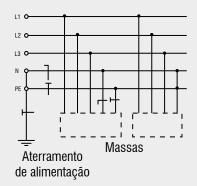

NBR 5410:2004

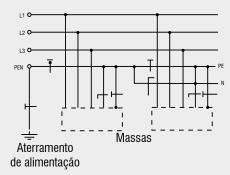
Esquemas de conexão dos DPS no ponto de entrada da linha de energia ou no quadro de distribuição de edificação.

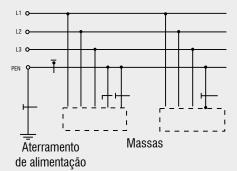
Tabela para dimensionamento com base na máxima tensão de operação contínua.

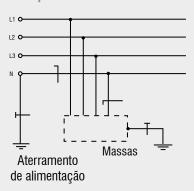
DPS conectado entre				Esquema de aterramento				
Fase	Neutro	PE	PEN	TT	TN-C	TN-S	IT com neutro distribuído	IT sem neutro distribuído
X	X			1,1 U ₀		1,1 U ₀	1,1 U ₀	
X		X		1,1 U ₀		1,1 U ₀	√3 U ₀	U
X			Х		1,1 U ₀			
	Х	X		Uo		U ₀	U ₀	

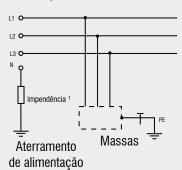

- Ausência de indicação significa que a conexão considerada não se aplica ao esquema de aterramento.
- U_O é a tensão fase-neutro
- U é a tensão entre fases
- Os valores adequados de U_C podem ser significativamente superiores aos valores mínimos das tabelas.

- a) A ligação ao barramento de equipotencialização principal - BEP ou ao barramento do condutor de proteção - PE, depende de onde os dispositivos de proteção de surtos - DPS serão instalados e de como o BEP será implementado. Assim, a ligação será no BEP quando:
- o BEP está a montante do quadro de distribuição principal (próxima do ponto de entrada da edificação) e os DPS estarão junto ao BEP e não na quadra, ou,
- as DPS estarão no quadro de distribuição principal e o barramento PE do quadro acumular a função BEP.
- b) Um esquema que entra TN C e prossegue instalação adentro TN C, ou qu entra TN C e em seguida passa a TN S. O neutro de entrada, necessariamente PEN, deve ser aterrado na BEP. A passagem TN C a TN S, com separação da PEN em condutor neutro e PE é feita no quadro esquema TN C-S.
- c) Configura três possibilidades de esquema TT: (com neutro), IT com neutro e entrada em esquema TN S.
- **d)** Dois esquemas são obrigatórios:
- esquema TT, os DPS estão a montante de dispositivos DR
- os DPS estão jusante de dispositivos DR, estes devem suportar correntes de surtos de no mínimo 3 kA (8 / 20µs).


Esquema de Instalação


Esquema TN-S. Condutor neutro e condutor de proteção separados ao longo de toda a instalação.


Esquema TN-C-S. As funções de neutro e de proteção são combinadas num único condutor em uma parte da instalação.


Esquema TN-C. As funções de neutro e de condutor de proteção são combinadas num único condutor ao longo de toda a instalação.

Esquema TT. Possui um ponto da alimentação diretamente aterrado.

Esquema IT. Não possui qualquer ponto da alimentação diretamente aterrado, estando aterradas as massas da instalação

O Neutro pode ser isolado da Terra