
D17Q,D17Y	160	275	190	6,6	100	260	7
D22Q,D22Y							
D32Q,D32Y							
D38Q,D38Y							
D47Q,D47Y							
D62Q,D62Y	190	290	235	10	150	270	7
D75Q,D75Y							
D88Q,D88Y							
C11Q,C11Y							
C14Q,C14Y	200	340	265	10	160	320	7
C17Q,C17Y							
C21Q,C21Y	320	380	265	15	250	350	9
C25Q,C25Y							
C32Q,C32Y							
C41Q,C41Y	400	670	300	20	300	610	9
C48Q,C48Y							
C59Q,C59Y							
C66Q,C66Y							

XCK-M.02 ZCK-M. + ZCK-D02

Perfil Frente

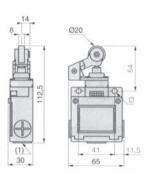


XCK-M.10 ZCK-M. + ZCK-D10

Perfil Frente

XCK-M.15 ZCK-M. + ZCK-D15

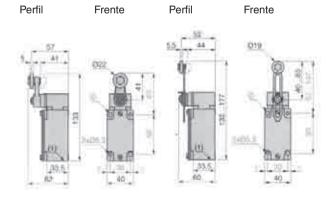
Perfil Frente



XCK-M.21 ZCK-M. + ZCK-D21 XCK-M ZCK-M

Perfil

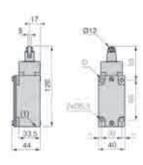
Frente


Vista traseira

XCK-J.051.

XCK-J.0541

XCK-J.67


XCK-P2.10G11

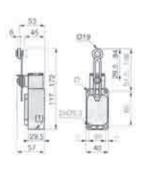

Perfil

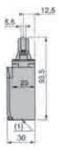
Frente

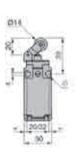
Perfil

Frente

XCK-P2.18G11

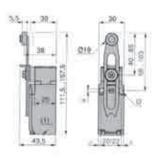

XCK-P2.21G11


Perfil


Frente

Perfil

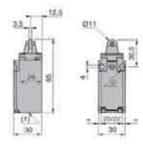
Frente



XCK-P2.45G11

Perfil Frente

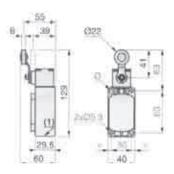
XCK-P2.02G11

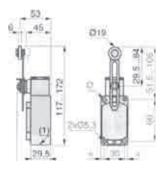

XCK-S.01 ZCK-S. + ZCK-D01

Perfil

Frente

Perfil

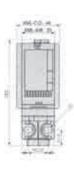

Frente


XCK-S.31 ZCK-S. + ZCK-D31

Perfil Frente

XCK-S.41 ZCK-S. + ZCK-D41

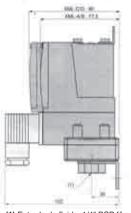
Perfil Frente

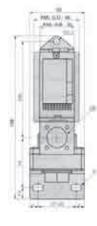

Pressostatos Nautilus

XML-A

Perfil

Frente

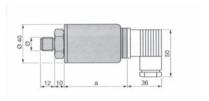



- (1) Entrada de fluido, 1/4" BSP fêmea
- (2) Entrada de conexão elétrica, capa para cabo de 13 mm Ø 2 furos ovais Ø 5.2 x 6.2

XML-B

Perfil

Frente


- (1) Entrada de fluido, 1/4" BSP fêmea
- (2) Entrada de conexão elétrica, capa para cabo de 13 mm Ø 2 furos ovais Ø 5.2 x 6.2

Pressostatos Nautilus

XML-E

Perfil

XML-EZ	а
M01, 001, 010, 025	65
060, 250, 600	75
Ø 1/4" BSP macho	

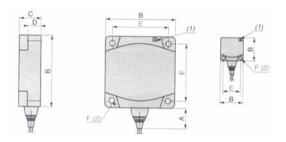
XML-FOOD2000

Sensores indutivos - Osiprox

Osiprox Universal Osiconcept

PNP/M12 ou M8

NPN/M12 ou M8



XS7 C/D/E

XS7 C/D

XS7 E

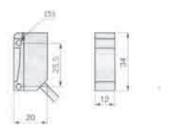
Sensor	A(cabo)	A(co	onec.)	В	С
XS7 E	14	11		26	13
XS7 C	14	11		40	15
XS7 D	23	14		80	26
Sensor	D	Е	F	G	Н
XS7 E	8,8	20	3,5	6,8	6,6
XS7 C	9,8	33	4,5	8,3	13,6
XS7 D	16	65	5,5	8,5	37,8

Sensores indutivos - Osiprox

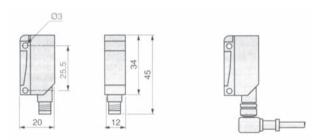
XS5

	a cabo		cone	ctor
XS5	а	b	а	b
Ø8	33	25	42	26
Ø12	33	25	48	29
Ø18	36,5	28	48,6	28
Ø30	40.6	32	50.7	32

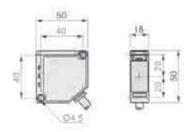
Mínima distância de montagem (mm)



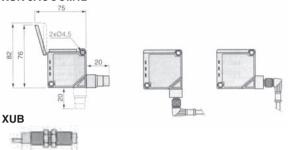
	lado a lado	face a face	face a
			um metal
Ø8	e ≥ 3	e ≥ 18	e ≥ 4,5
Ø12	e ≥ 4	e ≥ 24	e ≥ 6
Ø18	e ≥ 10	e ≥ 60	e ≥ 15
Ø30	e ≥ 20	e ≥ 120	e ≥ 30


Sensores fotoéletricos - XU

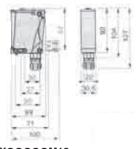
Osiris Standard Retangular e cilíndrico ø18


XUM 0A •• L2

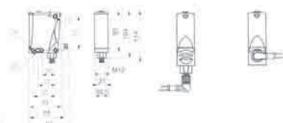
XUM 0A O MUX



XUK 0A • • L2


Sensores fotoéletricos - XU

XUK 0A •• M12



	Cabo	(mm)	Cone	Conector(mm)			
diâmetro	а	b	а	b	_		
	64	44	78	44	_		

XUX •••••T16

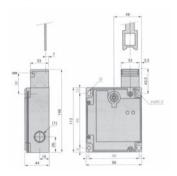

XUX •••••M12

Interruptores de segurança

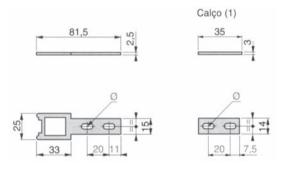
Metálicos, com cabeçote orientável, tipos XCS-A, XCS-C e XCS-E

XCS-A

(1) 1 furo rosqueado para prensa-cabos PG 13,5 ø: 2 furos longos oblongos ø7,3x5,3

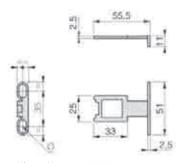

XCS-C

(1) 1 furo rosqueado para prensa-cabos PG 13,5 ø: 2 furos longos oblongos ø7,3x5,3

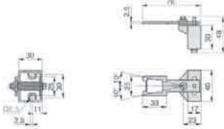

Interruptores de segurança

XCS-E

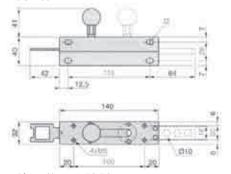
(1) 1 furo rosqueado para prensa-cabos PG 13,5 ø: 2 furos longos oblongos ø7,3x5,3


XCS-Z01

(1) Calço para ajuste (fornecido com a chave XCS-Z01) utilizando para substituir, sem refazer nenhum furo de fixação, um interruptor de segurança XCK-J com chave ZCK-Y07 por um interruptor XCS-A, C ou E com chave XCS-Z01.
6: 2 furos oblongos ø 5,3x10

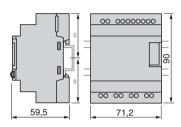

Interruptores de segurança

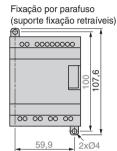
XCS-Z02



ø: 2 furos oblongos ø 5,3x10

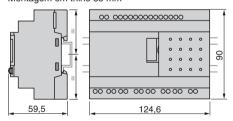
XCS-Z05

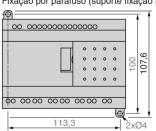

ø: 4 furos oblongos ø 5,3x7,3


Módulos lógicos Zelio Logic

SR2 A101BD, SR2 D101FU, SR3 B101BD e SR3 B101FU (10 entradas/saídas)

SR2 B121JD, SR2 B12*BD, SR2 B121B, SR2 A101FU, SR2 B121FU, SR2 D101BD, SR2 E121BD, SR2 E121B, SR2 E121FU (12 entradas/saídas)

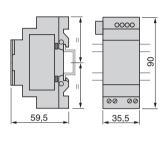

Montagem em trilho 35 mm

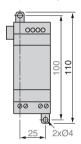


SR2 B201JD, SR2 A201BD, SR2 B20•BD, SR2 B201B, SR2 A201FU, SR2 B201FU, SR2 D201BD, SR2 E201BD, SR2 E201B, SR2 D201FU e SR2 E201FU (20 entradas/saídas) SR3 B26•BD, SR3B261JD e SR3 B261FU (26 entradas/saídas)

Montagem em trilho 35 mm

Fixação por parafuso (suporte fixação retraíveis)




Módulos lógicos Zelio Logic

Módulos de expansão de entradas/saídas SR3 XT61•• (6 entradas/saídas)

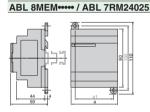
Montagem em trilho 35 mm

Fixação por parafuso (suporte fixação retraíveis)

SR3 XT101 •• e SR3 XT141 •• (10 e 14 entradas/saídas)

Montagem em trilho 35 mm

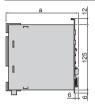
Fixação por parafuso (suporte fixação retraíveis)



Phaseo ABL1 - Fontes dedicadas

ABL	L	Р	а	b	С
1REM12050	150	38	144	38	58
1REM24025	150	38	144	38	58
1REM12083	200	38	194	38	58
1REM24042	200	38	194	38	58
1REM24062	200	50	194	28	48
1REM24100	200	60	194	28	48

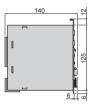
Phaseo Modular


ABL	а	a1
8MEM05040	54	42
8MEM12020	54	42
8MEM24003	36	24
8MEM24006	36	24
8MEM24012	54	42
7RM25025	72	60

Phaseo Optimum

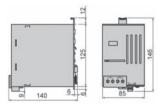
Phaseo Universal - Fonte chaveada

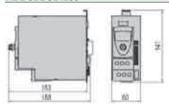
ABL 8RPS24*** / ABL 8RPM24200 / ABL 8WPS24***



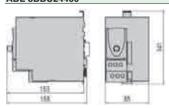
ABL	а	b
RPS24030	120	44
RPS24050	120	56
RPS24100	140	85
RPM24200	140	145
WPS24200	155	95
WPS24400	155	165

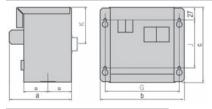
Phaseo Universal - Conversor CC/CC


ABL 8DCC05060 e ABL 8DCC12020

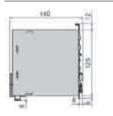


Phaseo Universal - Módulo Buffer e DC UPS


ABL 8BUF24400

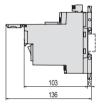

ABL 8BBU24200

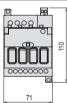
ABL 8BBU24400


ABL 8BPK24A03/A07/A12

а	D	C	G	J	IV.
97	185	140	157	83	78
133	170	158	152	100	-
130	237	157	219	100	-
	97 133	97 185 133 170	97 185 140 133 170 158	97 185 140 157 133 170 158 152	97 185 140 157 83 133 170 158 152 100

Phaseo Universal - Módulo de redundância


ABL 8RED24400

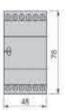


Phaseo Universal – Módulo de proteção seletiva

ABL 8PRE24100 e ABL 8PRP24100

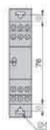
Componentes de proteção

Relés RM4-JA Zelio Control


RM4-JA

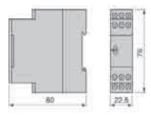
RM4-JA●1

RM4-JA32

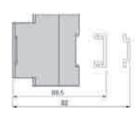


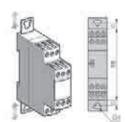
Fixação por trilho

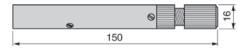
Fixação por parafuso



Componentes de proteção

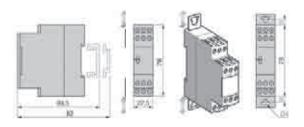

Relés de controle de nível Zelio Control


RM4-LG01UA, LA32/ RM4-UA RM4-UB/RM4T


Fixação por trilho

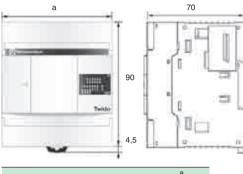
Fixação por parafuso

Sonda

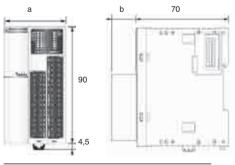


Componentes de proteção

RE7/RE8/RE9


Fixação por trilho

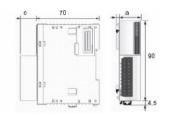
Fixação por parafuso


Controlador programável Twido

TWD LC●A 10DRF/16DRF/24DRF

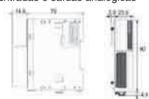
	а
TWDLC●A 10DRF	80
TWDLC●A 16DRF	80
TWDLC●A 24DRF	95
TWDLC●A 40DRF	157

TWD LMDA 20D●K/20DRT/40D●K

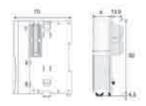


	а	b	
TWDLMDA 20DTK/DUK	35,4	0 *	
TWDLMDA 20DRT	47,5	14,6	
TWDLMDA 40DTK/DUK	47,5	0 *	
OTB1•0DM9LP	47.5	14.6	

^{*} Sem conector.


Controlador programável Twido

Entradas e saídas digitais



TWD	а	С
D●I 8DT/16DT	23,5	14,6
DDI 16DK	17,6	11,3
DDI 32DK	29,7	11,3
DDO 8UT/8TT	23,5	16,6
DDO 16UK/16TK	17,6	11,3
DDO 32UK/32TK	29,7	11,3
DRA 8RT/RT	23,5	14,6
DMM 8DRT	23,5	14,6
DMM 24DRF	39,1	1,0

Entradas e saídas analógicas

Módulos de comunicação TWD NOZ●●/XCP ODM

Visite nosso site:

www.schneider-electric.com.br wap.schneider.com.br

Para mais informações sobre produtos:

Call Center 0800 7289 110 / (11) 3468-5791

call.center.br@br.schneider-electric.com

Schneider Electric Brasil Ltda

MATRI7

SÃO PAULO/SP - Av. das Nações Unidas, 18.605 Santo Amaro - CEP 04795-100 CNPJ: 82.743.287/0027-43 - IE: 148.061.989.116

FÁBRICAS

GUARAREMA/SP - Estrada Municipal Noriko Hamada, 180 Lambari - CEP 08900-000

CNPJ: 82.743.287/0012-67 - IE: 331.071.296.119

SUMARÉ/SP - Av. da Saudade, 1125 - Frutal CEP 13171-320

CNPJ: 82.743.287/0008-80 - IE: 671.008.375.110

SÃO PAULO/SP - Av. Nações Unidas, 23.223 - Jurubatuba CEP 04795-907

CNPJ: 82.743.287/0001-04 - IE: 116.122.635.114

CURITIBA/PR - Rua João Bettega, 5.480 - CIC CEP 81350-000 CNPJ: 05.389.801/0001-04 - IE: 90.272.772-81

Contatos Comerciais

SÃO PAULO - SP - Av. das Nações Unidas, 18.605 - CEP 04795-100 Tel.: 0__11 **2165-5400** - Fax: 0__11 **2165-5391**

RIBEIRÃO PRETO - SP - Rua Chile, 1.711 - cj. 304 Millennium Work Tower - Jd. Irajá - CEP 14020-610 Tel.: 0 16 2132-3150 - Fax: 0__16 2132-3151

RIO DE JANEIRO - RJ - Rua da Glória, 344 - salas 602 e 604 - Glória CEP 20241-180

Tel.: 0_ _21 2111-8900 - Fax: 0_ _21 2111-8915

BELO HORIZONTE - MG - Av. Alameda da Serra, $400 - 8^{\circ}$ andar - Vila da Serra - Nova Lima - CEP 34000-000

Tel.: 0 _ 31 4009-8300 - Fax: 0 _ 31 4009-8320

CURITIBA - PR - Av. João Bettega, 5.480 - CIC - CEP 81350-000 Tel.: 0__41 2101-1299 - Fax: 0__41 2101-1276

FORTALEZA - CE - Av. Desembargador Moreira, 2.120 - salas 807 e 808 Aldeota - CEP 60170-002 - Equatorial Trade Center Tel.: 0 85 3244-3748 - Fax: 0 85 3244-3684

GOIÂNIA - GO - Rua 84, 644 - sala 403 - Setor Sul - CEP 74083-400 Tel.: 0 62 2764-6900 - Fax: 0 62 2764-6906

JOINVILLE - SC - Rua Marquês de Olinda, 1.211 - 1º andar Bairro Santo Antônio - CEP 89218-250

Tels.: 0_ _47 **3425-1200** / **3425-1201** / **3425-1221**

PARNAMIRIM - RN - Av. Abel Cabral, 93 - Nova Parnamirim - CEP 59151-250
Tel.: 0 _ _84 4006-7000 - Fax: 0 _ _84 4006-7002

PORTO ALEGRE - RS - Rua Ernesto da Fontoura. 1.479 - salas 706 a 708

São Geraldo - CEP 90230-091 Tel.: 0 51 **2104-2850** - Fax: 0 51 **2104-2860**

RECIFE - PE - Rua Ribeiro de Brito, 830 - salas 1.603 e 1.604 Edifício Empresarial Iberbrás - Boa Viagem - CEP 51021-310 Tel.: 0 81 3366-7070 - Fax: 0 81 3366-7090

SALVADOR - BA - Av. Tancredo Neves, 1.632 - salas 812, 813 e 814 Edifício Salvador Trade Center - Torre Sul - Caminho das Árvores CEP 41820-021

Tel.: 0 71 3183-4999 - Fax: 0 71 3183-4990

SÃO LUÍS - MA - Av. dos Holandeses, lotes 6 e 7 - quadra 33 Ed. Metropolitan Market Place - sala 601 - Ipem Calhau - CEP 65071-380 Tel.: 0_ _98 **3227-3691**

> Call Center: 0800 7289 110 ou (11) 3468-5791 call.center.br@br.schneider-electric.com www.schneider-electric.com.br wap.schneider.com.br

Conheça o calendário de treinamentos técnicos: www.schneider-electric.com.br Mais informações: tel. (11) 2165-5350 ou treinamento.br@br.schneider-electric.com

Schneider Electric

Call Center: 0800 7289 110 / (11) 3468-5791 call.center.br@br.schneider-electric.com

> www.schneider-electric.com.br wap.schneider.com.br