A ÁGUA: Propriedades da Água

I.2.7. Coesão, adesão e tensão superficial

Em um líquido as moléculas da superfície estão submetidas a uma força de atração para o interior devido a forças eletrolíticas. Este fenômeno dá origem a uma tensão tangencial a superfície ao longo de toda área livre do líquido que faz com que o mesmo adira ou não a superfície em contato em volta.

Diz-se que *coesão* é a propriedade que uma substância tem de conservar-se unida resistindo a separação. Num comportamento contrário a *adesão* é a propriedade do líquido fixar-se na superfície de outros corpos. Por exemplo, a água tende a aderir a superfície em volta molhando esta superfície ou subindo acima do nível de repouso pelo efeito chamado de *capilaridade*, enquanto que com o mercúrio ocorre o fenômeno inverso. No caso da água temos que a *adesão* é superior a coesão e no do mercúrio a coesão é maior.

A tensão superficial é o fenômeno que se verifica na superfície de separação entre dois fluidos não miscíveis. Esta tensão depende da natureza dos fluidos em contato e da temperatura. É determinada pela tensão por unidade de comprimento numa linha qualquer de separação e é geralmente simbolizada pela letra grega minúscula "σ" e expressa em unidades de força por unidade de comprimento, por exemplo no C.G.S. em dyn/cm. Para obtenção de resultados menos precisos emprega-se freqüentemente o valor de 0,007 Kgf/m (Tabela II.2).

Tabela II.2 - Tensão superficial entre a água e o ar

θ (°C)	0	10	20	30	40	50	60	70	80	90	100
σ (dyn/cm)	74,16	72,79	71,32	69,75	68,18	67,16	66,11	64,36	62,60	60,71	58,25
σ (10 ⁻³ kgf/m)	7,69	7,54	7,40	7,23	7,07	6,96	6,86	6,67	6,49	6 ,30	6,04

I.2.8. Compressibilidade

Embora seguidamente se trabalhe com a água como se ela fosse incompressível, na realidade em algumas situações isto pode levar a erros grosseiros, como por exemplo no caso de estudos referentes a questões que envolvam transmissão de ondas de pressão, como no caso de golpe de aríete. Define-se como *módulo de compressibilidade* ou *de elasticidade*, também conhecido como *módulo volumétrico de elasticidade* ou *módulo global de elasticidade*, a relação entre o aumento de pressão e o de massa específica para uma dada temperatura, sendo geralmente simbolizado pela letra maiúscula "Ε" (há autores que preferem a letra grega minúscula "ε"). Usualmente adota-se E = 2,18 x 10°Kgf/m² para pré-dimensionamentos com água (Tabela II.3).

Tabela II.3 - Módulo de compressibilidade para água em função da temperatura

0 (°C)	0	5	10	20	30	40	50	60
E (10 ⁸ kgf/m ²)	1,98	2,02	2,07	2,15	2,19	2,21	2,22	2,23

I.2.9. Pressão de vapor

Como qualquer outro líquido, a água também tem a propriedade de vaporizar-se em determinadas condições de temperatura e pressão. E assim sendo temos que ela entra em ebulição sob a pressão atmosférica local a uma determinada temperatura. Por exemplo, no nível do mar (pressão atmosférica normal) a ebulição acontece a 100°C. A medida que a pressão diminui a temperatura de ebulição também se reduz. Assim, quanto maior a altitude do local menor será a temperatura de ebulição. *Pressão de vapor* é, pois, a pressão exercida pelo vapor em determinado espaço. Geralmente é simbolizada por h_v Em condições de cálculos expeditos podemos adotar o valor de 0,024 kgf/cm² (Tabela II.4).

Tabela II.4 - Tensão de vapor em função da temperatura

Temperatura (°C)	Tensão de vapor (mm Hg)	Tensão de vapor (kg/cm²)	Densidade relativa	
0	4,56	0,0062	0,9998	
4	6,11	0,0084	1,0000	
5	6,50	0,0089	1,0000	
10	9,19	0,0125	0,9997	
15	12,7	0,0174	0,9991	
20	17,4	0,0238	0,9982	
25	23,6	0,0322	0,9970	
30	31,5	0,0429	0,9967	
35	41,8	0,0572	0,9945	
40	54,9	0,0750	0,9922	
45	71,4	0,0974	0,9901	
50	92,0	0,1255	0,9880	
55	117,5	0,1602	0,9867	
60	148,8	0,2028	0,9832	
65	186,9	0,2547	0,9811	
70	233,1	0,3175	0,9788	
75	288,5	0,3929	0,9759	
80	354,6	0,4828	0,9728	
85	433,0	0,5894	0,9693	
90	525,4	0,7149	0,9653	
95	633,7	0,8620	0,9619	
100	760,0	1,0333	0,9584	
105	906,0	1,2320	0,9549	
110	1075,0	1,4609	0,9515	
115	1269,0	1,7260	0,9474	
120	1491,0	2,0270	0,9430	