- Existem 06 critérios de dimensionamento de condutores:
- Critério da Seção mínima
- 2. Critério da Capacidade de condução de corrente
- Critério da Queda de Tensão
- Critério da Sobrecarga
- Critério do Curto Circuito
- Critério de Contatos Indiretos
- No entanto estudaremos os três critérios mais importantes para a instalação elétrica, que são os três primeiros.
- Nas análise de cargas sempre considerar um Sistema Equilibrado.

Seção Mínima – NBR 5410

- Para o critério da seção mínima temos:
- Condutores de Iluminação: seção mínima 1,5mm²
- 2. Condutores de Força: seção mínima 2,5mm²
- Para o critério da capacidade de corrente temos:

$$Iz = \frac{Ip}{FCA * FCT}$$

Onde: Iz = Corrente Corrigida
Ip= Corrente de Projeto
FCA= Fator de Correção de Agrupamento
de Condutores
FCT= Fator de Correção de Temperatura

Critério da Capacidade de Corrente

Corrente de Projeto (Ip) → é a corrente nominal (In) que o equipamento (máquina) necessita para o seu funcionamento.

Corrente Corrigida (Iz) → é a corrente de projeto após realizada a correção pelo Fator de Correção de temperatura (FCT) (Tabela 6) e Fator de Correção de Agrupamento de Condutores (FCA)(Tabela 8)

$$Iz = \frac{Ip}{FCA * FCT}$$

Fator de Correção de Agrupamento

- Para determinar o Fator de Correção de Agrupamento de Condutores, devemos determinar duas características do projeto, que são eles:
- 1. Número de circuitos e ou cabos multipolares é a quantidade de circuitos ou cabos multipolares que passam pelo mesmo duto (exemplo de duto: Eletroduto, canaletas, eletrocalhas, bandejas, etc). Depende exclusivamente da divisão dos circuitos no projeto.
- 2. Método de Instalação* é o tipo de instalação realizada (exemplo: Condutores instalados em eletrocalha (B1), instalados em Bandeja Perfurada (F).

 Nota: Para as aulas de instalações industriais, sempre utilizaremos os cabos unipolares

Fator de Correção de Temperatura

- Para determinar o Fator de Correção de Temperatura, devemos determinar outras duas características do projeto, que são eles:
- 1. Tipo de Instalação Ambiente ou Solo
- Deve-se considerar a temperatura do local onde o condutor está instalado (ambiente ou solo)
- 2. Tipo de Isolação do Condutor:
- PVC
- XLPE e/ ou EPR

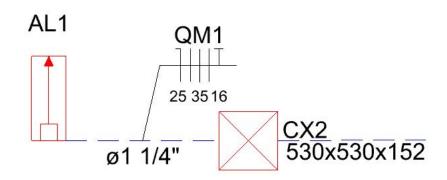
Seção de Condutor Neutro

- Conforme a Norma NBR 5410, o condutor Neutro deverá possuir a mesma seção do condutor fase nos seguintes casos:
 - Em circuitos monofásicos e Bifásicos;
 - Em circuitos trifásicos, quando a seção do condutor fase for igual ou inferior a seção de 25mm²;
 - Em circuitos trifásicos, quando for prevista a presença de harmônicos.
 - A seção do condutor Neutro pode ser reduzida conforme a Tabela*, para os seguintes casos:
 - · Quando não for prevista a presença de harmônicas;
 - Quando a máxima corrente susceptível que percorre o neutro seja inferior à capacidade de condução de corrente correspondente à seção reduzida do condutor neutro.

Seção de Condutor de Proteção

 O condutor de proteção (PE), conhecido como condutor Terra, deverá ser preferencialmente condutores isolados, cabos unipolares ou veias de cabos multipolares, e sua seção pode ser reduzida conforme

Tabela*.


Tabela 58 — Seção mínima do condutor de proteção

Seção dos condutores de fase S mm²	Seção mínima do condutor de proteção correspondente mm²
S ≤ 16	S
16 < S ≤ 35	16
S > 35	S/2

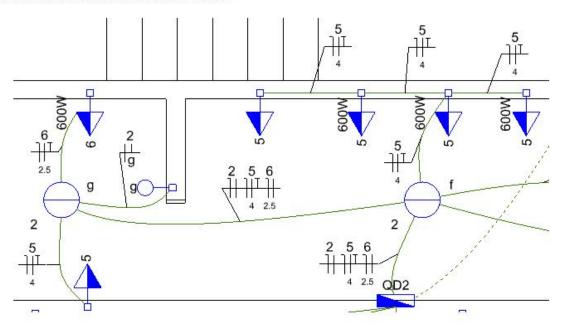

Seção Fase (mm²)	Seção Terra (mm²)
1,5 a 16	a mesma
25	16
35	16
50	25
70	35
95	50
120	70
150	95
185	95
240	120
300	150

Tabela 48 — Seção reduzida do condutor neutro1)

Seção dos condutores de fase mm²	Seção reduzida do condutor neutro mm²
S ≤ 25	S
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
400	185

Para exemplificar o dimensionamento da fiação temos o circuito 5 apresentado a seguir, que possui 3 tomadas de 600 W e 2 tomadas de 100 W:

Iremos supor que o circuito 5 foi definido com o esquema F+N e com a tensão 127 V.