Fatores de Correção para Harmônicos

Harmônicos podem provocar uma série de efeitos problemáticos como:

- Operação indevida de equipamentos (eletrônicos, de controle, proteção, etc);
- Erros de leitura em equipamentos de medição;
- Sobretensões (comprometimento da isolação e vida útil dos equipamentos);
- Sobrecorrentes; (efeitos térmicos nocivos aos equipamentos);
- Interferências em sistemas de comunicação (principalmente sinais de rádio);
- Perdas excessivas em cabos e transformadores;
- Ruídos audíveis:
- Ressonâncias Série e Paralela, entre outros.

Tabela 8.16 - Fator fh para a determinação da corrente de neutro

Taxa de	f _h	
Harmônicos Triplos	Circuito trifásico com neutro	Circuito com duas fases e neutro
33% a 35%	1,15	1,15
36% a 40%	1,19	1,19
41% a 45%	1,24	1,23
46% a 50%	1,35	1,27
51% a 55%	1,45	1,30
56% a 60%	1,55	1,34
61% a 65%	1,64	1,38
≥66%	1,73	1,41

(*) Conforme NBR 5410:2004 - Tabela F.1 pg. 196

Quando, num circuito trifásico com neutro ou num circuito com duas fases e neutro, a taxa de terceira harmônica e seus múltiplos for superior a 33%, a corrente que circula pelo neutro é superior à corrente das fases. A seção do condutor neutro pode ser determinada calculando-se a corrente no neutro sob a forma:

$$I_N = f_h I_B'$$
 $I_B' = \sqrt{I_1^2 + \sum_{n=1}^{\infty} I_n^2}$

Onde: *I'B* : corrente de projeto corrigida;

 I_1,I_n : corrente fundamental e harmônicas;

f_h: fator de correção em função da taxa de harmônicos triplos.

8.3. Dimensionamento do condutor de proteção

A NBR 5410:2004 recomenda o uso de Condutores de Proteção (designados por PE), que, preferencialmente, deverão ser condutores isolados, cabos unipolares ou veias de cabos multipolares.

A Tabela seguinte indica a seção mínima do condutor de proteção em função da seção dos condutores fase do circuito. Em alguns casos, admite-se o uso de um condutor com a função dupla de neutro e condutor de proteção. É o condutor PEN (PE + N), cuja seção mínima é de 10mm², se for condutor isolado ou cabo unipolar, ou de 4mm², se for uma veia de um cabo multipolar.

Tabela 8.17 - Seção mínima do condutor de proteção

Seção do condutor fase (mm²)	Seção do condutor de proteção (mm²)
S ≤ 16	S
16 < S ≤ 35	16
S > 35	S/2

(*) De acordo com a NBR 5410:2004 - Tabela 58 pg. 150

A seção de qualquer condutor de proteção que não faça parte do mesmo cabo ou não esteja contido no mesmo conduto fechado que os condutores de fase não deve ser inferior a:

- 2,5 mm² em cobre/16 mm² em alumínio, se for provida proteção contra danos mecânicos;
- 4 mm² em cobre/16 mm² em alumínio, se não for provida proteção contra danos mecânicos.

9. Dimensionamento de Eletrodutos

Na utilização de condutos fechados (eletrodutos) deve observar as seguintes exigências:

- Os circuitos devem pertencer à mesma instalação (mesmo Quadro);
- Os condutores devem ser semelhantes (intervalo de 3 seções normalizadas);
- Todos os condutores devem possuir a mesma temperatura máxima;
- Todos os condutores devem ser isolados para a maior tensão nominal;
- É vedada a utilização de eletrodutos que não sejam expressamente apresentados e comercializados como tal;
- A NBR 5410 somente permite a utilização de eletrodutos não-propagantes de chama e, quando embutidos, suportem os esforços de deformação característicos da técnica construtiva utilizada.
- Nos eletrodutos só devem ser instalados condutores isolados, cabos unipolares e multipolares.
- Normalmente, em instalações elétricas de baixa tensão, utiliza-se eletrodutos de PVC rígido, quando a instalação for embutida, ou eletrodutos metálicos, quando aparente.
- Os condutores ou cabos não devem ocupar uma percentagem da área útil do eletroduto maior do que está indicado na tabela abaixo:

Tabela 9.1 – Ocupação de eletrodutos

Taxa máxima de ocupação dos eletrodutos		
Quantidade de condutores ou cabos	Máxima ocupação em relação à área útil do eletroduto	
1	53%	
2	31%	
3 ou mais	40%	

• Tradicionalmente, no Brasil, os eletrodutos eram designados por seu diâmetro interno em polegadas. Com o advento das novas normas, a designação passou a ser feita pelo tamanho nominal, um simples número sem dimensão.

Tabela 9.2 - Correspondência entre tamanho nominal e polegadas

Eletroduto rígido de PVC